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Correlations and periodicities in Himalayan tree ring widths and temperature

anomalies through wavelets
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We have studied periodicities and correlation properties of tree ring width chronology of deodar
tree from Joshimath (1584 - 1999 years) and Uttarkashi (1500 - 2002 years) in the western Himalayas
and the pre-monsoon (March-April-May) temperature anomalies (1876 - 2003) relative to 1961 -
1990 mean, through wavelet analysis. Periodic behavior is observed in the tree ring chronology with
periodicity in the form 11, 22, and 42 years. The analysis of the self-similar nature reveals long-
range correlation with a Hurst exponent, H > 0.5. These are anti-correlated with the temperature
anomalies. An interesting inversion behavior is observed around the year 1750. The power spectral
analysis of the time series corroborate the results of wavelet method.

PACS numbers: 05.45.Tp, 92.70.Gt, 89.75.Da

INTRODUCTION

Our understanding of the variability of climate is
largely hampered by limited length of instrumental
weather records, spanning in most cases to past 100
years. High-resolution proxy climate records, with pre-
cise dating control, provide very good tool to supplement
the weather records back by several centuries and millen-
nia. Of these records, tree rings provide valuable proxy
as annual growth rings can be precisely dated to calen-
dar year of their formation and the overlapping template
of tree ring chronologies can be calibrated with weather
data to hindcast the climate variables. Such long-term
records can be used to understand the mode of climate
variability in a longer perspective.

The climate dynamics is affected by a large number of
factors, which in turn is reflected on a variety of proxy
records, such as tree ring widths, ocean and lake de-
posits etc. The tree ring data has a much higher res-
olution as compared to the later ones. Recently, these
two class of data have been combined through the multi-
resolution capability of the wavelets [1], for reconstruct-
ing millennial-scale climate variability, in the northern
hemisphere. Multi-centennial variations in temperature,
possibly arising out of natural phenomena, have been in-
ferred from the above study, which correlates well with a
general circulation model. The variations in temperature
naturally introduces variations in precipitation patterns,
which are truthfully recorded in the tree ring data. At
present, global temperatures are increasing; the last cen-
tury in particular has seen substantial variations in tem-
perature and precipitation rates, which may be arising
due to anthropogenic forcing or natural causes.

The goal of the present article is to employ wavelet

transform for studying ring chronologies’ periodicities in
tree ring and detect the presence of self-similar behavior
and correlation properties [2, 3]. The fact that, a num-
ber of phenomena in nature reveal these type of behavior
and wavelets provide an ideal tool to find the same, mo-
tivates this study. Apart from the implications of the
periodicities, the nature of the self-similar fractal behav-
ior, in terms of persistence or anti-persistence will carry
long-term physical implication.

In the following section, we outline briefly the basic
properties of the wavelet transform which are useful for
the present analysis. In section III, a description is pro-
vided about the tree ring materials, chronology prepara-
tion and climate data. Sec. IV deals with results and
discussions. We finally conclude in sec. V with a sum-
mary and future directions of work.

WAVELET TRANSFORM

Since the early eighties, wavelet transform has emerged
as a powerful tool to analyze transient and time-varying
phenomena [4, 5]. It has innumerable applications in
various fields, ranging from signal processing, natural sci-
ences, economics and finance data analysis [6, 7, 8, 9, 10,
11, 12, 13, 14]. Wavelet transform decomposes an in-
put signal into components that depend on position and
scale. We can characterize the input signal by changing
the scale for a particular location.

