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Abstract. Evolutionary optimization algorithms work with a population of solu-
tions, instead of a single solution. Since multi-objectiveoptimization problems
give rise to a set of Pareto-optimal solutions, evolutionary optimization algo-
rithms are ideal for handling multi-objective optimization problems. Over many
years of research and application studies have produced a number of efficient
multi-objective evolutionary algorithms (MOEAs), which are ready to be applied
to real-world problems. In this paper, we propose a practical approach, which will
enable an user to move closer to the true Pareto-optimal front and simultaneously
reduce the size of the obtained non-dominated solution set.The efficacy of the
proposed approach is demonstrated in solving a number of mechanical shape op-
timization problems, including a simply-supported plate design, a cantilever plate
design, a hoister design, and a bicycle frame design. The results are interesting
and suggest immediate application of the proposed technique in more complex
engineering design problems.

1 Introduction

For last decade or so, a number of multi-objective optimization techniques using evo-
lutionary algorithms are suggested [3, 6, 10, 14, 16, 17]. The outcome of these studies is
that different multi-objective optimization problems arepossible to solve for the pur-
pose of finding multiple Pareto-optimal solutions in onesinglesimulation run. Classical
means of finding one solution at a time with a weight vector or with a similar approach
requires a priori knowledge of weight vector and need to be run many times, hopefully
finding a different Pareto-optimal solution each time. In addition to converging close
or on the true Pareto-optimal set, multi-objective evolutionary algorithms (MOEAs) are
capable to finding a widely distributed set of solutions.

In this paper, we suggest a hybrid technique to take evolutionary multi-objective
optimization procedures one step closer to practice. Specifically, in a real-world prob-
lem, we would like to ensure a better convergence to the true Pareto-optimal front and
would also like to reduce the size of obtained non-dominatedsolutions to a reasonable
number. The solutions obtained by an MOEA are modified using alocal search method,
in which a weighted objective function is minimized. The useof a local search method
from the MOEA solutions will allow a better convergence to the true Pareto-optimal
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front. A clustering method is suggested in general to reducethe size of the obtained
set of solutions. For finite search space problems, the localsearch approach may itself
reduce the size the the obtained set.

A specific MOEA—elitist non-dominated sorting GA or NSGA-II—and a hill-
climbing local search method are used together to solve a number of engineering shape
optimization problems for two objectives. Minimizing the weight of a structure and
minimizing the maximum deflection of the structure have conflicting solutions. When
these two objectives are considered together in a design, a number of Pareto-optimal so-
lutions result. By representing presence and absence of small constituting elements in
a binary string [1, 2, 5], NSGA-II uses an innovative crossover operator which seems to
help in combining good partial solutions together to form bigger partial solutions. The
finite element method is used to evaluate a string representing a shape. The paper shows
how the proposed hybrid technique can find a number of solutions with different trade-
offs between weight and deflection. On a cantilever plate design, a simply-supported
plate design, a hoister plate design, and a bicycle frame design problem, the proposed
technique finds interesting and well-engineered solutions. These results indicate that the
proposed hybrid technique is ready to be applied to more complex engineering shape
design problems.

2 Hybrid Approach

It has been established elsewhere that NSGA-II is an efficient procedure of finding a
wide-spread as well as well-converged set of solutions in a multi-objective optimiza-
tion problem [3, 4]. NSGA-II uses (i) a faster non-dominatedsorting approach, (ii) an
elitist strategy, and (iii) no niching parameter. It has been shown elsewhere [3] that the
above procedure hasO(MN2) computational complexity. Here, we take NSGA-II a
step closer to practice by

1. ensuring convergence closer to the true Pareto-optimal front, and
2. reducing the size of the obtained non-dominated set.

We illustrate both the above issues in the following subsections.

