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Abstract

The Dps (DNA-binding protein from starved cells) proteins from Mycobacterium smegmatis MsDps1 and MsDps2 are both
DNA-binding proteins with some differences. While MsDps1 has two oligomeric states, with one of them responsible for
DNA binding, MsDps2 has only one DNA-binding oligomeric state. Both the proteins however, show iron-binding activity.
The MsDps1 protein has been shown previously to be induced under conditions of starvation and osmotic stress and is
regulated by the extra cellular sigma factors sH and sF. We show here, that the second Dps homologue in M. smegmatis,
namely MsDps2, is purified in a DNA-bound form and exhibits nucleoid-like structures under the atomic force microscope. It
appears that the N-terminal sequence of Dps2 plays a role in nucleoid formation. MsDps2, unlike MsDps1, does not show
elevated expression in nutritionally starved or stationary phase conditions; rather its promoter is recognized by RNA
polymerase containing sA or sB, under in vitro conditions. We propose that due to the nucleoid-condensing ability, the
expression of MsDps2 is tightly regulated inside the cells.
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Introduction

Bacteria respond to stressful conditions encountered in the

stationary phase of growth through a complex and intricate system

of adaptation. This includes changes in metabolism, physiology as

well as re-organization and protection of the cellular genetic

material [1]. The methods of adaptation include the protection of

the cellular genetic material, against physical and chemical assault,

maintaining its integrity for subsequent growth and future

generations. This is often accomplished by the re-organization of

the genomic DNA and its compaction with the help of various

single-strand DNA binding proteins and nucleoid proteins [2].

The DNA Binding Protein from Starved Cells, or Dps, is one such

nucleoid-protein that is over expressed in E. coli under stationary

phase conditions [3]. The Dps protein is mainly involved in the

protection of the bacterial cell against oxidative stress. Lately, its

role in the condensation and compaction of the bacterial genome

in the stationary phase has been elucidated [4].

The first mycobacterial Dps protein was discovered in Mycobac-

terium smegmatis from a comparison of the protein profiles of well-

nourished versus starved bacteria through proteomic analysis [5].

The MsDps1 protein was found to protect DNA against physical

and chemical attack via its two oligomeric states, namely a trimer

and a dodecamer [6]. Reassessment of structural stability under

various pH conditions has been substantiated in other studies [7].

Further analysis indicated a tight regulation of expression of this

protein in vivo with a conspicuous increase in expression in response

to starvation and osmotic stress [8]. However, MsDps1, despite

having a DNA binding ability in its dodecameric form, has not been

associated with DNA-compaction activity so far. With the advent of

a completely annotated M. smegmatis genome sequence in The

Institute of Genome Research (www.tigr.org), a second Dps

homologue, MsDps2, has been identified in M. smegmatis. Recently

some of the structural and functional features of this new MsDps2

have been explored in comparison to MsDps1, based on crystal

structure analysis and biochemical assays [9]. Structural analysis

indicated a dodecameric conformation similar to MsDps1.

However, the single oligomeric state and the ability to bind DNA

in the absence of a characteristic DNA binding tail, as seen with

MsDps1 [6,10–12] suggested a unique function for MsDps2,

distinct from that of MsDps1. We present here the evidence for

the formation of MsDps2-DNA nucleoid like structure.

Interestingly, a promoter DNA-protein pull down experiment

followed by single round in vitro transcription assay showed that

RNA polymerase containing sA or sB is sufficient to carry out

transcription at the msdps2 promoter. This is different from the

results we obtained in the case of the msdps1 promoter [8], which is

exclusively transcribed by extracytoplasmic function sigma factors.

Thus, it raises the possibility that MsDps2 is tightly regulated, as a

consequence of its ability for nucleoid formation within the cell.
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Results

MsDps2 Protein Is Purified as a DNA-Dps Complex
Figure 1 shows the DNA binding ability of the purified MsDps2

upon incubation with a plasmid DNA (pGEM plasmid 2.9 kb). It

can be seen from the gel (lane 2) that the protein binds to DNA.

This mode of binding for Dps proteins has been studied earlier,

wherein the protein, upon DNA addition forms a huge protein-

DNA complex that gets retained in the wells of an agarose gel

[6,9,13,14]. As the size of the complex is very big, we did not make

any attempt to resolve the complex by other methods. Upon

quantification of the band intensities using multigauge software,

the amount of DNA was found to be more in lane 2, as compared

to the free protein alone in lane 3 and values have been mentioned

in the figure legend of figure 1. We inferred that even in lane 3

where no external DNA was added MsDps2 had DNA associated

with it. Expectedly, as no added DNA was present, the intensity of

DNA in lane 3 is less as compared to that in lane 2. Lane 1

containing the free DNA was used as control and therefore no

DNA is present in the well. Further comparison of the DNA

binding activity of the full length and deleted protein has been

performed through AFM analysis and transmission electron

microscopic studies as discussed below.

