
Handling Constraints In Robust Multi-Objective Optimization
Himanshu Gupta and Kalyanmoy Deb

Kanpur Genetic Algorithms Laboratory (KanGAL)
Indian Institute of Technology Kanpur

Kanpur, PIN 208016, India
Email: {himg,deb}@iitk.ac.in

URL: http://www.iitk.ac.in/kangal/pub.htm

Abstract- Robust multi-objective optimization has
emerged as an active research area in the past few years.
A recent study proposed two different definitions of ro-
bust solutions in the context of multi-objective optimiza-
tion. In this paper, we extend the concepts for finding
robust solutions in the presence of active constraints.
The meaning of robust solutions for constrained prob-
lems is demonstrated by suggesting three test prob-
lems and simulating an evolutionary multi-objective op-
timization method using the two definitions of robust-
ness. The inclusion of constraint handling strategies
makes the multi-objective robust optimization proce-
dure more pragmatic and the procedure is now ready
to be applied to real-world problems.

1 Introduction

Research in Evolutionary Multi-Criteria Optimization has
concentrated on searching a set of diverse and non-
dominated Pareto Optimal solutions. Recently a lot of in-
terest has developed for searching robust solutions. These
solutions are relatively insensitive to the perturbations in
variable space. Finding robust solutions is of immense im-
portance because in a real world scenario it may not be
possible to implement the obtained Pareto-optimal solution
precisely. If the objectives are highly sensitive to pertur-
bation in variable space the performance obtained may be
quite degraded in comparison to the performance of ob-
tained Pareto-optimal solutions.

Already there have been a lot of studies towards devel-
oping the robust optimization strategies both in single ob-
jective as well as multi-objective case. Branke [1, 2, 3] de-
scribes the issues in single objective robust optimization. Jin
and Sendhoff [4] considers the issue of finding robust solu-
tions in a single-objective optimization problem as a multi-
objective optimization problem with the objectives being
maximizing robustness and performance. Tsutsi and Ghosh
[5] presented a mathematical model for obtaining robust so-
lutions using the schema theorem for single-objective ge-
netic algorithms. Parmee [6] suggest a hierarchical strategy
of searching several high performance regions in a fitness
landscape simultaneously.

Teich [7] discusses Pareto-front exploration with uncer-
tain objectives. Hughes [8] discusses Evolutionary Multi-
objective Ranking with Uncertainty and Noise. Recently we
[9] discussed various issues in robust multi-objective opti-
mization. We also described two strategies for finding ro-
bust solutions. We discussed four cases that can result from
the manner robust frontier moves in the search space.

All these schemes suggested above have not taken into
account the effect of presence of constraints in the opti-
mization process. Real-world problems generally include a
number of constraints. So unless the strategies for handling
constraints are developed the overall robust multi-objective
optimization procedure remains incomplete. In this paper,
we present a constraint-handling scheme. We inherit the
model developed in an earlier study [9] for unconstrained
multi-objective optimization. We show that the inclusion of
constraints results in a much greater shift of robust frontier,
as the solutions on a constraint boundary (albeit optimal)
are not robust. The proposed constraint handling strategy
has been incorporated with both the approaches described
in [9]. Some test problems having constraints are devel-
oped and the results are shown. Differences between uncon-
strained and constrained robust multi objective optimization
are clearly outlined.

Rest of the paper is designed as followed. Section 2 and
3 introduce some definitions and constraint handling strate-
gies for robust multi-objective optimization. Section 4 de-
scribes the test-problems. Section 5 and 6 show the simu-
lation results. Section 7 concludes with the future research
directions.

2 Robust Optimization

Consider a multi-objective optimization problem as:

Minimize (f1(x), f2(x), . . . , fM (x)),
subject to x ∈ S,

}

(1)

For solving the above multi-objective optimization prob-
lem, an EMO procedure attempts to find a finite number
of Pareto-optimal solutions, instead of a single optimum.
Since Pareto-optimal solutions collectively dominate any
other feasible solution in the search space, they all are con-
sidered to be better than any other solution [10] in the search
space.

In Figure 1, two Pareto-optimal solutions (A and B) are
checked for their sensitivity in the decision variable space.
Since the local perturbation of point B causes a large change
in objective values, this solution may not be a robust so-
lution, whereas solution A which does not cause a large
change in objective values due to a local perturbation in its
vicinity, is a robust solution. To qualify as a robust solution,
each Pareto-optimal solution now has to demonstrate its in-
sensitivity towards small perturbations in its decision vari-
able values. The main differences with a single-objective
robust solution is that (i) the sensitivity now has to be estab-
lished with respect to all M objectives. That is, a combined

f_2

x_1

x_2

x_3

f_1

B

A

B

A

Objective
space

Decision space

Figure 1: Point A is less sensitive to variable perturbation
than point B.

effect of variations in all M objectives has to be used as a
measure of sensitivity to variable perturbation, and (ii) there
are many solutions to be checked for robustness.