2.1 Converging better

In a real-world problem, the knowledge of the Pareto-optimal front is usually not known.
Although NSGA-II has demonstrated good convergence properties in test problems, we
enhance the probability of its true convergence by using a hybrid approach. A local
search strategy is suggested from each obtained solution ofNSGA-II to find a better
solution. Since a local search strategy requires a single objective function, a weighted
objective or a Tchebyscheff metric or any other metric whichwill convert multiple ob-
jectives into a single objective can be used. In this study, we use a weighted objective:F (x) = MXj=1 �wxj fj(x); (1)
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where weights are calculated from the obtained set of solutions in a special way. First,
the minimumfminj and maximumfmaxj values of each objective functionfj are noted.
Thereafter, for any solutionx in the obtained set, the weight for each objective function
is calculated as follows:�wxj = (fmaxj � fj(x))=(fmaxj � fminj )PMk=1(fmaxk � fk(x))=(fmaxk � fmink ) : (2)

In the above calculation, minimization of objective functions is assumed. When a so-
lution x is close to the individual minimum of the functionfj , the numerator becomes
one, causing a large value of the weight for this function. For an objective which has to
be maximized, the term(fmaxj � fj(x)) needs to be replaced with(fxj � fminj ). The
division of the numerator with the denominator ensures thatthe calculated weights are
normalized or

PMj=1 �wxi = 1. Once the pseudo-weights are calculated, the local search
procedure is simple. Begin the search from each solutionx independently with the pur-
pose of optimizingF (x). Figure 1 illustrates this procedure. Since, the pseudo-weight
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Fig. 1. The local search technique may find better solutions.

vector �w dictates roughly the priority of different objective functions at that solution,
optimizingF (x) will produce a Pareto-optimal or a near Pareto-optimal solution. This
is true for convex Pareto-optimal regions. However, for non-convex Pareto-optimal re-
gions, there exists no weight vector corresponding to Pareto-optimal solutions in certain
regions. Thus, a different metric, such as Tchebysheff metric can be used in those cases.
Nevertheless, the overall idea is that once NSGA-II finds a set of solutions close to the
true Pareto-optimal region, we use a local search techniquefrom each of these solutions
with a differing emphasis of objective functions in the hopeof better converging to the
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true Pareto-optimal front. Since independent local searchmethods are tried from each
solution obtained using an MOEA, all optimized solutions obtained by the local search
method need not be non-dominated to each other. Thus, we find the non-dominated set
of solutions from the obtained set of solutions before proceeding further. Other studies
as [11] use the local search method during a GA run. Each solution is modified with
a local search method before including it in the population.The proposed approach
is likely to have a lesser computational cost, however this will be a matter of future
research to find a comparison between the two studies.

The complete procedure of the proposed hybrid strategy is shown in Figure 2. Start-
ing from the MOEA results, we first apply a local search technique, followed by a non-
domination check. After non-dominated solutions are found, a clustering technique is

local searches
Multiple

checkClustering
Non−domination

Problem
MOEA

Fig. 2. The proposed hybrid procedure of using a local search technique, a non-domination check,
and a clustering technique is illustrated.

used to reduce the size of the optimal set, as discussed in thenext subsection.

2.2 Reducing the size of non-dominated set

In an ideal scenario, an user is interested in finding a good spread of non-dominated
solutions closer to the true Pareto-optimal front. From a practical standpoint, the user
would be interested in a handful of solutions (in most cases,5 to 10 solutions are prob-
ably enough). Interestingly, most MOEA studies use a population of size 100 or more,
thereby finding about 100 different non-dominated solutions. The interesting question
to ask is ‘Why are MOEAs set to find many more solutions than desired?’

The answer is fundamental to the working of an EA. The population size required
in an EA depends on a number of factors related to the number ofdecision variables,
the complexity of the problem, and others [7, 9]. The population cannot be sized ac-
cording to the desired number of non-dominated solutions ina problem. Since in most
interesting problems, the number of decision variables arelarge and are complex, the
population sizes used in solving those problems can be in hundreds. Such a population
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size is mandatory for the successful use of an EA. The irony isthat when an MOEA
works well with such a population sizeN , eventually it findsN different non-dominated
solutions, particularly if the niching mechanism used in the MOEA is good. Thus, we
need to devise a separate procedure of identifying a handfulof solutions from the large
obtained set of non-dominated solutions.