MsDps2 Protein Forms Nucleoid-Like Structures In Vitro
The Dps proteins have a distinctive globular doughnut-like

appearance with around 9 nm in diameter under the electron

microscope and are known to form neatly organized two

dimensional arrays in vitro [15].

It was reported earlier that MsDps1 formed two dimensional

arrays upon the addition of DNA to the protein. MsDps2 also

forms the similar array in the presence of DNA under the

transmission electron microscope in addition to the 9 nm diameter

particle (Fig. 2).

In addition, we also found the presence of certain higher sized

intricate structures of larger dimensions, made up of these globular

proteins, under the electron microscope. The same was corrob-

orated with the help of Atomic Force Microscopy and will be

discussed in the following section. It has been reported earlier that

the E.coli Dps protein forms nucleoid-like structures by coiling with

DNA [15]. Dps is known to be involved in packaging the DNA to

form compact bacterial nucleoid in the stationary phase, in

addition to its primary role of protecting DNA under stress [4,15].

The structures seen with MsDps2 were very similar to those shown

for the E. coli and Helicobacter pylori Dps-DNA nucleoid [15,16].

These results suggested that the MsDps2 protein is involved in the

formation of the nucleoid structures and probably plays a role in

the compaction of the M. smegmatis nucleoid similar to the E. coli

Dps protein.

The N-Terminus of MsDps2 and DNA Condensing Ability
From the sequence alignment of MsDps2 with other Dps

proteins, it was apparent that MsDps2 is devoid of any C or N-

terminal tails as seen with MsDps1 or the E.coli Dps [9]. These

extensions confer DNA binding ability to the E.coli Dps and

MsDps1 proteins [11,12,17]. On the contrary, the N-terminus of

MsDps2 does not have any characteristic DNA-binding signature

and the positively charged residues are distributed evenly

throughout the sequence. However, crystal structure analysis

showed that the N-terminus of MsDps2 resides at the dodecameric

surface, an important prerequisite for DNA-binding. Thus, it is

likely to be involved in the DNA binding activity of MsDps2.

Additionally, the N-termini from various dodecamers line the

intermolecular spaces between the hexagonally closed packed

layers of MsDps2 molecules [9]. Interestingly, we observed that

the addition of a hexahistidine tag at the N-terminus abrogated the

DNA-binding activity of MsDps2 (data not shown). These

observations suggested a role for the N-terminal domain of

MsDps2 in its DNA-binding ability. In order to test this possibility,

we cloned a deleted version of MsDps2 lacking 15 amino acids

from the N-terminus, MsDps2DN15. The structural integrity of

the deleted protein was further supported by its iron-binding

activity as shown in figure 3 (panel a and b). For comparison, we

have included here the iron binding ability of the intact MsDps2

protein (fig. 3, panel c and d). The protein accumulated iron in its

inner cavity like the full-length protein, suggesting that its overall

structure is intact. The protein forms dodecamer (fig. 4A), also

binds DNA in gel retardation analysis (fig. 4B). AFM analysis of

MsDps2DN15-DNA complex showed a particle of diameter

around 26 nm (Fig. 5A) and corresponds to the DNA-bound

protein. This is in contrast to the MsDps2 protein which exists

with a larger particle size of 31 nm (Fig. 5B). The difference in the

heights (Fig. 5A and 5B) of the DNA-protein complex is also

significant. These results indicate that less DNA is bound to

MsDps2DN15. Thus, N-terminus plays a role in the DNA binding

of MsDps2. Free DNA, MsDps2 and MsDps2DN15 without DNA

has been imaged as controls as shown in figures 5C–E. The values

for the diameter of DNA (fig. 5C) and the protein (fig. 5D and E)