The wavelet basis functions are localized both in time
and frequency (or position and scale). The wavelets are
parameterized by the scale parameter (dilation parame-
ter) s > 0, and a translation parameter −∞ < a < ∞,
thus the wavelet basis can be constructed from one single
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function ψ(x) according to

ψs,a(x) = ψ(
x − a

s
). (1)

Here, ψ(x) is the mother wavelet. Given a function
f(x), the (continuous) wavelet transform is defined as

W [f ](s, a) =
1√
s

∫ +∞

−∞

ψ∗

s,af(x)dx. (2)

Here ψ∗(x) denotes the complex conjugate of ψ(x). In
order for a function ψ(x) to be usable as an analyzing
wavelet, one must demand that it has zero mean. We
make use of continuous Morlet wavelet for studying the
periodicity in our data. The behavior of the global power
spectrum is inferred from ln|Ws,a[f ]|2 versus scale s.

We employ the Daubechies wavelets for finding the self
similar behavior of the time series. In order to be useful
for removing polynomial trends, wavelets belonging to
the Daubechies family are made to satisfy,

∫ +∞

−∞

xmψ(x)dx = 0, 0 ≤ m ≤ n. (3)

Here the upper limit n is related to what is called the
order of the wavelet. We use Daubechies-12 wavelet to
find the Hurst exponent (H), making use of the average
wavelet coefficient method [15]. This wavelet has been
found to be reliable through calculating Hurst exponent
for the time series like Gaussian white noise and bino-
mial multifractal model, for which the Hurst exponent is
known [16].

In the average coefficient method for estimating the
correlation behavior, one computes,

W [f ](s) = 〈|W [f ](s, a)|〉 ≃ s1/2+H . (4)

W[f](s) is the averaged wavelet energy of all locations for
different scales. Thus for the given time series, the scaling
exponent (1/2 + H) is measured from the log-log plot
of W[f](s) versus scale s through linear fit. The Hurst
exponent (H) varies between 0 < H < 1. If H < 1/2,
the time series possesses anti-correlation behavior and
for H > 1/2 long-range correlation behavior is present.
For uncorrelated time series, H = 1/2. We have also
analyzed the time series through Fourier power spectral
analysis, where P (f) ∼ f−α, and α = 2H + 1.

TREE RING MATERIALS AND CHRONOLOGY

PREPARATION

Tree ring samples in the form of increment cores were
collected from Himalayan cedar trees growing at mois-
ture stressed sites in Juma near Joshimath and Gangotri

in Uttarkashi. Increment borers were used to extract
4mm diameter cores from trees at 1.4m stem height from
ground. The increment cores were processed to cross
date the sequence of growth rings in trees to exact calen-
dar year of their formation. The ring widths of precisely
dated growth rings were measured using linear encoder
with the accuracy of 0.01mm. Long-term growth trends
inherent in trees due to increasing age and stem girth
were removed by standardizing the ring width measure-
ment series. Individual tree ring width measurement se-
ries were fitted with negative exponential or linear regres-
sion line with negative slope or no slope and indices calcu-
lated as quotient of actual measurement and curve value.
The individual tree series after standardization were av-
eraged using bi-weight robust estimation of the mean to
develop mean chronology using program ARSTAN. The
chronology dynamics assumed to be climate driven could
be used to examine the possible low frequency modes and
how these might have varied over time [17, 18, 19]. The
tree ring series prepared form Gangotri, Uttarkashi and
Jurna, Joshimath in Uttaranchal are shown in Figs. 1
and 2 respectively.

Climate data: Tree ring chronologies showed strong
negative relationship with pre-monsoon temperature. To
calibrate the tree ring series, we prepared mean pre-
monsoon temperature series by merging temperature
anomalies of nine stations (relative to 1961 - 1990 mean)
in western Himalaya. The mean temperature series (Fig.
7) is biased by larger station data records beginning from
the mid of 20th century except in case of four stations,
where it extends back to beginning of the 20th century
and even earlier.

RESULTS AND DISCUSSION

As mentioned earlier, we make use of the Morlet
wavelet for studying the periodicity in the data. The
average wavelet coefficient method is used for finding the
correlation behavior through calculation of Hurst expo-
nent. It is worth mentioning that, here we are dealing
with non-stationary data; wavelets are well suited for the
analysis of this class of data. The wavelet coefficients are
investigated and wavelet amplitude spectrum is obtained.