One approach would be to use a clustering technique similar to that used in [17]
for reducing the size of the obtained non-dominated set of solutions. In this technique,
each ofN solutions is assumed to belong to a separate cluster. Thereafter, the distanced
 between all pairs of clusters is calculated by first finding the centroid of each cluster
and then calculating the Euclidean distance between the centroids. Two clusters hav-
ing the minimum distance are merged together into a bigger cluster. This procedure is
continued till the desired number of clusters are identified. Finally, with the remaining
clusters, the solution closest to the centroid of the cluster is retained and all other so-
lutions from each cluster are deleted. This is how the clusters can be merged and the
cardinality of the solution set can be reduced. Figure 3 shows the MOEA solution set in
open boxes and the reduced set in solid boxes. Care may be taken to choose the extreme
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Fig. 3. The clustering method of reducing the set of non-dominated solutions is illustrated.

solutions in the extreme clusters.
However, in many problems the local search strategy itself can reduce the cardi-

nality of the obtained set of non-dominated solutions. Thiswill particularly happen in
problems with a discrete search space. For two closely located solutions, the pseudo-
weight vectors may not be very different. Thus, when a local search procedure is started
from each of these solutions (which are close to each other) with aF (x) which is also
similar, the resulting optimum solutions may be identical in a discrete search space
problem. The solutions a and b in Figure 1 are close and after the local search pro-
cedure they may converge to the same solution A. Thus, for many solutions obtained
using NSGA-II, the resulting optimum obtained using the local search method may be
the same. Thus, the local search procedure itself may reducethe size of the obtained
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non-dominated solutions in problems with a finite search space. Figure 2 shows that
clustering is the final operation of the proposed hybrid strategy.

3 Engineering Shape Design

With the advent of evolutionary algorithm as an alternate optimization method, there
exist a number of applications of optimal shape design, where shapes are evolved by
deciding presence or absence of a number of small elements [1, 2, 8, 12, 15]. A prede-
fined area (or volume) is divided into a number of small regular elements. The task of
an evolutionary optimization procedure is to find which elements should be kept and
which should be thrown away so that the resulting shape is optimal with respect to an
objective function. This procedure has a number of advantages:

1. The use of numerical finite element method (or boundary element method) is an
usual method of analyzing an engineering component. Since finite element method
procedure requires the component to be divided into a numberof small elements,
this approach reduces one computation step and is complimentary to the usual finite
element method.

2. Since no a priori knowledge about the shape is required, this method does not have
any bias from the user.

3. By simply using three-dimensional elements, the approach can be extended to
three-dimensional shape design problems.

4. The number and shape of holes in a component can evolve naturally without ex-
plicitly fixing them by the user.

Most studies of this method, including the studies with evolutionary algorithms, have
concentrated on optimizing a single objective. In this study, we apply this evolutionary
procedure for multiple conflicting objectives.

3.1 Representation

In this study, we consider two-dimensional shape design problems only. However, the
procedure can be easily extended to three-dimensional shape design problems as well.
We begin with a rectangular plate, describing the maximum overall region, where the
shapes will be confined. Thereafter, we divide the rectangular plate into a finite number
of small elements (refer to Figure 4). We consider here square elements, although any
other shape including triangular or rectangular elements can also be considered. Since
the presence or absence of every element is a decision variable, we use a binary coding
describing a shape. For the shape shown in Figure 5, the corresponding binary coding
is as follows:

01110 11111 10001 11111

The presence is denoted by a1 and the absence is shown by a0. A left-to-right coding
procedure as shown in Figure 4 is adopted here. In order to smoothen the stair-case like
shape denoted by the basic skeleton representation, we add triangular elements (shown
shaded) for different cases in Figure 7. The resulting skeleton shape shown in Figure 5
represents the true shape shown in Figure 6.
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Fig. 4. Rectangular plate di-
vided into small elements.

Fig. 5. The skeleton of a shape.Fig. 6. Final smoothened
shape.

Fig. 7. Different cases of smoothening through triangular elements.

3.2 Evaluation

When the shape is smoothened, the shape is further divided into smaller elements.
All interior rectangular elements are divided into two triangles and all boundary el-
ements (including elements around a hole) are divided into four small triangles. Even
the boundary triangles used for smoothening is divided intosmaller triangles. The shape
is evaluated by finding the maximum stress and deflection developed at any point in the
component by the application of the specified loads. Since noconnectivity check is
made while creating a new string or while creating the initial random population, a
string may represent a number of disconnected regions in therectangle. In this case,
we proceed with the biggest cluster of connected elements (where two elements are de-
fined to be connected if they have at least one common corner).The string is repaired
by assigning a0 at all elements which are not part of the biggest cluster.

