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Abstract. Evolutionary optimization algorithms work with a populati of solu-
tions, instead of a single solution. Since multi-object@imization problems
give rise to a set of Pareto-optimal solutions, evolutignaptimization algo-
rithms are ideal for handling multi-objective optimizatiproblems. Over many
years of research and application studies have producednderuof efficient
multi-objective evolutionary algorithms (MOEAS), whicheaready to be applied
to real-world problems. In this paper, we propose a praksipproach, which will
enable an user to move closer to the true Pareto-optimal éimehsimultaneously
reduce the size of the obtained non-dominated solutionT$et.efficacy of the
proposed approach is demonstrated in solving a number dianézal shape op-
timization problems, including a simply-supported plagsidn, a cantilever plate
design, a hoister design, and a bicycle frame design. Thétsesre interesting
and suggest immediate application of the proposed techriigmore complex
engineering design problems.

1 Introduction

For last decade or so, a number of multi-objective optini@atechniques using evo-
lutionary algorithms are suggested [3, 6, 10, 14, 16, 17& diltcome of these studies is
that different multi-objective optimization problems gressible to solve for the pur-
pose of finding multiple Pareto-optimal solutions in airgglesimulation run. Classical
means of finding one solution at a time with a weight vector itha similar approach
requires a priori knowledge of weight vector and need to lmemany times, hopefully
finding a different Pareto-optimal solution each time. Inlitidn to converging close
or on the true Pareto-optimal set, multi-objective evalnéiry algorithms (MOEAS) are
capable to finding a widely distributed set of solutions.

In this paper, we suggest a hybrid technique to take evalatip multi-objective
optimization procedures one step closer to practice. $palty, in a real-world prob-
lem, we would like to ensure a better convergence to the tawet®-optimal front and
would also like to reduce the size of obtained non-dominatdations to a reasonable
number. The solutions obtained by an MOEA are modified usiogal search method,
in which a weighted objective function is minimized. The a$a local search method
from the MOEA solutions will allow a better convergence te tiue Pareto-optimal
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front. A clustering method is suggested in general to redbeesize of the obtained
set of solutions. For finite search space problems, the kezaich approach may itself
reduce the size the the obtained set.

A specific MOEA—elitist non-dominated sorting GA or NSGA-Hand a hill-
climbing local search method are used together to solve dpunf engineering shape
optimization problems for two objectives. Minimizing theeight of a structure and
minimizing the maximum deflection of the structure have dotifig solutions. When
these two objectives are considered together in a desigmméer of Pareto-optimal so-
lutions result. By representing presence and absence df somestituting elements in
a binary string [1, 2, 5], NSGA-II uses an innovative crossaperator which seems to
help in combining good partial solutions together to formgd#r partial solutions. The
finite element method is used to evaluate a string reprewpatshape. The paper shows
how the proposed hybrid technique can find a number of salstidth different trade-
offs between weight and deflection. On a cantilever platéggdes simply-supported
plate design, a hoister plate design, and a bicycle framigui@soblem, the proposed
technique finds interesting and well-engineered solutibhese results indicate that the
proposed hybrid technique is ready to be applied to more tegngineering shape
design problems.

2 Hybrid Approach

It has been established elsewhere that NSGA-II is an effigimtedure of finding a
wide-spread as well as well-converged set of solutions iru#titabjective optimiza-
tion problem [3, 4]. NSGA-Il uses (i) a faster non-dominasedting approach, (ii) an
elitist strategy, and (iii) no niching parameter. It hasmsehown elsewhere [3] that the
above procedure ha3(M N?) computational complexity. Here, we take NSGA-Il a
step closer to practice by

1. ensuring convergence closer to the true Pareto-optimmad,fand
2. reducing the size of the obtained non-dominated set.

