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Abstract. In optimization studies including multi-objective optimiza-
tion, the main focus is placed in finding the global optimum or global
Pareto-optimal frontier, producing the best possible objective values.
However, in practice, users may not always be interested in finding the
global best solutions, particularly if these solutions are quite sensitive to
the variable perturbations which cannot be avoided in practice. In such
cases, practitioners are interested in finding the so-called robust solutions
which are less sensitive to small changes in variables. Although robust
optimization has been dealt in detail in single-objective optimization
studies, in this paper, we present two different robust multi-objective op-
timization procedures, where the emphasis is to find the robust optimal
frontier, instead of the global Pareto-optimal front. The first procedure
is a straightforward extension to a technique used for single-objective ro-
bust optimization and the second procedure is a more practical approach
enabling a user to control the extent of robustness desired in a prob-
lem. To demonstrate the subtle differences between global and robust
multi-objective optimization and the differences between the two robust
optimization procedures, we define four test problems and show simula-
tion results using NSGA-II. The results are useful and should encourage
further studies considering robustness in multi-objective optimization.

1 Introduction

For the past decade or more, the primary focus of the research and application
in the area of evolutionary multi-criterion optimization (EMQ) has been to find
the globally best Pareto-optimal solutions. Such solutions are non-dominated to
each other and there exists no other solution in the entire search space which
dominates any of these solutions. From a theoretical point of view, such solutions
are of utmost importance in a multi-objective optimization problem. However,
in practice, often a solution cannot be implemented with arbitrary precision for
various reasons and the implemented solution may be a slightly different from
the theoretical global optimal solution. If a global optimal solution is sensitive to
variable perturbation in its vicinity, the implemented solution may correspond
to different objective values than that of the theoretical optimal solution. Thus,
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from a practical standpoint, such solutions are of not much importance and the
emphasis must be made in finding robust solutions, which are less sensitive to
variable perturbations in their vicinity.

In single-objective optimization, a number of studies have been devoted for
finding such robust solutions. Branke [1] suggested a number of heuristics for
searching robust solutions. In another study, Branke [2] suggested a number
of methods for alternate fitness estimation. Later, Branke [1] also pointed out
key differences between searching optimal solutions in a noisy environment and
searching for robust solutions. Jin and Sendhof [3] posed the issue of finding
robust solutions in single-objective optimization problem as a multi-objective
optimization problem with the objectives being maximizing robustness and per-
formance. Tsutsui and Ghosh [4] presented a mathematical model for obtaining
robust solutions using schema theorem for single-objective genetic algorithms.
Parmee [5] suggested a hierarchical strategy of searching several high perfor-
mance regions in a fitness landscape simultaneously. However, to our knowledge,
there does not exist a systematic study introducing robustness in multi-objective
optimization.

In this paper, we make an effort to extend an existing approach for finding
robust solutions in single-objective optimization for multi-objective optimiza-
tion. Essentially, in this approach, instead of optimizing the original objective
functions, we optimize the mean effective objective values computed at a point
by averaging the function values of a few solutions in its vicinity. The solu-
tions which are less sensitive to local perturbations will fair well in terms of the
mean effective objective values and the resulting Pareto-optimal front will be
the robust frontier. To illustrate the working of this approach, we first suggest
four different controllable test problems and employ NSGA-II. We also present
a new definition of robustness in which original objectives are optimized but a
constraint limiting the change in function values due to local perturbations is
added. The latter approach is more pragmatic and a user has a control on the
desired level of robustness on the obtained solutions. The differences between
these two robust procedures and fundamental differences between global and
robust optimization in the context of multi-objective optimization are clearly
demonstrated.

Rest of the paper is designed as followed. Section 2 introduces the concept of
robustness in multi-objective optimization and stresses its importance. Sections 3
and 4 discuss the two robust optimization schemes and results obtained using
NSGA-II. Finally, a conclusion of this study is presented in Section 5.