Figure 1. MsDps2 is purified as a DNA- bound complex. MsDps2
protein in 20 mM Tris-HCl (pH 7.9), 200 mM NaCl, purified by DE52 ion-
exchange chromatography was checked on a 0.8% agarose gel for
bound DNA. Lane 1: free plasmid DNA pGEM; lane 2: DNA+ MsDps2
(1:104 molar ratio); lane 3: purified MsDps2. The arrows indicate the
position of the DNA entered in the agarose gel. Quantification of
intensities of the DNA in the wells in Gel Retardation assay was done
using Multi-Gauge V 2.3 (Fujifilm) software. The relative intensity/ (pixel)
2 for DNA in samples of MsDps2 with respect to the blank (lane 1) were
12.14 for MsDps2 with DNA (lane 2) versus 8.28 (lane 3) for purified
MsDps2 protein alone.
doi:10.1371/journal.pone.0008017.g001

Second Dps from M. smegmatis
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are within limits. Each measurement has been carried out at least

five times with same cursor position. One may note that upon

removal of 15 amino acids from the N-terminal, the protein looses

its height compared to the native protein, although horizontal

distance remains same.

The presence of two independent Dps homologues in M.

smegmatis suggested that the two proteins performed distinct

functions within the cell. The MsDps1 protein is over expressed

in the cell under conditions of starvation and osmotic stress at both

transcriptional as well as translational level [8], which correlates

with its in vitro properties of protecting DNA against physical

damage and oxidative stress [6]. However, MsDps2 has a more

direct role in compaction of DNA and thus its transcriptional

regulation will be an important aspect to study.

For this purpose purified antibody against the MsDps2 was

generated. The purified antibody was used to detect the expression

of MsDps2 in wild type M. smegmatis cultures grown under various

conditions of growth, which included starvation, very late

stationary phase and biofilm growth. MsDps2 protein was not

found to be expressed in the lysates under any of the conditions

tested (not shown). Although a negative result cannot be taken as a

firm conclusion, we would like to suggest that perhaps MsDps2 is

not stress regulated and need to be studied further.

We recently have reported that msdps1 is transcribed by RNA

polymerase containing ECF sigma factors [8]. Here, we analyze

the transcription complex at the msdps2 promoter through in vitro

single round run-off transcription assay. Prior to that, a DNA-

protein pull down assay was designed involving the linear

biotinylated msdps2 promoter DNA and an equimolar mixture of

reconstituted RNA polymerases containing sigma factors A and B.

Similar protocol has been followed as described earlier for

biotinylation, immobilization and single round transcription [8].

The msdps2 Promoter Is Recognized by Both Principle
Sigma Factor A and Principle Like Sigma Factor B
Reconstituted RNA Polymerases

In order to isolate and characterize a transcription complex at

msdps2 promoter, we need to identify the upstream promoter

sequence first. However, it was difficult to characterize the same

with in vivo primer extension method [8], as we do not know under

what condition the transcription of msdps2 is activated. Thus, we

cloned a 778 base pair upstream sequence of DNA from the

translational initiation site of the msdps2 gene, in mc2155 genomic

DNA sequence, assuming that the promoter element will be a part

of the same. Preliminary multiple round in vitro transcription on

this template showed appreciable RNA product with the core

RNA polymerase of M. smegmatis reconstituted with M. tuberculosis

sA and sB factors (not shown). We have shown before that both

M. tuberculosis sA and sB share significant sequence homology with

that of M. smegmatis [8]. The DNA fragment was then immobilized

on streptavidin coated agarose beads (Sigma Aldrich). We

reconstituted M. smegmatis core RNA polymerase with different

concentration of sA or sB, named as EsA and EsB respectively

and carried out pull-down experiments and probed with

antibodies against the respective sigma factors. The western blots

were scanned using Multi Gauge V2.3 software (in silico) and the

transcript band intensities were quantitated through densitometry.

Figure 2. MsDps2 forms protein-DNA nucleoid-like structures under transmission electron microscope. A (1–3) MsDps2 forms ring-
like structures and arrays. Purified MsDps2 protein shows ring-like doughnut-shaped dodecamers under the transmission electron microscope. A
single particle is shown with the thin arrow. The protein was also seen to form arrays as shown in the region covered with the solid arrow. B (1–2)
MsDps2 protein forms nucleoid-like structures in vitro. Transmission electron microscopic analysis of the MsDps2 protein bound to DNA
showed nucleoid-like structures similar to those observed for the E.coli suggesting a role in the condensation and organization of the mycobacterial
nucleoid for the MsDps2 protein. C) MsDps2 protein shows tightly compacted stationary phase nucleoid-like structure.
doi:10.1371/journal.pone.0008017.g002

Second Dps from M. smegmatis
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In order to quantitate the differential affinity of the two sigma

factors reconstituted holo RNA polymerases namely EsA and EsB

for msdps2 promoter, a calibration curve was constructed (fig. 6).

