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Abstract. For the past decade, many evolutionary multi-objective op-
timization (EMO) methodologies have been developed and applied to
find multiple Pareto-optimal solutions in a single simulation run. In this
paper, we discuss three different classical generating methods, some of
which were suggested even before the inception of EMO methodologies.
These methods specialize in finding multiple Pareto-optimal solutions
in a single simulation run. On visual comparisons of the efficient fron-
tiers obtained for a number of two and three-objective test problems,
these algorithms are evaluated with an EMO methodology. The results
bring out interesting insights about the strengths and weaknesses of these
approaches. Further investigations of such classical generating method-
ologies and their evaluation should enable researchers to design a hybrid
multi-objective optimization algorithm which may be better than each
individual method.

1 Introduction

Multi-objective optimization has been a rapidly growing area in modern opti-
mization. There exist a plethora of methods and algorithms for solving multi-
objective optimization problems. The methods can be divided in two categories:
(i) classical methods which use direct or gradient-based methods following some
mathematical principles and (ii) non-traditional methods which follow some nat-
ural or physical principles. Of them, the evolutionary multi-objective optimiza-
tion (EMO) has been getting growing attention over the past decade. The classifi-
cation is also appropriate from two other perspectives. The classical approaches
usually use deterministic transition rules, whereas non-traditional approaches
use stochastic rules. They are also different from each other from another vital
consideration. Classical methods mostly attempt to scalarize multiple objectives
and perform repeated applications to find a set of Pareto-optimal solutions. On
the other hand, EMO methods attempt to find multiple Pareto-optimal solutions
in a single simulation run.

However, there exist a few classical generating methods (stochastic and de-
terministic) which attempt to find multiple Pareto-optimal solutions in a single



simulation run, very much similar to the way EMO methods work. In this paper,
we present three such algorithms and provide simulation results on a number
of two and three-objective optimization problems. We also compare their per-
formance with an EMO methodology and unveil the problem classes where the
classical generating methods are better and the problem classes where the EMO
methods have their niche. The study reveals important insights about the work-
ing of the algorithms, which can be combined together in a hybrid manner to
develop an algorithm even better than individual algorithms.

2 Classical Generating Methods

Although most classical generating multi-objective optimization methods use an
iterative scalarization scheme of standard procedures such as weighted-sum or
epsilon-constraint methods [8], we have found at least three generating methods
which attempt to find multiple Pareto-optimal solutions in a single simulation
run. In the following subsections, we describe these methods.

2.1 Schéiffler’s Stochastic Method (SSM)

A stochastic method for the solution of unconstrained multi-objective optimiza-
tion problems was proposed by Schéiffler et. al. [9] in 2002. The method is based
on the solution of a set of stochastic differential equations. This method requires
the objective functions to be twice continuously-differentiable. It may be used
for the computation of all or a large number of Pareto-optimal solutions. In
each iteration, a trace of non-dominated points is constructed by calculating
at each point x, a direction (—¢g(x)) in the decision space which is a direction
of descent for all objective functions. The direction of descent is obtained by
solving a quadratic subproblem. The following initial value problem (IVP) for a
multi-objective optimization problem is then set up:

x =—q(x(?), x(0)=xo,

where z¢ is a starting point. The numerical solution of the above IVP gives a
single point where the first-order weak Pareto-optimality conditions are fulfilled.
After such a solution is obtained, a set of non-dominated solutions is obtained
by perturbing it using a Brownian motion concept. The following stochastic
differential equation is employed for this purpose:

dX, = —q(X,)d(t) + edB;, Xo = %o, (1)

where € > 0 and B; is a n-dimensional Brownian motion having the following
properties:

1. The expected value is zero,
2. The increments By, (Bi, — Bt,), (Bt, — By, ) for every to(=0) < t1 < t2 < ...
are stochastically independent, and



3. For every s < t, the increment (Bs; — By) is normally distributed with mean
equal to zero and a variance equal to (s — t)I,, where I, is a n-dimensional
identity matrix.