2 Robustness in Optimization

We consider a multi-objective optimization of the following type:

Minimize (f(x), f2(x),. . -;fM(X));} (1)
subject tox € S,

where S is the feasible search space. A robust solution is defined as the one which
is less sensitive to the perturbation of the decision variables in its neighborhood.
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Let us consider the single-objective function shown in Figure 1. Of the two
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Fig. 1. Illustration of global versus  Fig. 2. Point A is less sensitive to variable per-
robust solutions in a single-objective  turbation than point B.
optimization problem.

optimal solutions, solution A is considered robust as a small variation in the
decision variables does not alter the objective function value of the solution.
On the other hand, solution B is quite sensitive to the variable perturbation
and often cannot be recommended in practice, despite having a better function
value than solution A. Several EA researchers suggested different procedures
of defining and finding such robust solutions in a single-objective optimization
problem [6,2-5].

For solving multi-objective optimization problems, an EMO procedure at-
tempts to find a finite number of Pareto-optimal solutions, instead of a single
optimum. Since Pareto-optimal solutions collectively dominate any other feasi-
ble solution in the search space, they all are considered to be better than any
other solution [7]. The concept of robustness discussed above for single-objective
optimization can be extended for multi-objective optimization as well and is
worth from a practical standpoint. In Figure 2, two Pareto-optimal solutions
(A and B) are checked for their sensitivity in the decision variable space. Since
the local perturbation of point B causes a large change in objective values, this
solution may not be a robust solution, whereas solution A is robust. To qual-
ify as a robust solution, each Pareto-optimal solution now has to demonstrate
its insensitivity towards small perturbations in its decision variable values. The
main differences with a single-objective robust solution is that (i) the sensitivity
now has to be established with respect to all M objectives. That is, a combined
effect of variations in all M objectives has to be used as a measure of sensitivity
to variable perturbation, and (ii) there are many solutions to be checked for
robustness.
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2.1 Robust Optimization Approaches

One of the main approaches portrayed in the single-objective literature is to
use a mean effective objective function (f°f(x)) for optimization, instead of the
original objective function (f(x)) itself. Here, we give a definition for a generic
M-objective optimization problem:

Definition 1. Multi-objective Robust Solution of Type I: A solution x*
is called a multi-objective robust solution of type I, if it is the Pareto-optimal so-
lution to the following multi-objective minimization problem defined with respect

to a §-neighborhood (Bjs):

Minimize (f$%(x), fs%(x),..., f$¥(x)), (2)
subject tox € S,

where ffﬁ(x) is defined as follows:

£T(x) = £;(¥)dy. 3)

where |Bs| is the hypervolume of the chosen neighborhood.

To use it in practice, a finite set of H solutions (y) can be randomly (or in
some structured manner) chosen around a d-neighborhood (y € x + Bs, where
Bs = {z|z; € [—0;,0;]}) of a solution x in the variable space and the mean
effective objectives ( f]‘-’ﬁ) are optmized by an EMO procedure. This way, instead
of an individual’s own function value (f;), an agglomerate objective value in its
vicinity is used as the objective for optimization.

Another approach would be to restrict a normalized change in perturbed
objective vector from its original objective vector by a user-specified limit 7:

Definition 2. Robust Solution of Type II: For the minimization of a multi-
objective problem, a solution x* is called a robust solution of type II, if it is the
Pareto-optimal solution to the following problem:

Minimize (‘);_1 (x), ];_Q(X), oo (%)),
1£7(x) - f(x)|

ifeol - = @
x e S.

subject to

The perturbed objective vector £ can be chosen as the mean effective func-
tion value (£°) or the worst function value (among H chosen solutions) in the
neighborhood. The operator || - || can be any norm measure.