Figs. 1 and 2 depict the global power spectra of the
tree data from Uttarkashi and Joshimath, clearly reveal-
ing multiple periodic variations at 11, 22, and 42 years re-
spectively [20]. Fig. 3, depicts the global power spectrum
of temperature records, which shows an anti-correlation
behavior with the tree ring variations of Figs. 1 and 2.
Scalogram of the wavelet coefficients is given in Fig. 4;
where one can observe the periodicities as mentioned ear-
lier. An interesting inversion is clearly seen around 1570
years.

In Figs. 5, 6 and 7, upper panel (a) shows the time
series of accumulated tree ring and temperature data af-
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FIG. 1: The semi-log plot of wavelet power summed over all
time at different scales (time period). One clearly observes
the variations at 11, 22 and 42 years.

0 10 20 30 40 50 60 70
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Time period (scale)

su
m

(|
w

(s
,t)

|)

FIG. 2: the semi-log plot of wavelet power summed over all
time at different scales (time period). Here also one sees the
variations at 11, 22 and 42 years.
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FIG. 3: The semi-log plot of the wavelet power versus scale
(time period) for the temperature data. An anti-correlation
behavior with the tree ring variations of Figs. 1 and 2 is
clearly seen.
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FIG. 4: (Upper panel) time series of ring width chronology
of deodar from Uttarkashi and (lower panel) scalogram of the
above time series, one can clearly see the inversion around
1570 year and the periodicities as mentioned above.
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FIG. 5: Power spectral analysis for ring width chronology of
deodar from Uttarkashi, yielding the scaling exponent α =
2.45066.

ter subtracting the mean, whereas (b) shows the power
law behavior of the Fourier spectral analysis of the time
series.

We now investigate the correlation properties of tree
ring time series, for which we have used average wavelet
co-efficient method. Hurst exponent, which is a mea-
sure of correlation properties in a time series is com-
puted through Daubechies-12 wavelet. We have found
that the tree ring time series possess long range correla-
tion, the Hurst exponent H ∼ 0.73 (tree ring series from
UttarKashi), H ∼ 0.74 (tree ring series from Joshimath)
and for temperature anomalies H ∼ 0.7. The results ob-
tained from average wavelet coefficient method is compa-
rable with the Fourier power spectral analysis P (s) s−α

results by the relation α = 2H+1, keeping in mind the fi-
nite data length. The obtained scaling exponent through
Fourier analysis is α = 2.45066, H ∼ 0.73 (tree ring se-
ries from Uttarkashi) and α = 2.4416, H ∼ 0.72 (tree
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FIG. 6: Power spectral analysis for ring width chronology
of deodar from Joshimath, giving the scaling exponent α =
2.4416.

1880 1900 1920 1940 1960 1980 2000

−5

0

5

10

years

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
−4

−2

0

2

4

6

8

f

P
(f

)

FIG. 7: Power spectral analysis for pre-monsoon temperature,
giving the scaling exponent α = 2.34.

ring series from Joshimath). Temperature record yields
a scaling exponent α = 2.34 and the corresponding Hurst
exponent H ∼ 0.67. This also shows long range correla-
tion behavior.

CONCLUSION

From the above obtained results one can clearly see the
climate variations in both time and frequency scales. One
observes both periodic and self-similar processes. Keep-
ing in mind the non-stationary nature of the time se-
ries, the efficacy of the wavelets in extracting the above
behavior is clearly seen. This is due to the localization
and multi-resolution ability of the wavelets. As expected,

there is an anticorrelation between the tree-widths and
temperature anomalies. Surprisingly, the self-similar be-
havior yields long-range correlation. This aspect needs
to be further studied carefully in conjunction with other
related data sets, since long-range correlation carries sig-
nificant physical implications. In particular, the nature
of these correlations as a function of time is of deep inter-
est. Some of these studies are currently under progress
and will be reported elsewhere.
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