Thus, starting from an initial solution, a number of solutions converging to the
efficient frontier are expected to be generated by this procedure. The —q(X;)d(t)
term in Equation 1 is the deterministic descent part, while the Brownian motion
is the local random search term. In all simulations here, to solve the above
equation numerically, we employ the Euler’s method. The approach needs two
parameters to be set properly: (i) the parameter ¢ which controls the amount of
local search and (ii) the step size o used in the Euler’s approach which controls
the accuracy of the integration procedure. At the end of a pre-specified number
of iterations, a non-domination check of the obtained solutions is performed and
the resulting solutions are declared as the obtained Pareto-optimal solutions. For
more information on this algorithm, interested readers may refer to the original
study [9].

2.2 Timmel’s Population Based Method (TPM)

As early as in 1980, Timmel [10] proposed a population-based stochastic ap-
proach for finding multiple Pareto-optimal solutions of a differentiable multi-
objective optimization problem. In this method, first a feasible solution set
(we call it a population) is randomly created. The non-dominated solutions
(Xo = {x9,x9,...,x%}) are identified and they serve as the first approximation
to the Pareto-optimal set. Thereafter, from each solution x¥, a child solution is
created in the following manner:

M
Xk = - Ztiuini(xg),
i=1

where u; is a uniformly distributed random number (between 0 and 1) and ¢; is
step-length in the i-th objective. It is a simple exercise to show that the above
formulation ensures that not all functions can be worsened simultaneously. Thus,
the child solution is either non-dominated to the parent solution x3, or it domi-
nates the parent. However, the variation of the step-length over iterations must
be made carefully to ensure convergence to the efficient frontier. The original
study suggested the following sequence for updating ¢;:

oo oo
i C_ _ 2
z,_1>1inootz—0, Et,—oo, ;ti < 0.
1= 1=

After the child population is created, it is combined with the parent population
and only the non-dominated solutions are retained. This set then becomes the
second approximation to the Pareto-optimal set. This procedure is continued
for a pre-specified number of iterations. Note that the population size can vary
with iterations. In fact, in most problems, an increase in the population size is
expected.

The step-length variation mentioned above ensures the following aspects:



1. The step size should slowly decrease to zero as solutions closer to the Pareto-
optimal set are found and

2. The decrease of the step size must not be slow enough so that the algorithm
gets caught in sub-optimal points.

Thus, it is clear that the update of the step length is a crucial part of the working
of the algorithm and a tuning of the update strategy may have to be done for
every problem. Here, we use the following strategy: ¢; = ¢/i (where c is a positive
constant), which satisfies all the above-mentioned conditions. For the interested
readers, we refer to the original study [10,11] for further details. It is interesting
to note that this algorithm uses an elitist strategy, in which best of parent and
offspring populations is retained.

2.3 Normal Boundary Intersection method (NBI)

The NBI method was developed by Das et. al. [1] for finding a uniform spread
of Pareto-optimal solutions for a general nonlinear multi-objective optimization
problem. The weighted-sum scalarization approach has a fundamental drawback
of not being able to find a uniform spread of Pareto-optimal solutions given
a uniform spread of weights. The NBI approach uses a scalarization scheme
with a property that a uniform spread in parameters will give rise to a uniform
spread in points on the efficient frontier. Also, the method is independent of the
relative scales of different objective functions. The scalarization scheme is briefly
described below.

Let us consider a multi-objective problem as minxeg F(x), where S = {x |
h(x) = 0;g(x) < 0,a < x < b} be the constraint set. Let F* = (f5, f3,..., fir)T
be the utopia point of the multi-objective optimization problem with M objective
functions and n variables. Let the individual minima of the functions be attained
at x} for each ¢ =1,2,..., M. The convex hull of the individual minima is then
obtained. The simplex obtained by the convex hull of the individual minima can
be expressed as &3, where & = (F(x}), F(x3),... F(x3%,)) is a M x M matrix
and 8 = {(b1,b2,...,bm)T | Efil b; = 1}. The original study suggested a
systematic method of setting S vectors in order to find a uniformly distributed
set of efficient points. The NBI scalarization scheme takes a point on the simplex
and then searches for the maximum distance along the normal pointing towards
the origin. This chosen point may or may not be a Pareto-optimal point. In non-
convex situations, even the Pareto-optimal points which cannot be obtained by
the usual weighted-sum schemes, are possible to be obtained by this method.
The NBI subproblem (NBIg) for a given vector 8 is as follows:

maX(x,t) t,
subject to 8 + th = F(x), (2)
x €S,

where 7 is the normal direction at the point #4 pointing towards the origin. The
solution of the above problem gives the maximum ¢ and also the corresponding