Both definitions for robustness in multi-objective optimization raise some
interesting issues. For example, due to the variable sensitivities, a part of the
original global Pareto-optimal front may not qualify as a robust front. In another
scenario, the original global Pareto-optimal front (given in Equation 1) may be
completely non-robust and a original local Pareto-optimal front may become
robust. Depending on how robust the original global Pareto-optimal front is
with respect to the above definition, there can be the four different scenarios,
which we discuss next.
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2.2 Case 1: Original Pareto-optimal front remains robust

This is the simplest case in which the original Pareto-optimal front remains
Pareto-optimal with respect to the mean effective function values. Figure 3 il-
lustrates such a problem. It is expected that the global front constructed with
the mean effective objectives will be somewhat worse than that constructed for
original objectives, the complete original front remains the target in this type of

problems.
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Fig.6. Case 4: A part of the global
Pareto-optimal front is not robust.

2.3 Case 2: Only a part of original front remains robust

Here, the complete original Pareto-optimal front is not robust with respect to
the above definition of robustness of type I. In most real-world scenarios such
a problem is expected, as some portion of the Pareto-optimal front may lie in
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a sensitive region in the decision variable space. In such a problem, the task
of a multi-objective robust optimizer would be to find only that part of the
Pareto-optimal front which is robust (less sensitive to the variable perturbation).
Figure 4 shows that the Pareto-optimal front corresponding to the mean effective
objectives does not span over the entire original Pareto-optimal region.

2.4 Case 3: Original local front is robust

Cases 3 and 4 correspond to more difficult problems in which the original problem
may have more than one Pareto-optimal fronts (global and local [8]). In Case 3,
the mean effective front constructed using the original global Pareto-optimal
solutions is completely dominated by that constructed using the local Pareto-
optimal front, thereby meaning that the original global Pareto-optimal front is
not a robust one. Figure 5 demonstrates such a problem. This type of problems, if
encountered, must be solved for finding the robust Pareto-optimal front, instead
of the sensitive global Pareto-optimal front.

2.5 Case 4: Only a part of original global front is robust

Instead of the complete original global Pareto-optimal front being sensitive to the
variable perturbation, Case 4 problems cause a part of it to be adequately robust.
In the remaining part, a new front appears to be robust. Figure 6 illustrates this
problem.

Certainly, other scenarios are possible, where instead of an original local
Pareto-optimal front becoming robust, a completely new frontier emerges to
be robust. However, we argue that the above four scenarios most likely cover
different types of robust multi-objective optimization problems which can be
encountered in practice and an algorithm capable of solving these scenarios would
be adequate to solve other simpler kinds.

2.6 Test Problems

In this section, we now construct a mathematical two-objective test problem for
each of the above four cases.

Test Problem 1 This problem is an illustration to Case 1 discussed above:

Minimize (f1(x), f2(x)) = (1, h(z1) + 9(x)5(71)) ,
Subject to0 <21 <1,-1<z; <1, i=2,3,...,n,
where h(z,) = 1 — 22,
9(x) = 2, (10 + 27 — 10cos(4nz;)),  S(x1) = gooar + 21
()
Here, we use @ = 1 and 8 = 1. The Pareto-optimal front corresponds to z} = 0
fori=2,3,...,n and for any value of z; in the prescribed domain [0, 1]. At these
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solutions, g(x) = 0, thereby making the following relationship between original
objectives:

f5=1-f7 (6)
The mean effective objectives in a d-neighborhood for a Pareto-optimal solution
x (for z; € [0,1]) are given as follows:

£ (x) = 1, (7)
eff 2 1., 1 0.2+ z1 + 61
S [ 1 (7)
fa (%) = ( z7) 3 1+ 01261 og 02426
1.5\ w 1, 10
+8 (a3 +307)] D (104 567 - o sindms,). (8)
3 ars 3 476,

Test Problem 2 This problem is an illustration of Case 2. The mathematical
formulation of this problem is identical to that in test problem 1, except that
here we use @ = 1 and 8 = 10. The corresponding Pareto-optimal frontier
for the original problem and for the mean effective objectives can be obtained
from Equation 6 and Equations 7 and 8, respectively, by substituting the above
parameter values.