Table 1 shows the comparative affinity for EsA and EsB towards

msdps2 promoter. One should note that we have not analyzed the

association of any ECF sigma factor reconstituted RNA polymer-

ases with msdps2 promoter. However, the above experiment has

been done to compare the sigma factor specificity of msdps2

promoter vis-à-vis msdps1 promoter, where msdps1 promoter is

transcribed by RNA polymerase containing ECF sigma factors

only [8]. The presence of any other sigma factors association with

msdps2 promoter, apart from the principle sigma factors, need to

be explored.

Single-Round In Vitro Run-Off Transcription Assay
Reconstitution of holo-RNA polymerases using M. smegmatis

core (a2bb’v) and the M. tuberculosis sA and sB were performed

following the same protocol as explained in the previous study.

The resulting heterologous polymerases EsA and EsB were then

subjected to single round run-off transcription in the presence of

standardized amount of heparin (in order to stop transcription

after one round), on a linear 967 bp DNA fragment containing

767 bp upstream msdps2 promoter region and 200 base pair (bp) of

the gene. mRNA transcripts were resolved on a 10% polyacryl-

amide gel containing 6M urea. Figure 7 panel A shows the RNA

ladder ran separately and matched with the test gel [8].

Approximately .200 nucleotide (nt) of transcripts were obtained

when the gel was examined in a phosphorimager (Fujifilm) system

as a result of incorporation of the radioactive a-P32 labeled UTP to

the product mRNA (fig. 7) with both EsA (Panel B; lane 1) and

EsB (Panel B; lane 2). We demonstrated before, that no single

round transcription takes place with core enzyme alone (data not

shown).

Mycobacterial Dps Proteins Belong to Two Distinct
Classes

The presence of two Dps proteins is intriguing, given that it is

observed in various species of bacteria. In order to understand the

need for two Dps homologues in M. smegmatis, we carried out a

bioinformatic comparison of the MsDps2 protein with other

members of the Dps family. ClustalW analysis was done to

compare the sequence of MsDps2 and other Dps family proteins

and a phylogenetic tree was constructed based on the sequence

analysis. Despite being coded for in the same organism, the

MsDps1 and MsDps2 proteins are not very close to each other in

sequence identity. This suggests that MsDps2 is not the exact

duplicate of MsDps1, sequence-wise, and by corollary, in their

functional roles too. Thus the two proteins- MsDps1 and MsDps2

are independent homologues in M. smegmatis with possibly unique

functions. Additionally, MsDps1 has a long C-terminal tail that

contains the DNA-binding motif [10,11], which is lacking in

MsDps2. Upon comparison with Dps homologues from other

bacteria, we found that the mycobacterial Dps homologues fall

into two groups represented by the MsDps1 and MsDps2 proteins

of M. smegmatis, respectively. The MsDps1 group proteins from

Mycobacterium smegmatis, Mycobacterium avium and Mycobacterium sp.mcs

constitute a separate class from the MsDps2 homologues from the

same organisms. Interestingly, there is no Dps homologue in the

pathogenic mycobacteria M. tuberculosis and M. leprae. Figure 8

Figure 3. MsDps2DN15 has an intact oligomeric structure. Iron-
binding assay with the MsDps2DN15 shows that the protein
accumulates iron like the full-length MsDps2. a) shows the staining
for iron by the Prussian blue method. Lane 1: Ferritin; Lane 2: BSA; Lane
3: MsDps2DN15. b) shows the same gel stained with Commassie blue. c)
MsDps2 protein is seen to accommodate externally added iron in Fe3+

state as analysed with potassium ferricynaide method. Here spleen
ferritin and BSA were used as positive and negative controls,
respectively, on a 10% Native PAGE. d) Subsequent to staining for iron
the gel was stained with Coomassie blue (left panel). Lane 1: BSA, Lane
2: Ferritin and Lane 3: MsDps2 protein.
doi:10.1371/journal.pone.0008017.g003