Pareto-optimal solution, x. The method works even when the normal direction
is not an exact one, but a quasi-normal direction. The following quasi-normal
direction vector is suggested in Das et al. [1]: i = —@e, where e = (1,1,...,1)T
is a M x 1 vector. The above quasi-normal direction has the property that
NBIj is independent of the relative scales of the objective functions. A modified
version of the NBI approach (called the recursive knee approach) was developed
elsewhere [2] for convex problems. Another study extended the approach by
using a suitable inequality constraint to define a subproblem [7].

3 Comparison with NSGA-II

In this section, we compare the above three classical generating methods with
NSGA-II on a number of two and three-objective test problems. The test prob-
lems are chosen in such a way so as to systematically investigate various aspects
of an algorithm. In the test problems, the exact knowledge of the Pareto-optimal
front is available. For classical methods, a limited parametric study is performed
for each test problem and results from the best parameter setting are presented.
For NSGA-II, we use a standard real-parameter SBX and polynomial mutation
operator with . = 10 and 7, = 10, respectively [3]. For all problems solved
using NSGA-II, we use a population of size 100.

3.1 Two-Objective Test Problems

First, we consider two-objective ZDT test problems [3,4]. The test problems are
slightly modified so that they become unconstrained multi-objective optimiza-
tion problems, as the SSM method is only able to tackle unconstrained problems.
A constrained version of SSM algorithm is currently being investigated by the
authors.

Modified ZDT1 Test Problem: The modified ZDT1 test problem can be
stated as follows:

Minimize fi(x)

1,
0 =900 (1- /7% ) 3)

where g(z) = 1+ % Y,

(
(

Minimize fo

where the box constraints are z; € [0,1], and z; € [-1,1]fori = 2,3,...,n. Here,
we choose n = 30. This modified ZDT1 problem has a convex Pareto-optimal
front. The Pareto-optimal solutions correspond to 0 < 27 < 1 and z} = 0 for
i = 2,3,...,n. This problem offers a difficulty in handling a large number of
variables.

The Euler’s method with a step size of o = 0.8 along with € = 0.05 is used in
SSM. An initial starting point is randomly created using the box constraints. It
is to be noted that the SSM method requires gradient information. To make a



fair comparison with an EMO methodology, gradients are calculated numerically
here and the overall function evaluations is recorded. Figure 1 shows the obtained
distribution of efficient solutions after 20,000 (inset plot) and 100,000 function
evaluations. Due to the use of a descent direction, the SSM method quickly
converges near to the efficient frontier in this problem. However, the spread of
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Fig. 1. Performance of SSM method on Fig. 2. Performance of TPM method on
ZDT1. ZDT1.

solutions along the efficient frontier is very slow. Notice that from 20,000 function
evaluations till 100,000 function evaluations, the procedure finds a spread from
z; = 0.4 to ;1 = 0.7. The use of a Brownian motion for spread seems to be
too generic to get a faster spread along the efficient frontier. After even 100,000
function evaluations, the solutions are not quite on to the efficient frontier. The
numerical gradient evaluation is costly, requiring 2n function evaluations for
each gradient. With a large number of variables, such methods may become
computationally expensive. However, the simulation results show that this test
problem does not offer too much of a difficulty to the SSM method in quickly
converging near to the efficient frontier.

Next, we apply the TPM method. We begin the search with a single solution
(s = 1), randomly created satisfying the box constraints. Figure 2 shows the
obtained front after 20,000 (inset plot) and 100,000 function evaluations. It is
clear that the TPM method performs extremely well on ZDT1 both in terms of
convergence and maintenance of diversity.