Test Problem 3 This problem is an instantiation of Case 3. Since, this problem
requires the concept of local and global Pareto-optimal front, we construct a
multi-modal multi-objective optimization problem:

Minimize (f1(x), f2(x)) = (21, h(z2) (9(x) + S(z1))) ,
Subject to0 < z1,22 < 1,-1<z; <1, i=3,4,...,n,
where h(z2) =2 — 0.8 exp (_ (902——035)2) — exp (_ (902——085)2) ’ 9)

0.25 0.03
g(x) =31 25022, S(z1)=1- /1.
Once again, the Pareto-optimal front corresponds to x; = 0 for i = 3,4,...,n.

Thus, at this front, fs(z1,2z2) = h(z2)S(z1). Since, fi(x) = 1, the local and
global Pareto-optimal frontiers will correspond to the local and global minima
of h(zy), respectively. A careful look at h() function (shown in Figure 1) will
reveal that there are two minima, of which the global minimum is at x5 = 0.85
(h(x3%) =~ 1.0). Similarly, the local Pareto-optimal front corresponds to x5 = 0.35
(with h(z3 = 1.2). Approximate relationships between f; and f> at these two
fronts are as follows:

f=1-VJ (gobal), fo=12(1-/7) (local).

The mean effective objective values at these two fronts are given as follows:

(%) = 21, (10)
() = H (s 50) |5 2062 4 (1- L (@ 8" — (1 — ') [, an
2 2 — 3 i 3(51 ) ) b
where H(x3,02) = 55 f;}j;; h(y)dy and is equal to 1.154 and 1.237 for local

2
and global Pareto-optimal solutions, respectively, with d2 = 0.03.
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Test Problem 4 To represent Case 4, we construct a problem which is the
same as test problem 3, with a couple of modifications: (i) the function is h() is
dependent on two variables:

— 2 _ 9
h(z1,22) =2 —z1 — 0.8exp <_ (M32725035) ) —exp <_ (%) ) .

and (ii) the variable bound on z» is different: —0.15 < z2 < 1. The problem has its
global Pareto-optimal front somewhere near x2 = 0.85 and the local Pareto-optimal
front near z1 + z2 = 0.35, as before. However, the global Pareto-optimal front for the
mean effective objectives corresponds to a mix of these two values of z». For f; smaller
than about 0.5, the front corresponds to x2 = 0.35 and for the rest of the fi values the
front corresponds to x1 + z2 = 0.85.

3 Simulation Results

Here, we use NSGA-II [9] procedure to obtain the robust Pareto-optimal front, although
any other EMO algorithm can also be used. Various parameters which would determine
the extent and nature of shift of the mean effective front from the original front are as
follows:

— The extent of the neighborhood (§ vector) considered to each variable.
— Number of neighboring points (H) used to compute the mean effective objectives.

We discuss the effect of these two parameters in detail for the first two test problems.
However, before we discuss the results, there is an important matter which we discuss
next.

There can be a number of ways of generating H neighboring points in the vicinity
of a solution to compute the mean effective objective values [6]. The simplest strategy
can be to randomly create H points in the neighborhood of every solution. However,
this introduces additional randomness in evaluating the same solution more than once
and it was suggested that a random pattern of points around a solution be created in
the beginning of a generation and the same pattern be used for evaluating all popula-
tion members. To create a pattern systematically, we divide the perturbation domain
of each variable (around [—d,d]) into exactly H equal grids, thereby dividing the J-
neighborhood into n¥ small hyperboxes. Thereafter, we pick exactly H hyperboxes
randomly from n” hyperboxes so that in each dimension all H distinct grids are rep-
resented. Once the hyperboxes are identified, a random point within each hyperbox is
chosen and is used for the computation of the mean effective objective values.

In all simulations, we have used the simulated binary crossover (SBX) and the
polynomial mutation operator with distribution indices of 10 and 50, respectively. A
population size of 100 is run for 10,000 generations to have confidence in the location
of the robust optimal front, although the final effective frontier appears well within
1,000 generations.