Figure 4. Oligomeric status of MsDps2DN15 and its DNA bound
complex. A) The N-terminal deleted protein MsDps2DN15 is a
dodecamer like the full-length protein. Lane 1 and 2 are the markers,
BSA and Ferritin respectively, on a 10% native gel; Lane 3 is MsDps2;
while lane 4 shows MsDps2DN15. B) MsDps2DN15 protein in 20 mM
Tris-HCl (pH 7.9), 200 mM NaCl, purified by DE52 ion-exchange
chromatography was checked on a 0.8% agarose gel for bound
DNA.Lane 1: Free plasmid DNA; Lane 2: DNA+ MsDps2ND15 (1:104

molar ratio).
doi:10.1371/journal.pone.0008017.g004

Second Dps from M. smegmatis
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shows only the mycobacterial Dps groups. M. avium paratuberculosis

has only one Dps homologue which belongs to the MsDps1 class,

while M. smegmatis, M. avium and Mycobacterium sp. mcs have both

the MsDps1 and MsDps2 homologues which are phylogenetically

equidistant from each other. Thus, not only are two Dps proteins

present in various bacteria, the mycobacterial Dps homologues fall

into two distinct categories that are equidistant from each other.

Discussion

The discovery of a second Dps homologue raised the obvious

question, what is the need for the presence of two Dps proteins and

what is the role of the second Dps in the physiology of M.

smegmatis?

Successive attempts to detect MsDps2 protein induction inside

the wild type cells, as a function of variable stress factors, failed to

show any protein expression. Alternatively, we can look at the

promoter region of this gene and try to understand its regulation at

the mRNA level.

We show that the MsDps2 protein forms DNA-Dps nucleoid-

like structures in vitro. A role for the N-terminal 15 amino acids in

the DNA-binding property of MsDps2 has been indicated by AFM

analysis of an N-terminal deleted version of the protein. The

propensity of MsDps2 to bind and compact DNA could be

deleterious to the cells and shut down protein synthesis, if left

unregulated. The lethal effect of DNA compaction from an

artificial overexpression of a nucleoid protein H-NS, in E.coli is

already documented [18]. At the same time, nucleoid-compaction

is one of the mechanisms used in the protection of the cellular

genetic material under conditions of stress [19]. Indeed Dps is a

starvation and stationary phase specific protein with a role in

nucleoid-condensation, as shown in E.coli [4]. We suggest that the

expression of MsDps2 is tightly controlled in vivo to prevent

unregulated compaction of the bacterial nucleoid. The association

of housekeeping sigma factors A and B to regulate msdps2

promoter as compared to a stress-specific sigma factors associated

Figure 5. Comparison between the interaction of MsDps2 and MsDps2DN15 with DNA by AFM analysis. A) MsDps2DN15 forming a
complex with DNA. B) MsDps2 forming a complex with DNA. C) Plasmid DNA. D) MsDps2 (without DNA). E) MsDps2DN15 (without DNA).
doi:10.1371/journal.pone.0008017.g005

Figure 6. Standard calibration curve using known molar
concentrations of pure sA protein from M. tuberculosis. The
band intensity (B.I) in Y axis represents the relative intensities of the
western blots obtained with different concentrations of M. tuberculosis
sA. In silico analysis was carried out with the Fujifilm Multi-Gauge
software. All experiments were performed in triplicates and the average
value was taken.
doi:10.1371/journal.pone.0008017.g006

Second Dps from M. smegmatis
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with msdps1 promoter, also endorses the above speculation of a

complex regulation of expression of the protein.

Materials and Methods

Bacterial growth conditions, media composition, cloning,

protein purification, MALDI analysis, native gel analysis and gel

retardation assay were done as described previously [12].

MsDps2DN15 was cloned from the plasmid containing the full-

length version of MsDps2 in pET21b using the primers 59

GGTTTCCATATGACACCGGAG 39 (forward primer) and 59

GGCGGTTAGAAGCTT AGACC 39 (reverse primer) which

have Nde1 and HindIII sites, respectively. These sites were used to

clone the gene into the Nde1 and HindIII sites in pET21b to create

the final plasmid pETmsdps2Dn15. The MsDps2DN15 was also

purified like MsDps2 as described previously [9]. For promoter

analysis assays, M. smegmatis wild-type strain mc2155 [20] was

grown in MB7H9 medium supplemented with 2% glucose and

0.05% Tween-80.

Quantification of Band Intensity in GRA Experiments
Multigauge analysis was done to quantify the relative band

intensities of the DNA in the wells after the gel retardation assay

(GRA). Briefly, 2 ml of pGEM DNA (2.9 kb) was mixed with 18 ml

of MsDps2 at a protein: DNA molar ratio of 104:1 in 20 mM Tris–

HCl (pH 7.9), 200 mM NaCl, and incubated at 37uC for 30 min.