The NBI method needs the computation of the utopia point. This require-
ment causes an added difficulty for the NBI method. Here, the subproblems
are solved using the sequential quadratic programming (SQP) method. Figure 3
(inset) shows that the NBI method is capable of finding a good spread of Pareto-
optimal solutions even with 20,000 function evaluations. Since, a systematic ini-
tial points are considered in this approach, a good spread is obtained. If more
[B-vectors are used, a more dense set of solutions can be found.

Finally, we apply NSGA-II for a total of 20,000 (inset plot) and 100,000
function evaluations. Figure 4 shows that even with 20,000 evaluations, a good
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Fig. 3. Performance of NBI method on Fig. 4. Performance of NSGA-II method
ZDT1. on ZDT1.

distribution is achieved. Based on all these simulations, it can be concluded that
the ZDT1 problem is best solved by using a systematic procedure such as the
NBI method, whereas the TPM or NSGA-II also performs well on this problem.

Modified ZDT2 Test Problem: The modified ZDT2 test problem can be
stated as follows:

Minimize f;(x) ,

(x) =2
2
Minimize f>(x) = g(x) (1 - (gé} ) ) , (4)
where g(z) =1+ 25 37", 27,

where the box constraints are z; € [0,1] and z; € [-1,1] for i = 2,3,...,n.
Here again we use n = 30. This problem has a non-convex efficient frontier. The
Pareto-optimal solutions correspond to 0 < zj <land 2} =0fori=2,3,...,n.

This problem provides two difficulties to an optimization algorithm: (i) large
number of variables and (ii) a non-convex efficient frontier.

The Euler’s method with a step size of 0 = 0.1 along with € = 0.01 is used
in the SSM algorithm. Figure 5 shows the obtained distribution of solutions
after 20,000 and 100,000 function evaluations. Although the convergence near
the efficient front is quick similar to that in ZDT1, the distribution is poor. In
the TPM method, we use a population of size 100 randomly created satisfying
the box constraints. Solutions after 20,000 and 100,000 evaluations are shown
in Figure 6. A good convergence and diversity of solutions is observed. Figure 7
shows the solutions obtained using the NBI method. A good set of solutions even
with 20,000 function evaluations is apparent from the figure. Figure 8 shows
the NSGA-II solutions for 20,000 function evaluations. It is clear that the non-
convexity of the efficient frontier did not provide any problem to NBI and TPM
approaches, while the performance of the SSM approach is poor.
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Modified ZDT3 Test Problem: The modified ZDT3 test problem can be
stated as follows:
x)

Minimize f;(x) = 21,
(x) = g(x) (1 - /ﬁ — gf—;() sin(107r:c1)) , (5)

Minimize fa

where g(z) =1+ =25 Y0, 77,
where the box constraints are z; € [0,1], and z; € [-1,1] for i = 2,3,...,n.

We use n = 30. This problem has a convex discontinuous efficient frontier.
The Pareto optimal solutions correspond to 0 < z7 < 1 and z} = 0 for ¢ =
2,3,...,n. The Euler’s method with a step size ¢ = 0.5 along with an ¢ = 0.01
is used in SSM. Figure 9 shows the obtained distribution after 100,000 functions
evaluations. Only a portion of the efficient frontier is discovered by this method.
The TPM method is applied with an initial population of size 5,000, randomly
created satisfying the box constraints. Figure 10 shows the obtained solutions
after 100,000 evaluations. The figure shows that all disconnected efficient fronts



are discovered by this method. It is noteworthy that with 20,000 evaluations the
complete front was not fully discovered by the TPM method.
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Figure 11 shows the distribution of the NBI method after 100,000 evaluations.
It is apparent that not all disconnected efficient fronts are discovered by this
approach. Although the NBI method performed very well on ZDT1 and ZDT?2
problems having a continuous efficient front, the disconnectedness of the efficient
frontier seems to have provided difficulty to this approach. Since not all fronts are
discovered, this method ends up finding a dominated portion of the true efficient
frontier. Since the idea of non-domination is not built in the NBI approach,
it ends up finding some non-efficient points. A comparison with the NSGA-IT
results (Figure 12) indicates the NSGA-II with only 20,000 evaluations is able
to find all disconnected efficient fronts.