3.1 Test Problems 1 and 2

Effect of neighborhood size, §: To not have a significant effect due to finite
neighboring points and variation in problem size, we use H = 50 and n = 5. To



Searching for Robust Pareto-Optimal Solutions 9

Original Front J T~

0 I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1
£1

Fig. 7. Theoretical mean effective fronts
showing the effect of § on test problem 1.

25

Original Front ~

0 I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1
£1

Fig. 9. Theoretical mean effective fronts
showing the effect of § on test problem 2.

3

O Il Il
0 0.2 0.4 0.6 0.8 1
£1

Fig.11. Effect of H (theoretical and

NSGA-II) on test problem 1.

[}
& @
£
{Jﬁ
i
8
ji§
S

Do,
S @,
\—Original

front

0 I I I
0 01 02 03 04 05 06 07 08 09 1
£1

Fig. 8. Robust solutions obtained using
NSGA-II show the effect of § on test prob-

lem 1.
25
) ]
1.5 1
N
0-1‘
1
05 1
0 =

I I I I I I I N
0 01 02 03 04 05 06 07 08 09 1
£1

Fig. 10. Robust solutions obtained using
NSGA-II show the effect of § on test prob-

lem 2.
25

/ Theoretical front

05
Original Front / ~

0 I I I I
0 0.2 0.4 0.6 0.8 1

£f1l

Fig.12. Effect of H (theoretical and
NSGA-II) on test problem 2.

have an identical normalized neighborhood size for each variable, we use 1 = § and
&; = 26 for 4 > 2. Figure 7 shows the theoretical mean effective front obtained using
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Equations 7 and 8 for four different values of neighborhood size, d:. It is clear from
the figure that as § increases, the mean effective front moves away from the original
Pareto-optimal front (marked as the ‘original front’). Although for this test problem,
all solutions corresponding to the mean effective front are identical to those lying on
the original Pareto-optimal front for any neighborhood size, the change in shape of
the front is interesting. For the four § used here, the mean effective front is non-
convex, whereas the original front was convex. It is important to highlight here that
for robust optimization an EMO algorithm works on the mean effective objectives and
thus may have difficulty in solving the robust optimization problem of handling a non-
convex problem compared to the original convex problem. Figure 8 shows the obtained
NSGA-II solutions for the same four & values. A close investigation will reveal that
the obtained front is exactly the same as that obtained using the exact mathematical
analysis (Figure 7).

Figures 9 and 10 show theoretical and NSGA-II results on test problem 2. In this
problem, not only the shape of the mean effective front is different from the original one,
some original Pareto-optimal solutions are no more robust. It is clear from Figure 9
that for § = 0.006, original Pareto-optimal solutions having z] greater than about
0.4 now get dominated. This simply means that these Pareto-optimal solutions are
quite sensitive to variable perturbation and are not robust. When performing a robust
multi-objective optimization, an algorithm should then find only those Pareto-optimal
solutions which are robust. Figure 10 shows that NSGA-II finds only the robust portion
of the original Pareto-optimal front.

Effect of neighboring points It is intuitive that if more neighboring points are
chosen for computing the mean effective objectives, the objective values will be closer to
the theoretical average values; however, the computation time will be more. Figure 11
shows the effect of using different values of H on test problem 1. Here, we use § = 0.01
and n = 5. The theoretical mean effective front (ideally for H = o0) is also shown
with a solid line in the figure. It is clear that as H is increased, the mean effective
front shifts away from the original front and asymptotically approaches the theoretical
front. Figure 12 shows the effect of H on test problem 2 (with n = 5 and § = 0.007).
The front obtained using a small H overestimates the true robust front, but at a much
smaller computational time.