In all applications here, two conflicting objectives are chosen: weight and deflec-
tion. These two objectives are conflicting because a minimumweight design is usually
not stiff and produces a large deflection, whereas a minimum deflection design has
densely packed elements, thereby causing a large weight of the overall component. The
maximum stress and deflection values are restricted to lie within specified limits of the
design by using them as constraints.
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4 Simulation Results

To show the efficacy of the proposed hybrid multi-objective optimization procedure in
solving optimal shape design problems, we use a number of mechanical component
design problems. Since binary-coded strings are used to represent a shape, we use a
bit-wise hill-climbing strategy as the local search operator. The procedure is simple.
Starting from the left of the string, every bit is flipped to see if it improves the design. If
it does, the flipped bit is retained, else the bit is unchanged. This procedure is continued
until no bit-flipping over the the entire string length has resulted an improvement.

Since the shapes are represented in a two-dimensional grid,we introduce a new
crossover operator which respects the rows or columns of twoparents. Whether to swap
rows or columns are decided with a probability 0.5. Each row or column is swapped
with a probability0:95=d, whered is the number of rows or columns, as the case may
be. This way on an average all most one row or column will get swapped between the
parents. A bit-wise mutation with a probability of 1/string-length are used. NSGA-II
is continued till 150 generations. It is important to highlight that NSGA-II does not
require any extra parameter setting. In all problems, a population of size 30 is used.

For all problems, we use the following material properties:

Plate thickness : 50 mm
Yield strength : 150 MPa
Young’s modulus : 200 GPa
Poisson’s ratio : 0.25

4.1 Cantilever plate design

First, we consider a cantilever plate design problem, wherean end loadP = 10 kN is
applied as shown in Figure 8. The rectangular plate of size60 � 100 mm2 is divided
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Fig. 8. The loading and support of the cantilever plate are shown.

into 60 small rectangular elements. Thus, 60 bits are used construct a binary string
representing a shape.

Figure 9 shows the four steps of the proposed hybrid method indesigning the can-
tilever plate. First plot shows the non-dominated solutions obtained using NSGA-II.
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Fig. 9. Hybrid procedure to find nine trade-off solutions for the cantilever plate design problem.

Since the population size is 30, NSGA-II is able to find 30 different non-dominated
solutions. Thereafter, the local search method is applied from each non-dominated so-
lution and new and improved set of solutions are obtained. The third plot is the result of
the non-dominated check of the solutions obtained after thelocal search method. Three
dominated solutions are eliminated by this process. The final plot is obtained after the
clustering operation with a choice of nine solutions. The plot shows how nine well dis-
tributed set of solutions are found from the third plot of 27 solutions. If fewer than nine
solutions are desired, the clustering mechanism can be set accordingly.

In order to visualize the obtained set of nine solutions having a wide range of trade-
offs in the weight and scaled deflection values, we show the shapes in Figure 10. It is
clear that starting from a low-weight solution (with large deflection), how large-weight
(with small deflection) shapes are found by the hybrid method. It is interesting to note
that the minimum weight solution eliminated one complete row (the bottom-most row)
in order to reduce the overall weight. The second solution (the element (1,2) in the
above 3�3 matrix) corresponds to the second-best weight solution. It is well known
that for an end load cantilever plate, a parabolic shape is optimal. Both shapes (elements
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Fig. 10. Nine trade-off shapes for the cantilever plate design.

(1,1) and (1,2)) exhibits a similar shape. As the importanceof deflection increases, the
shapes tend to retain more and more elements, thereby makingthe plate rigid enough
to have smaller deflection. In the middle, the development ofvertical stiffener is inter-
esting. This is a compromise between the minimum weight solution and a minimum
deflection solution. By adding a stiffener the weight of the structure does not increase
much, whereas the stiffness of plate increases (hence the deflection reduces). Finally,
the complete plate with right top and bottom ends chopped offis the minimum deflec-
tion solution.

We would like to reiterate here that the above nine solutionsare not results of multi-
ple runs of a multi-objective optimization algorithm. All nine solutions (and if needed,
more can also be obtained) with interesting trade-offs between weight and deflection
are obtained using in one simulation run of the hybrid method.