The complex was then resolved on a 0.8% agarose gel in 1X TAE

[Tris-acetate–ethylenediaminetetraacetic acid (EDTA)] buffer

consisting of 40 mM Tris-acetate, 20 mM sodium acetate and

1 mM EDTA (pH 8.0). The electrophoresis was carried out at a

constant voltage of 50 V. The gel was stained with ethidium

Table 1. Quantification of the band intensities in the western blots, as obtained by probing the eluted fractions from in vitro pull-
down assay, using Multi-Gauge software.

RNA polymerase (reconstituted)
Concentration of core protein
(mM) added during reconstitution

Concentration of sigma proteins
(mM) added during reconstitution

Concentration of sigma proteins in
the eluted fraction (mM) as obtained
from quantitative analysis

*EsA 0.25 0.5 0.21

0.95 1.9 0.92

EsB 0.25 0.5 0.05

0.95 1.9 0.03

The amounts of core RNA polymerase (M. smegmatis) and sigma proteins (M. tuberculosis) added during reconstitution were known and the amounts of sigma proteins
bound to the msdps2 promoter were calculated using the standard calibration graph (figure 6).
doi:10.1371/journal.pone.0008017.t001

Figure 7. Single-round heparin-resistant run-off transcription
at the msdps2 promoter carried out with M. smegmatis
reconstituted holo-RNA polymerases. A) A 10% polyacrylamide
gel containing 6M urea shows an RNA ladder run separately and
matched as described before (Chowdhury et al., 2007). B) M.
tuberculosis sA and sB were reconstituted with M. smegmatis core
RNA polymerase. The intensity of each transcript band as obtained from
phosphorimager analysis showed the mRNA transcripts for EsA (lane 1)
and EsB (lane 2).
doi:10.1371/journal.pone.0008017.g007

Figure 8. Phylogenetic analysis of mycobacterial MsDps2.
Phylogenetic tree of the Dps proteins reveals that MsDps1 and MsDps2
represent two distinct groups among mycobacterial Dps proteins. M.
avium paratuberculosis has one only Dps which falls into the MsDps1
category.
doi:10.1371/journal.pone.0008017.g008

Second Dps from M. smegmatis
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bromide and observed under UV light. The Dps–DNA complex

cannot move into the gel matrix and therefore remained in the

well of a 0.8% agarose gel as opposed to the unbound DNA that

was visible as a band in the gel (Fig. 1). The well in which the

plasmid alone was loaded was taken as the blank. The relative

intensities of the DNA in the wells of protein alone and protein

with DNA added were quantified with respect to the blank.

Finally, the intensity/ (pixel) 2 was calculated and represented in

the legend of figure 1. The software used for the quantification was

Multi-Gauge V 2.3 (Fujifilm). The area (pixel) 2 under each band

was kept constant and the intensity values were all normalized with

respect to a blank area in the same blot.

AFM Analysis
AFM analysis was done using the 5500 AFM imaging

instrument from Agilent Technologies. Freshly cleaved mica discs

were used as substrate on which the DNA and protein samples

were immobilized. Prior to the immobilization, plasmid pMV261

(4.5 Kb) was added to 0.5 mg/ml of the protein (MsDps2 or

MsDps2DN15), in a buffer consisting of 40 mM HEPES pH 7.0,

10 mM MgCl2 and 10 mM NiCl2. The reaction mixture was then

absorbed onto the mica for another 30 minutes. It was then

washed three times with 200 ml of MilliQ grade water. Images

were captured in a 256/256 and 512/512 pixel format at a speed

of 0.5 line/sec. The imaging was done in air, at 22uC. Analysis of

the image was done using the PicoImage software.

Electron Microscopic (EM) Analysis
MsDps2 protein in 20 mM Tris, 200 mM NaCl was placed on

copper grids. After two minutes of absorption at room temper-

ature, the sample was negatively stained with uranyl acetate for

five minutes. Specimens were examined in a Jeol 100 CxII

electron microscope at 80 KV. The photographs were taken at

50,0006magnification. The diameters of the rings were measured

from EM negatives with the aid of Wild-Heerbrugg MPS12 zoom

stereomicroscope.

Reconstitution of RNA Polymerase Holoenzymes from M.
tuberculosis sA and sB with Core RNA Polymerase from
M. smegmatis Followed by In Vitro Transcription

The protocol was followed the same way as described previously

[8]. M. tuberculosis sigma factors sA and sB were used for

reconstitution. Purified recombinant M. tuberculosis sigma proteins

A and B were isolated from E. coli over-expressing strains.