We illustrate both the above issues in the following subeast

2.1 Converging better

In areal-world problem, the knowledge of the Pareto-optinaat is usually not known.
Although NSGA-II has demonstrated good convergence ptigsen test problems, we
enhance the probability of its true convergence by using laritiyapproach. A local
search strategy is suggested from each obtained solutibiS&A-II to find a better

solution. Since a local search strategy requires a singkctie function, a weighted
objective or a Tchebyscheff metric or any other metric whigh convert multiple ob-

jectives into a single objective can be used. In this studyuse a weighted objective:

M

F(x) = wff(x), 1)

j=1
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where weights are calculated from the obtained set of smiatin a special way. First,
the minimumf]‘?“in and maximuny;"** values of each objective functigfj are noted.
Thereafter, for any solutior in the obtained set, the weight for each objective function
is calculated as follows:

R O et (GO F )

w3

TS (e (%) ] (fmax — fmin)

In the above calculation, minimization of objective fulcts is assumed. When a so-
lution x is close to the individual minimum of the functigh, the numerator becomes
one, causing a large value of the weight for this functionm.&foobjective which has to

be maximized, the terrif *** — f;(x)) needs to be replaced wiflf* — f;“i“). The
division of the numerator with the denominator ensures tiraicalculated weights are
normalized orzjl‘il wX = 1. Once the pseudo-weights are calculated, the local search
procedure is simple. Begin the search from each solutiomdependently with the pur-
pose of optimizingF'(x). Figure 1 illustrates this procedure. Since, the pseudigte

. )

local search

Fig. 1. The local search technique may find better solutions.

vectorw dictates roughly the priority of different objective furats at that solution,
optimizing F'(x) will produce a Pareto-optimal or a near Pareto-optimaltsmtu This

is true for convex Pareto-optimal regions. However, forftomvex Pareto-optimal re-
gions, there exists no weight vector corresponding to Bawptimal solutions in certain
regions. Thus, a different metric, such as Tchebysheffimean be used in those cases.
Nevertheless, the overall idea is that once NSGA-II findst@fsolutions close to the
true Pareto-optimal region, we use a local search techriiqoeeach of these solutions
with a differing emphasis of objective functions in the habéetter converging to the
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true Pareto-optimal front. Since independent local searethods are tried from each
solution obtained using an MOEA, all optimized solutionsadted by the local search
method need not be non-dominated to each other. Thus, wehinain-dominated set
of solutions from the obtained set of solutions before pealieg further. Other studies
as [11] use the local search method during a GA run. Eachisolig modified with
a local search method before including it in the populatibime proposed approach
is likely to have a lesser computational cost, however thilslve a matter of future
research to find a comparison between the two studies.

The complete procedure of the proposed hybrid strategyowslin Figure 2. Start-
ing from the MOEA results, we first apply a local search teqglei followed by a non-
domination check. After non-dominated solutions are foundlustering technique is

N Multiple
MOEA S local searches
Problem |——p "-.
Voo o0
_ Non—domination
Clustering check

-

Fig. 2. The proposed hybrid procedure of using a local search tgakena non-domination check,
and a clustering technique is illustrated.

used to reduce the size of the optimal set, as discussed mextesubsection.

2.2 Reducing the size of non-dominated set

In an ideal scenario, an user is interested in finding a gooelaspof non-dominated
solutions closer to the true Pareto-optimal front. From a&cpical standpoint, the user
would be interested in a handful of solutions (in most caSé¢s,10 solutions are prob-
ably enough). Interestingly, most MOEA studies use a pdjmraf size 100 or more,
thereby finding about 100 different non-dominated solwgiorhe interesting question
to ask is ‘Why are MOEAs set to find many more solutions tharrdd®’

The answer is fundamental to the working of an EA. The popardaize required
in an EA depends on a number of factors related to the numbeedtion variables,
the complexity of the problem, and others [7,9]. The popafatannot be sized ac-
cording to the desired number of non-dominated solutiorsspnoblem. Since in most
interesting problems, the number of decision variabledage and are complex, the
population sizes used in solving those problems can be idrdeals. Such a population
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size is mandatory for the successful use of an EA. The ironlgaswhen an MOEA
works well with such a population siz€, eventually it findsV different non-dominated
solutions, particularly if the niching mechanism used ia MOEA is good. Thus, we
need to devise a separate procedure of identifying a hanfifidiutions from the large
obtained set of non-dominated solutions.