3.2 Test Problems 3 and 4

For problems 3 and 4, we show the effect of local and global fronts of the original
problem in deciding on the true robust front. For both problems, we use § = 0.03,
H =50, and n = 5. Figure 13 shows the theoretical results obtained using Equations 10
and 11. The original local and global fronts are shown in dashed lines. The mean
effective local and global fronts are also shown in the figure with solid lines. It is
clear that the mean effective local front is the robust frontier of this problem, meaning
that the original local Pareto-optimal solutions are robust solutions and original global
Pareto-optimal solutions are sensitive to the variable perturbation and are not robust
solutions. Figure 14 shows NSGA-II solutions applied to mean objective values obtained
by averaging H function values in the d-neighborhood of a solution. The NSGA-II front
is very close to the theoretical local mean effective front.

To show the difference between original Pareto-optimal front and robust front, we
show all 100 obtained NSGA-II solutions for two cases. In Figure 15, we show the solu-
tions obtained for optimizing the original problem (without robustness consideration).
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Fig. 13. Theoretical robust front for test ~ Fig.14. NSGA-II robust front for test
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Fig. 15. NSGA-II solutions of the original Fig.16. NSGA-II robust solutions for
test problem 3. test problem 3.

It is clear that for all solutions, x2 is close to 0.85. Variables x3 to x5 are all settled to
a value zero and the variation in the front appears due to the variation in ;. Figure 16
shows all solutions for the robust optimization. Here, all solutions take a value close to

Next, we consider test problem 4. The theoretical fronts for the original problem
are shown in Figure 17 in dashed lines and corresponding mean effective fronts are
shown in solid lines. It is clear from the figure that the robust frontier is constituted
with a part of the local Pareto-optimal solutions and a part of the global Pareto-
optimal solutions. Figure 18 shows the robust solutions obtained using NSGA-II. The
deviation in the global part of the robust frontier from theory is due to the choice of
a finite H (50 here). The original function landscape at the global frontier is quite
sensitive to parameter changes, and it becomes difficult for an optimization algorithm
to converge to the exact global frontier. When we rerun the problem with H = 500,
the obtained NSGA-II solutions lie on the theoretical frontier. Figures 19 and 20 show
the relationship between z1 and z2 in the solutions obtained for the original problem
and that obtained for the mean effective objectives, respectively. It is clear that for
solutions f1 < 0.5 the relationship more or less follows x1 +x2 = 0.35 and for f; > 0.6
the relationship is x1 + x2 = 0.85. The latter condition corresponds to the original
global Pareto-optimal front, as shown in Figure 19.

The above discussion on simulation results amply demonstrates that by optimizing
the mean effective objectives (instead of the original objective functions) computed by
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averaging a few neighboring solutions, the robust frontier of type I can be found by
using an EMO procedure. In a problem, the computation of the robust front is more
useful and provides an user with the information about robust solutions directly. It
has been also found that the neighborhood size and the number of neighboring points
used to compute the mean objective values are important parameters in obtaining
the true robust frontier. However, the type I definition of robustness is somewhat
less practical and yields in a robust frontier which cannot be controlled. For a given
problem, the above definition constitutes a particular front as a robust front, mainly
from the consideration of mean objective values. However, a user may like a preferred
limiting change in function values for defining robustness and would be interested in
knowing the corresponding robust frontier. For this purpose, we have defined the robust
solutions of type II earlier and discuss it in the next section.

4 Multi-Objective Robust Solutions of Type II

The robust solution of type II were defined earlier (Definition 2). Here, we use ffﬁ
for f7 and the Euclidean norm for || - || operator. The limiting parameter 7 is consid-
ered constant in a simulation run and is a user-defined parameter. We simply employ
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NSGA-II to solve the corresponding constrained optimization problem by using the
constrained-domination principle [7].

To demonstrate the nature of robust solutions of type II, here we consider test
problems 1 and 2, for brevity. We use 6 = 0.007 and 0.006 for problems 1 and 2,
respectively. All other parameters are the same as before.