4.2 Simply-supported plate design

Next, we consider a simply-supported plate design, starting from a rectangular plate of
identical dimension as in the previous design. The plate is supported on two supports as
shown in Figure 11 and a vertical loadP = 10 kN is acted on the top-middle node of
the plate.

Figure 12 shows the obtained non-dominated solutions usingNSGA-II. After local
search method, the obtained non-dominated solutions have awider distribution. The
number of solutions have been reduced from 30 solutions to 22solutions by the non-
dominated checking. Finally, the clustering algorithm finds nine widely separated solu-
tions from 22 non-dominated solutions. The shape of these nine solutions are shown in
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Fig. 11. The loading and support of the simply-supported plate are shown.
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Fig. 12. Hybrid procedure finds nine trade-off solutions for the simply-supported plate design
problem.

Figure 13. The minimum weight solution tends to use one row (the top-most row) less,
but since the load is acting on the top of the plate, one element is added to have the load
transferred to the plate. The third solution (shown in the (1,3)-th position in the matrix)
is interesting. A careful look at Figure 12 reveals that thissolution is a ‘knee’ solution.
To achieve a small advantage in weight-loss, a large sacrifice in the deflection-gain is
evident. Similarly, to achieve a small advantage in deflection-loss, a large sacrifice in
weight is needed. Shapes in position (1,2) and (2,1) can be compared with respect to the
shape in position (1,3). Shape in position (3,1) or solution7 is also interesting. In order
to have further reduction in deflection stiffening of the twoslanted arms is needed. Fi-
nally, the absolute minimum deflection shape is the completerectangle with maximum
possible weight.
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Fig. 13. Nine trade-off shapes for the simply-supported plate design.

Starting with the minimum weight design having two slim slanted legs down to
thickening the legs to make them stiff, followed by joining the legs with a stiffener,
and finally finding the complete rectangular plate having minimum deflection are all
intuitive trade-off solutions. In the absence of any such knowledge, it is interesting how
the hybrid procedure with NSGA-II is able to find the whole family of different trade-off
solutions.

4.3 Bicycle frame design

Finally, we attempt to design a bicycle frame for a vertical load of 10 kN applied at A
in Figure 14. The specifications are similar to that used elsewhere [13]. The plate is 20
mm thick and is restricted to be designed within in the area shown in Figure 14. The
frame is supported at two places B and C. The point B marks the position of the axle of
the rear wheel and the point C is the location of the handle support. The filled element
is the location of the pedal assembly and is always present. The material yield stress
is 140 MPa, Young’s modulus is 80 GPa and Poisson’s ratio is 0.25. The maximum
allowed displacement is 5 mm.

Figure 15 shows the NSGA-II solutions and corresponding solutions obtained by the
hybrid approach. Here, we are interested in finding four different trade-off solutions.

These four solutions obtained by NSGA-II are shown mounted on a sketch of a
bicycle in Figure 16. The top-left solution is the minimum weight design. The second
solution joins the two vertical legs to make the structure more stiff. The other two
solutions make the legs more thick in order to increase the stiffness of the frame. The
interior hole and absence of top-left elements are all intuitive. The proposed hybrid
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Fig. 14. The hybrid procedure is illustrated for the bicycle frame design.
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Fig. 15. The hybrid procedure is illustrated for the bicycle frame design.

approach can evolve such solutions without these knowledgeand mainly by finding
and maintaining trade-off solutions among weight and deflection. The presence of many
such solutions with different trade-offs between weight and stiffness provides a plethora
of information about various types of design.

5 Conclusion

The hybrid multi-objective optimization technique proposed in this paper uses a com-
bination of an multi-objective evolutionary algorithm (MOEA) and a local search op-
erator. The proposed technique ensures a better convergence of MOEAs to the true
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Fig. 16. Four trade-off shapes for the bicycle frame design.

Pareto-optimal region and helps in finding a small set of diverse solutions for practical
reasons.

The efficacy of the proposed technique is demonstrated by solving a number of en-
gineering shape design problems for two conflicting objectives—weight of the structure
and maximum deflection of the structure. In all cases, the proposed technique has been
shown to find a set of four to nine diverse solutions better converged than an MOEA
alone. The results are encouraging and takes the evolutionary multi-objective optimiza-
tion approach much closer to practice.
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