One approach would be to use a clustering technique sinul#rat used in [17]
for reducing the size of the obtained non-dominated set lotisos. In this technique,
each ofN solutions is assumed to belong to a separate cluster. Tharehe distance
d. between all pairs of clusters is calculated by first finding ¢entroid of each cluster
and then calculating the Euclidean distance between thteodg@® Two clusters hav-
ing the minimum distance are merged together into a biggestet. This procedure is
continued till the desired number of clusters are identiffédally, with the remaining
clusters, the solution closest to the centroid of the clusteetained and all other so-
lutions from each cluster are deleted. This is how the ctastan be merged and the
cardinality of the solution set can be reduced. Figure 3 st MOEA solution set in
open boxes and the reduced set in solid boxes. Care may bettakleoose the extreme

fa

MOEA solutions o
Reduced set n

clusters

Fig. 3. The clustering method of reducing the set of non-dominabdatisns is illustrated.

solutions in the extreme clusters.

However, in many problems the local search strategy itsaif educe the cardi-
nality of the obtained set of non-dominated solutions. Wilsparticularly happen in
problems with a discrete search space. For two closely édcstlutions, the pseudo-
weight vectors may not be very different. Thus, when a loeatsh procedure is started
from each of these solutions (which are close to each othiéman#(x) which is also
similar, the resulting optimum solutions may be identicalai discrete search space
problem. The solutions a and b in Figure 1 are close and dfeeidcal search pro-
cedure they may converge to the same solution A. Thus, foyreahlutions obtained
using NSGA-II, the resulting optimum obtained using thealegearch method may be
the same. Thus, the local search procedure itself may reithecsize of the obtained

5
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non-dominated solutions in problems with a finite searctcep&igure 2 shows that
clustering is the final operation of the proposed hybridtetyg.

3 Engineering Shape Design

With the advent of evolutionary algorithm as an alternaténojzation method, there
exist a number of applications of optimal shape design, eisbapes are evolved by
deciding presence or absence of a number of small elemertsg 112, 15]. A prede-
fined area (or volume) is divided into a number of small regalaments. The task of
an evolutionary optimization procedure is to find which eégts should be kept and
which should be thrown away so that the resulting shape isnaptvith respect to an
objective function. This procedure has a number of advastag

1. The use of numerical finite element method (or boundamnete method) is an
usual method of analyzing an engineering component. Sinite &lement method
procedure requires the component to be divided into a numb&mall elements,
this approach reduces one computation step and is comghinyetno the usual finite
element method.

2. Since no a priori knowledge about the shape is requirésintethod does not have
any bias from the user.

3. By simply using three-dimensional elements, the apgrazmn be extended to
three-dimensional shape design problems.

4. The number and shape of holes in a component can evolvealtatwithout ex-
plicitly fixing them by the user.

Most studies of this method, including the studies with atiohary algorithms, have
concentrated on optimizing a single objective. In this gtuee apply this evolutionary
procedure for multiple conflicting objectives.

3.1 Representation

In this study, we consider two-dimensional shape desighlpros only. However, the
procedure can be easily extended to three-dimensionaésthegign problems as well.
We begin with a rectangular plate, describing the maximueral region, where the
shapes will be confined. Thereafter, we divide the rectaarquiate into a finite number
of small elements (refer to Figure 4). We consider here ssjglaments, although any
other shape including triangular or rectangular elemeatsaiso be considered. Since
the presence or absence of every element is a decision l@niaduse a binary coding
describing a shape. For the shape shown in Figure 5, thespameling binary coding
is as follows:
01110 11111 10001 11111

The presence is denoted byl and the absence is shown b@ aA left-to-right coding
procedure as shown in Figure 4 is adopted here. In order t@ogran the stair-case like
shape denoted by the basic skeleton representation, weiadgitlar elements (shown
shaded) for different cases in Figure 7. The resulting $&alshape shown in Figure 5
represents the true shape shown in Figure 6.
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Fig.4. Rectangular plate di-Fig.5. The skeleton of a shapeFig.6. Final smoothened
vided into small elements. shape.

s FED

Fig. 7. Different cases of smoothening through triangular element

3.2 Evaluation

When the shape is smoothened, the shape is further dividedsmaller elements.
All interior rectangular elements are divided into two triges and all boundary el-
ements (including elements around a hole) are divided iotw $mall triangles. Even
the boundary triangles used for smoothening is dividedsntaller triangles. The shape
is evaluated by finding the maximum stress and deflectionldeed at any point in the
component by the application of the specified loads. Sinceammectivity check is
made while creating a new string or while creating the ihitemdom population, a
string may represent a number of disconnected regions imeittangle. In this case,
we proceed with the biggest cluster of connected elemeritsigvwo elements are de-
fined to be connected if they have at least one common coffiee)string is repaired
by assigning & at all elements which are not part of the biggest cluster.