For in vitro transcription assay, sA and sB reconstituted RNA

polymerases EsA and EsB were used for either multiple or single

round transcription. However, as the +1 transcription start site of

the msdps2 promoter is not known, the expected size of the mRNA

transcript in the single round run-off assay cannot be estimated

accurately.

Iron-Binding Assay: Staining of Iron-Binding Proteins
Purified MsDps2DN15 and MsDps2 protein in 20 mM Tris-

HCl (pH 7.9), 200 mM NaCl, BSA and Ferritin were incubated

with 1 mM ferrous sulphate for 1 h at room temperature. The

products were resolved on a 10% native PAGE. The gel was then

stained with potassium ferricyanide solution (100 mM

K3(Fe(CN)6) in 50 mM Tris-HCl, pH 7.5, 100 mM NaCl) for

10 min in the dark and destained with 10% trichloroacetic acid/

methanol solution [21]. After taking an image of the stained gel, it

was subjected to Coomassie blue staining using standard

techniques. Horse spleen ferritin and BSA were used as positive

and negative controls, respectively.

Bio-Informatic Analysis
Multiple sequence alignment of MsDps2 with other Dps family

members was done using MultAlin [22] after selecting for other

Dps family members from the TIGR database. Phylogenetic trees

were constructed using the ClustalW sequence alignment tool [23]

from the EMBL-EBI server and displayed using the MEGA4

software [24]. The group was derived from an analysis of 36 Dps

proteins from various bacteria (including the homologues from E.

coli, Deinococcus radiodurans, Bacillus subtilis etc) with the average score

ranging around 25 for most Dps proteins, while ranging around 75

among members of each of the two mycobacterial Dps groups.

Other Dps homologues have not been found to fall into such

distinct clusters from the analysis.

Generation of Antibody against MsDps2 Protein
Polyclonal antibody raised against MsDps2 in rabbit was

purified using affinity purification. Briefly, the serum proteins

were precipitated with 50% ammonium sulphate and the pellet

was washed twice with 50% ammonium sulphate in 100 mM Tris-

HCl (pH 7.9). The pellet was then solubilised with 100 mM Tris-

HCl (pH 7.9), 100 mM NaCl and dialysed against 1 litre of the

same buffer. In order to make an affinity matrix to purify antibody

specific to MsDps2 from the serum, the purified MsDps2 protein

was desalted by extensive dialysis against a buffer containing

50 mM HEPES-NaOH (pH 7.9). The dialyzed protein was

coupled to NHS (N-hydroxysuccinimide)-activated Sepharose Fast

Flow 4B column (Amersham Pharmacia Biotech) according to the

manufacturer’s specifications. The serum IgG was allowed to bind

to the affinity tagged column at 4uC for 45 min. The column was

then washed with buffer containing 100 mM Tris-HCl (pH 7.9).

Specifically bound immunoglobulins were eluted in 1 ml of

200 mM glycine-HCl buffer (pH 2.5) and immediately neutralized

with 30 mL of a 2 M solution of Tris base. The collected fractions

were then checked for their specificity using western blot analysis.

Those fractions containing specific antibodies were pooled and

dialysed against 100 mM Tris-HCl (pH 7.9) 100 mM NaCl, and

stored at 270uC in aliquots. Titre of the antibody was 1/1500.

Acknowledgments

We are thankful to Dr. Kajal Gupta for reading and editing the MS.

Author Contributions

Performed the experiments: RS RPC SMW PG. Analyzed the data: RPC

DC. Wrote the paper: DC. Purified Dps 2: RS. Characterized and studied

DNA binding studies: RS. Carried out regulation of Dps-s gene, sigma

factor identification and single round transcription: RPC. Generated

DNDPs-2: SMW. Carried out DNA-binding analysis: SMW. Carried all

AFM analysis: PG.

References

1. Matin A, Auger EA, Blum PH, Schultz JE (1989) Genetic basis of starvation

survival in non differentiating bacteria. Annu Rev Microbiol 43: 293–

316.

2. Frenkiel-Krispin D, Minsky A (2006) Nucleoid organization and the mainte-

nance of DNA integrity in E. coli, B. subtilis and D. radiodurans. J Struct Biol 156:

311–319.

3. Almirón M, Link AJ, Furlong D, Kolter R (1992) A novel DNA-binding protein

with regulatory and protective roles in starved Escherichia coli. Genes Dev 6:

2646–2654.

4. Kim J, Yoshimura SH, Hizume K, Ohniwa RL, Ishihama A, et al. (2004)

Fundamental structural units of the Escherichia coli nucleoid revealed by atomic

force microscopy. Nucleic Acids Res 32: 1982–1992.