ZDT4 Test Problem: Next, we use the 10-variable ZDT4 test problem [3].
This problem has a total of 100 distinct local efficient fronts in the objective



space. The global Pareto-optimal solutions correspond to 0 < z7 < land z} =0
fori =2,3,...,n. The algorithms face a difficulty in overcoming a large number
of local fronts and converging to the global front.

The Euler’s method with a step size of 0 = 0.1 along with e = 0.001 is used
in SSM. Only a few weak Pareto-optimal solutions (f; = 0 and f» = 70 to 70.4)
are found after 20,000 evaluations. Since the SSM method requires functions to
be twice continuously-differentiable and since ZDT4 is not twice differentiable
precisely at z; = 0, the gradient computation is erroneous at ;1 = 0, resulting
in a failure of the method.

The TPM method is applied with 2,000 initial solutions randomly created
satisfying the box constraints. Figure 13 shows that a set of dominated local-
Pareto-optimal solutions is discovered after 100,000 evaluations. The optimiza-
tion algorithm used in the TPM method can get stuck to a local-optimal solu-
tion and the ZDT4 problem with many local efficient frontier provides enough
difficulty to this approach for finding the true global efficient frontier. The multi-
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modality of the search space also causes the NBI method to not find the global
efficient frontier. The SQP method is inadequate to find the global optimal solu-
tions. Figure 14 shows that NSGA-II with 100,000 evaluations is able to converge
to the global efficient frontier.

The problem ZDT4 provides difficulty in terms of multi-modality of the
search space. It is evident from the simulation results that the classical gen-
erating methods face enormous problems in overcoming the multi-modalities,
whereas in this type of problems evolutionary multi-objective (EMO) methods
are found to be useful.



Modified ZDT6 Test Problem: The n = 10 variable modified ZDT6 test
problem is as follows:

Minimize f;(x) = 1 — exp(—4z;) sin®(472,),
2
Minimize f2(x) = g(x) (1 - (1;1((;())) ) , (6)
where g(z) =1+ 9 (X1, 22/(n — 1))0'25 ,

where the box constraints are z; € [0,1] and z; € [-1,1] for i = 2,3,...,n. This
problem has a non-convex and non-uniformly spaced Pareto-optimal solutions.
The Pareto-optimal solutions correspond to 0 < 27 < 1 and 2} = 0 for ¢ =
2,3,...,n. The Euler’s method with a step size of ¢ = 0.15 along with ¢ =
0.001 is used in SSM. Figure 15 shows the distribution of obtained solution after
100,000 function evaluations. The algorithm is not able to find a well-converged
set of solutions. Although there is no local efficient frontier at the location where
the algorithm gets stuck, parameters play an important role in the success of
SSM and in this problem it is seen that for small values of parameters there is an
ascent in functions, instead of a descent in them. A theoretical analysis suggests
that at each point x the direction (—g(x)) is a descent direction for all functions,
however with a finite step size this result does not hold.

The TPM method with 1,000 initial random solutions produces a set of
solutions closer to the efficient frontier, but there are only a few solutions found
even after 100,000 function evaluations (Figure 16). For this problem, there is
a slow improvement in each iteration and by the time the solution reaches near
the efficient frontier, the step size t; becomes very small and it would take a long
time before the solutions fall on the efficient frontier.

The NBI method (Figure 17) performs poorly on this problem. Since the
density of solutions along the frontier is non-uniform, the SQP method along with
the NBI strategy is unable to find a good distribution. On the other hand, NSGA-
IT is able to find a good convergence and distribution with 100,000 function
evaluations (Figure 18).

Based on these simulations, we infer that a non-uniform density of solutions
in the objective space (which occurs in many real-world problems [3]) provides
enough difficulty to the classical generating methods. These are another class
of optimization problems in which EMO methodology performs comparatively
better than the classical methods.

3.2 Three-Objective Test problems
Now, we consider a couple of three-objective test problems developed elsewhere

[6] to study the behavior of all four algorithms.