4.1 Test Problem 1

Figure 21 shows NSGA-II solutions obtained for different pre-defined 7 values on test
problem 1. Here, the mathematical mean effective objective functions (Equations 7
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Fig. 21. Robust fronts for different values

of 1 obtained using exact f*F for prob- Fig. 22. Function g() of the robust solu-

tions shown in Figure 21 for problem 1.
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Fig. 23. Robust fronts for different values  Fig. 24. Function g() of the robust solu-
of n for problem 2. tions shown in Figure 13 for problem 2.

and 8) are optimized with the additional 7 constraint by using NSGA-II. On separate
NSGA-II runs, similar fronts are obtained when the mean effective objective values
are computed using H = 50 neighboring solutions. The figure demonstrates that the
sensitive region of the original Pareto-optimal front is vulnerable to the chosen value
of n. For a more tight (smaller) limiting 7, the corresponding front is further away
from the original front in the sensitive region. As 7 is increased, the robust frontier
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gets closer to the original front. However, on the less sensitive portion of the original
frontier, there is no change.

For comparison, the robust front obtained with type I robustness is also shown
for identical § and H parameter values in Figure 21. Recall that in the case of type I
robustness, the robust solutions for this problem corresponds to z; = 0 for ¢ > 1
(thereby making the g(x*) = 0). However, with type II robustness, different solutions
appear in the sensitive portion of the robust frontier having g(x*) > 0. To demonstrate
this aspect, we plot g(x*) values in Figure 22 for two cases: type I robust frontier
(theoretical) and type II robust frontier. Although solutions having g(x*) > 0 were
not the Pareto-optimal solutions of the original problem, the definition of robustness
of type II causes them to be robust optimal solutions with respect to a particular 7.

4.2 Test Problem 2

Figure 23 shows the NSGA-II solutions obtained using H = 100 neighboring points
and with n = 0.4 and n = 0.6. As discussed earlier and as shown in the figure, the
complete Pareto-optimal front was not robust of type I in this problem. For both 7
values, the robust frontiers of type II also do not cover the entire range of the original
Pareto-optimal front. However, as 7 is increased the robust frontier comes closer to the
original front. Figure 24 compares the g(x*) values for all robust solutions of type I
(theoretical) and type II (7 = 0.4 and n = 0.6). The theoretical type I robust solutions
correspond to fi1 < 0.4 and the corresponding g() value for all solutions is zero. However,
for the robust solutions of type II, we observe that the g() values are nonzero in the
most sensitive region. The NSGA-II procedure finds solutions which were non-optimal
before but are robust with respect to the chosen n parameter.

5 Conclusions

This paper takes the first step towards defining robust multi-objective solutions. First,
a straightforward extension of a mean effective objective approach suggested for single-
objective optimization is defined for multiple objectives. In this approach (we redefined
it as a robust optimization of type I), an EMO methodology can be applied to the mean
effective objective values obtained by averaging a finite set of neighboring solutions.
Second, we have suggested robust optimization of type II, in which the original ob-
jectives are optimized, but an additional constraint restricting a pre-defined limiting
change in objective values is considered. We have argued that such a procedure is more
practical, as it allows an user to find robust solutions with a user-defined limit to the
extent of change in objective values with respect to local perturbations.

Additionally, we have identified four different scenarios which can happen to a ro-
bust frontier in real-world problems and suggested variable-wise scalable two-objective
test problems. Simulation results of NSGA-II on these test problems have been illus-
trated and explained to understand the differences between two robust optimization
procedures.

A number of salient issues remains. In this research, we have considered H = 50
neighboring solutions to compute the mean effective objectives. Thus, in principle, this
method is 50 times computationally more expensive than the regular non-robust op-
timization methods. This issue needs an immediate attention before such a method
becomes really practical. We are currently pursuing the use of an updatable archive
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to store a large number of previously-computed solutions as a reservoir for neighbor-
ing solutions. Such a technique has been successfully tried for single-objective robust
optimization [2], but, new insertion and deletion rules honoring the two distinct goals
of multi-objective optimization — convergence and distribution — may have to be con-
sidered. Nevertheless, this initial study should motivate more detailed studies in the
future and may encourage interested readers to understand and apply robust optimiza-
tion procedures to real-world multi-objective optimization problems.
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