Second Dps from M. smegmatis

PLoS ONE | www.plosone.org 7 November 2009 | Volume 4 | Issue 11 | e8017



5. Gupta S, Pandit SB, Srinivasan N, Chatterji D (2002) Proteomics analysis of

carbon-starved Mycobacterium smegmatis: induction of Dps-like protein. Protein
Eng 15: 503–512.

6. Gupta S, Chatterji D (2003) Bimodal protection of DNA by Mycobacterium

smegmatis DNA-binding protein from stationary phase cells. J Biol Chem 278:
5235–5241.

7. Ceci P, Ilari A, Falvo E, Giangiacomo L, Chiancone E (2005) Reassessment of
protein stability, DNA binding, and protection of Mycobacterium smegmatis Dps.

J Biol Chem 280: 34776–34785.

8. Chowdhury R, Gupta S, Chatterji D (2007) Identification and characterization
of the dps promoter of Mycobacterium smegmatis: promoter recognition by stress-

specific extracytoplasmic function sigma factors sH and sF J Bacteriol 189:
8973–8981.

9. Roy S, Saraswathi R, Chatterji D, Vijayan M (2008) Structural studies on the
second Mycobacterium smegmatis Dps: invariant and variable features of structure,

assembly and function. J Mol Biol 375: 948–959.

10. Chowdhury RP, Chatterji D (2007) Estimation of Förster’s distance between two
ends of Dps protein from mycobacteria: Distance heterogeneity as a function of

oligomerization and DNA binding. Biophys Chem 128: 19–29.
11. Roy S, Saraswathi R, Gupta S, Sekar K, Chatterji D, et al. (2007) Role of N and

C-terminal tails in DNA binding and assembly in Dps: structural studies of

Mycobacterium smegmatis Dps deletion mutants. J Mol Biol 370: 752–767.
12. Roy S, Gupta S, Das S, Sekar K, Chatterji D, et al. (2004) X-ray analysis of

Mycobacterium smegmatis Dps and a comparative study involving other Dps and
Dps-like molecules. J Mol Biol 339: 1103–1113.

13. Ueshima J, Shoji M, Ratnayake DB, Abe K, Yoshida S, et al. (2003) Purification,
gene cloning, gene expression, and mutants of Dps from the obligate anaerobe

Porphyromonas gingivalis. Infect Immun 71: 1170–1178.

14. Yamamoto Y, Poole LB, Hantgan RR, Kamio Y (2002) An iron-binding
protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl

radical formation in vitro. J Bacteriol 184: 2931–2939.

15. Frenkiel-Krispin D, Ben-Avraham I, Englander J, Shimoni E, Wolf SG, et al.

(2004) Nucleoid restructuring in stationary-state bacteria. Mol Microbiol 51:

395–405.

16. Ceci P, Mangiarotti L, Rivetti C, Chiancone E (2007) The neutrophil-activating

Dps protein of Helicobacter pylori, HP-NAP, adopts a mechanism different from

Escherichia coli Dps to bind and condense DNA. Nucleic Acids Res 35:

2247–22563.

17. Ceci P, Cellai S, Falvo E, Rivetti C, Rossi GL, et al. (2004) DNA condensation

and self-aggregation of Escherichia coli Dps are coupled phenomena related to the

properties of the N-terminus. Nucleic Acids Res 32: 5935–5944.

18. Spurio R, Dürrenberger M, Falconi M, La Teana A, Pon C, et al. (1992) Lethal

overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic

and molecular autopsy. Mol Gen Genet 231: 201–211.

19. Ishihama A (1999) Modulation of the nucleoid, the transcription apparatus, and

the translation machinery in bacteria for stationary phase survival. Genes Cells

4: 135–143.

20. Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR (1990) Isolation and

characterization of efficient plasmid transformation mutants of Mycobacterium

smegmatis. Mol Microbiol 4: 1911–1919.

21. Leong LM, Tan BH, Ho KK (1992) A specific stain for the detection of non-

heme iron proteins in polyacrylamide gels. Anal Biochem 207: 317–320.

22. Corpet F (1988) Multiple sequence alignment with hierarchical clustering.

Nucleic Acids Res 16: 10881–10890.

23. Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res 22: 4673–4680.

24. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric

software for evolutionary analysis of DNA and protein sequences. Brief

Bioinformatics 9: 299–306.

Second Dps from M. smegmatis

PLoS ONE | www.plosone.org 8 November 2009 | Volume 4 | Issue 11 | e8017