DTLZ2 Test Problem: First, we consider the 12-variable DTLZ2 test problem
having a spherical efficient front satisfying f? + f3 + f2 = 1 in the range fi, fo €
[0,1]. The Euler’s method with a step size of 0 = 0.1 and ¢ = 0.01 is used
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in SSM. Figure 19 shows all obtained solutions after 100,000 evaluations. It is
clear that the SSM approach is able to get the solutions on the frontier, but
the distribution of solutions (obtained mainly by the Brownian approach) is not
adequate. It will take enormous number of evaluations for the algorithm to find
a distribution across the complete efficient frontier. However as apparent from
the figure, due to the descent direction it needs only few iteration to reach the
efficient frontier.

The Timmel’s method is applied next with 1,000 initial random solutions.
After 100,000 evaluations, the approach is able to find a good coverage of the
entire efficient frontier (Figure 20). It is interesting that the boundary solutions
are adequately discovered by this approach. The NBI approach, after 100,000
evaluations, finds a few well-distributed solutions (Figure 21). If more evaluations
are allowed, the remaining portion of the efficient frontier may also be discovered
by this method, however the requirement of a large number of evaluations for
high-dimensional objective space is a drawback of this algorithm.

The spread of solutions using NSGA-II (with 20,000 evaluations) is shown in
Figure 22. Although the distribution is not as regular as in the NBI approach,
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DTLZ2.

the obtained solutions spread across the entire front. As pointed elsewhere, a
better niching operator than the crowding-distance operator, such as a clustered
NSGA-II [5] or another EMO such as SPEA2 can employ a better distribution
of solutions in problems having more than two objectives.

If these algorithms are applied on DTLZ3 which has a number of local efficient
frontiers as in ZDT4, the classical algorithms will have similar difficulties in
converging to the true efficient frontier. Thus, we do not show the results on
DTLZ3.

DTLZ5 Test Problem: The DTLZ5 is a 12-variable problem having a Pareto-
optimal curve: f7 = 1 — fZ — f2 with f; = f, € [0,1]. This problem, although
a three-objective one, has a one-dimensional efficient frontier. The SSM, using
Euler’s method with a step size of 0 = 0.5 and € = 0.01, finds the partial front
after 100,000 evaluations, as shown in Figure 23. The TPM approach (with 500
initial random solutions) finds the complete front, as shown in Figure 24. On
the other hand, the NBI approach finds a different one-dimensional curve as the
efficient frontier (Figure 25).



On the other hand, like TPM, NSGA-II (with 20,000 function evaluations)
does not have any problem in finding a good distribution on the true frontier,

as shown in Figure 26.
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This study brings into light three different classical generating methods which
can be used to find a set of Pareto-optimal solutions in a single simulation run.
The comparison of these methods with NSGA-II on a number of test problems
have adequately demonstrated that these methods perform very well when the
problem size and search space complexity is small. Among the three methods,
the SSM approach seems to find only a part of the entire efficient front. However,
due to the use of a direction of descent on all objective functions simultaneously,
it usually reaches a local efficient front quickly. The TPM approach is similar to
an elite-preserving population-based EMO approach with an exception that with
iterations the population size can increase indefinitely, thereby making the lat-
ter iterations slow. The approach also requires fixing a step-size update scheme,



which requires fine-tuning for every problem. The NBI approach is a system-
atic mathematical programming approach in which a number of searches are
performed from a uniformly-distributed set of points in the objective space.

On a number of two and three-objective test problems, it has been observed
that the TPM and NBI are better than the SSM approach. However, for prob-
lems having multi-modal efficient fronts or non-uniform density of points in the
objective space, all three methods do not perform well. They either get stuck
to a local efficient frontier or to suboptimal solutions. On the other hand, on
all problems considered here, NSGA-II with an identical parameter setting, has
performed well. One way to extend the study would be to replace the SQP or
classical optimization approach embedded to these classical algorithms with an
evolutionary algorithm. Another approach would be to use some of the classical
principles as an additional operator in an EMO methodology. Some such exten-
sions would be an immediate focus for useful research and application in the
area of multi-objective optimization.
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