In all applications here, two conflicting objectives are sbio weight and deflec-
tion. These two objectives are conflicting because a minimaight design is usually
not stiff and produces a large deflection, whereas a minimeftection design has
densely packed elements, thereby causing a large weighé @ivierall component. The
maximum stress and deflection values are restricted to tieimspecified limits of the
design by using them as constraints.
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4 Simulation Results

To show the efficacy of the proposed hybrid multi-objectipéimization procedure in
solving optimal shape design problems, we use a number ohamézal component
design problems. Since binary-coded strings are used t@sept a shape, we use a
bit-wise hill-climbing strategy as the local search operalhe procedure is simple.
Starting from the left of the string, every bit is flipped teeséit improves the design. If
it does, the flipped bit is retained, else the bit is unchangkis procedure is continued
until no bit-flipping over the the entire string length hasukted an improvement.

Since the shapes are represented in a two-dimensionalvggidntroduce a new
crossover operator which respects the rows or columns optwents. Whether to swap
rows or columns are decided with a probability 0.5. Each rewaumn is swapped
with a probability0.95/d, whered is the number of rows or columns, as the case may
be. This way on an average all most one row or column will getfgved between the
parents. A bit-wise mutation with a probability of 1/stritength are used. NSGA-II
is continued till 150 generations. It is important to higfli that NSGA-II does not
require any extra parameter setting. In all problems, a fajoun of size 30 is used.

For all problems, we use the following material properties:

Plate thickness : 50 mm
Yield strength : 150 MPa
Young’s modulus : 200 GPa
Poisson’s ratio :0.25

4.1 Cantilever platedesign

First, we consider a cantilever plate design problem, wherend load” = 10 kN is
applied as shown in Figure 8. The rectangular plate of 6fze 100 mm? is divided

60 mm
j

Fig. 8. The loading and support of the cantilever plate are shown.

=~ —100mm — <

into 60 small rectangular elements. Thus, 60 bits are usedtreect a binary string
representing a shape.

Figure 9 shows the four steps of the proposed hybrid methdésigning the can-
tilever plate. First plot shows the non-dominated solwiobtained using NSGA-II.
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Fig. 9. Hybrid procedure to find nine trade-off solutions for the tilamer plate design problem.

Since the population size is 30, NSGA-II is able to find 30eti#ht non-dominated
solutions. Thereafter, the local search method is appligth fach hon-dominated so-
lution and new and improved set of solutions are obtained.thind plot is the result of
the non-dominated check of the solutions obtained afteloited search method. Three
dominated solutions are eliminated by this process. Thé filoais obtained after the
clustering operation with a choice of nine solutions. That ghows how nine well dis-
tributed set of solutions are found from the third plot of ®fusions. If fewer than nine
solutions are desired, the clustering mechanism can besetdingly.

In order to visualize the obtained set of nine solutions g wide range of trade-
offs in the weight and scaled deflection values, we show theehin Figure 10. It is
clear that starting from a low-weight solution (with largeflgction), how large-weight
(with small deflection) shapes are found by the hybrid methiod interesting to note
that the minimum weight solution eliminated one complete (the bottom-most row)
in order to reduce the overall weight. The second solutibe @glement (1,2) in the
above %3 matrix) corresponds to the second-best weight solutiois. Well known
that for an end load cantilever plate, a parabolic shapetimah Both shapes (elements
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Fig. 10. Nine trade-off shapes for the cantilever plate design.

(1,1) and (1,2)) exhibits a similar shape. As the importeofageflection increases, the
shapes tend to retain more and more elements, thereby miidrgate rigid enough
to have smaller deflection. In the middle, the developmenedical stiffener is inter-
esting. This is a compromise between the minimum weightteslland a minimum
deflection solution. By adding a stiffener the weight of thrasture does not increase
much, whereas the stiffness of plate increases (hence flextiten reduces). Finally,
the complete plate with right top and bottom ends choppedsdffe minimum deflec-
tion solution.

We would like to reiterate here that the above nine solutayesiot results of multi-
ple runs of a multi-objective optimization algorithm. Aline solutions (and if needed,
more can also be obtained) with interesting trade-offs betwweight and deflection
are obtained using in one simulation run of the hybrid method

4.2 Simply-supported plate design

Next, we consider a simply-supported plate design, s@ftom a rectangular plate of
identical dimension as in the previous design. The plateppsrted on two supports as
shown in Figure 11 and a vertical lodtl = 10 kN is acted on the top-middle node of
the plate.

Figure 12 shows the obtained non-dominated solutions U$8@A-II. After local
search method, the obtained non-dominated solutions havidex distribution. The
number of solutions have been reduced from 30 solutions tsoAZions by the non-
dominated checking. Finally, the clustering algorithm fimihe widely separated solu-
tions from 22 non-dominated solutions. The shape of thase solutions are shown in
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Fig. 11. The loading and support of the simply-supported plate aoe/sh
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Fig. 12. Hybrid procedure finds nine trade-off solutions for the diyrgupported plate design
problem.

Figure 13. The minimum weight solution tends to use one rtw {bp-most row) less,
but since the load is acting on the top of the plate, one elémmaaded to have the load
transferred to the plate. The third solution (shown in th&):th position in the matrix)
is interesting. A careful look at Figure 12 reveals that 8uokution is a ‘knee’ solution.
To achieve a small advantage in weight-loss, a large saziifithe deflection-gain is
evident. Similarly, to achieve a small advantage in deftectoss, a large sacrifice in
weight is needed. Shapes in position (1,2) and (2,1) canim@aced with respect to the
shape in position (1,3). Shape in position (3,1) or solufiémalso interesting. In order
to have further reduction in deflection stiffening of the talanted arms is needed. Fi-
nally, the absolute minimum deflection shape is the compéstiangle with maximum
possible weight.
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Fig. 13. Nine trade-off shapes for the simply-supported plate desig

Starting with the minimum weight design having two slim $&hlegs down to
thickening the legs to make them stiff, followed by joinirtgetlegs with a stiffener,
and finally finding the complete rectangular plate havingimim deflection are all
intuitive trade-off solutions. In the absence of any suctvidedge, it is interesting how
the hybrid procedure with NSGA-Il is able to find the whole fiof different trade-off
solutions.

4.3 Bicycleframedesign

Finally, we attempt to design a bicycle frame for a verticald of 10 kN applied at A
in Figure 14. The specifications are similar to that usedmdisee [13]. The plate is 20
mm thick and is restricted to be designed within in the areawshin Figure 14. The
frame is supported at two places B and C. The point B marksdbgipn of the axle of
the rear wheel and the point C is the location of the handl@stipThe filled element
is the location of the pedal assembly and is always presdt.material yield stress
is 140 MPa, Young’s modulus is 80 GPa and Poisson'’s ratio25.0lhe maximum
allowed displacementis 5 mm.

Figure 15 shows the NSGA-II solutions and correspondingtsmis obtained by the
hybrid approach. Here, we are interested in finding fouredéht trade-off solutions.

These four solutions obtained by NSGA-Il are shown mountec sketch of a
bicycle in Figure 16. The top-left solution is the minimumigle design. The second
solution joins the two vertical legs to make the structurerenstiff. The other two
solutions make the legs more thick in order to increase tiffaess of the frame. The
interior hole and absence of top-left elements are all fivieli The proposed hybrid
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Fig. 14. The hybrid procedure is illustrated for the bicycle framsida.
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Fig. 15. The hybrid procedure is illustrated for the bicycle framsida.

approach can evolve such solutions without these knowledgemainly by finding
and maintaining trade-off solutions among weight and déflacThe presence of many
such solutions with different trade-offs between weight atiffness provides a plethora
of information about various types of design.

5 Conclusion

The hybrid multi-objective optimization technique propdsn this paper uses a com-
bination of an multi-objective evolutionary algorithm (ME2\) and a local search op-
erator. The proposed technique ensures a better converggldOEAs to the true
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Fig. 16. Four trade-off shapes for the bicycle frame design.

Pareto-optimal region and helps in finding a small set of@®eolutions for practical
reasons.

The efficacy of the proposed technique is demonstrated pyngph number of en-
gineering shape design problems for two conflicting objesti—weight of the structure
and maximum deflection of the structure. In all cases, thegsed technique has been
shown to find a set of four to nine diverse solutions betteveoged than an MOEA
alone. The results are encouraging and takes the evolmyiomati-objective optimiza-
tion approach much closer to practice.
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