We [9] defined following two approaches for robust
optimization:

Definition 1 Multi-objective Robust Solution of Type I:
A solution x∗ is called a multi-objective robust solution of
type I if it is the global feasible Pareto-optimal solution to
the following multi-objective minimization problem (defined
with respect to a δ-neighborhood (Bδ(x) of a solution x):

Minimize (f eff
1 (x), f eff

2 (x), . . . , f eff
M (x)),

subject to x ∈ S,

}

(2)

where f eff
j (x) is defined as follows:

f eff
j (x) =

1

|Bδ(x)|

∫

y∈Bδ(x)

fj(y)dy. (3)

Definition 2 Multi-objective Robust Solution of Type II:
A solution x∗ is called a multi-objective robust solution of
type II if it is the global feasible Pareto-optimal solution to
the following multi-objective minimization problem:

Minimize f(x) = (f1(x), f2(x), . . . , fM (x)),

subject to ‖f eff
(x)−f (x)‖

‖f (x)‖
≤ η,

x ∈ S.











(4)

Definition 1 requires an optimization of effective objec-
tive function values computed as a mean of the function val-
ues in the vicinity of a solution. The Pareto-optimal frontier
thus obtained is called a robust Pareto-frontier. Definition 2
requires original objectives to be optimized, but makes a
solution feasible only when the extent of relative change in
function values among neighboring solutions is limited to
a user-defined parameter η. That study discussed various
pros and cons of the two approaches. Here, we use both
definitions of robustness, but modify them for handling con-
strained optimization problems.

In certain problem scenarios, the η-constraint can be
modified to one of the following constraints:

• ‖f eff(x) − f(x)‖ ≤ η. The decision-maker may be
interested in limiting the absolute difference between
the perturbed and original objective vectors.

• 1
M

∑M

i=1
feff

i
(x)−fi(x)
fi(x) ≤ η. The decision-maker

may be interested in limiting an average objective-
wise normalized difference.

•
feff

i
(x)−fi(x)
fi(x) ≤ ηi, i = 1, 2, . . . , M . The

decision-maker may be interested in limiting the nor-
malized difference in each objective. However, this
will require the decision-maker to supply a η-vector,
instead of a single η value.

• maxi=1,...,M
feff

i
(x)−fi(x)
fi(x) ≤ η. This will allow the

maximum normalized perturbation to be within lim-
its.

3 Constrained Robust Optimization

Figure 2 explains the necessary for finding the robust con-
strained solution in a multi-objective optimization problem.
On most interesting problems, a Pareto-optimal solution is
likely to lie on the constraint boundary, as shown by the
filled circles on the figure. Since the solutions lie on the
constraint boundary, they are also precarious to be used in
practice, particularly if the solutions are expected to be un-
certain. In such cases, feasible solutions which are some-
what away from the constraint boundary turns out to be ro-
bust (like the solutions marked with open circles). The ex-
tent of movement of solutions from the constraint boundary
will depend on the neighborhood size, chosen for perform-
ing the robust optimization. Similar to the definitions of the
unconstrained robust solutions, we define in the following
two definitions for a constrained robust solution.

Definition 3 Robust Feasible Optimal Solution of Type I
A solution x∗ is called a robust feasible optimal solution
of type I if it is a feasible global optimal solution and all
solutions in its δ-neighborhood are also feasible:

Minimize (f eff
1 (x), f eff

2 (x), . . . , f eff
M (x)),

subject to y ∈ S, for all y ∈ Bδ(x),

}

(5)

where Bδ is the δ-neighborhood of the solution.

The inclusion of above constraint ensures that the solutions
lying on an active constraint boundary will not be robust,
as a perturbed solution is likely to be infeasible. In a true
sense, solutions lying on a constraint boundary may be op-
timal, but is most likely to be a non-robust solution, as some
minor perturbation in the solution will make the solution
infeasible. In our implementation, instead of checking all
neighboring solutions to be feasible, we shall check the fea-
sibility of each solution used to compute effective function
values.

Similarly, we modify the second definition as follows:

Definition 4 Robust Feasible Optimal Solution of Type
II: For the minimization of a multi-objective problem, a

Variable space

Non−robust
point

Objective space

Feasible Region

Robust point

Figure 2: Illustration of a constrained robust solution.

solution x∗ is called a robust feasible optimal solution of
type II, if it is the Pareto-optimal solution to the following
problem:

Minimize (f1(x), f2(x), . . . , fM (x)),

subject to ‖f
eff

(x)−f (x)‖

‖f (x)‖
≤ η,

y ∈ S, for all y ∈ Bδ(x).











(6)

The inclusion of the additional constraint ensures that all
solutions in the vicinity of a robust feasible optimal solution
are feasible.

4 Test-Problems

To investigate the effect of constraints on robust solutions,
we propose the following test problem and its variants:

Minimize f1(x) = x1,
Minimize f2(x) = h(x1) + G(x)S(x1),
Subject to g(x) ≥ 0,

0 ≤ x1 ≤ 1,
−1 ≤ xi ≤ 1, i = 2, 3, . . . , n,

where h(x1) = 1 − x2
1,

G(x) =
∑n

i=2 50x2
i ,

S(x1) = α
0.2+x1

+ βx2
1.

(7)

We construct three test problems by using the following
functions for g(x) and for α = β = 1:

Test Problem 1: g(x) = 0.2x1 + x2 − 0.1,

Test Problem 2: g(x) = sin(32x1),

Test Problem 3: g(x) = 4f1
2 + f2

2

2 − 1.

Like ZDT test problems [10], the convergence towards the
Pareto-optimal front is governed by G() function and the
shape of the Pareto-optimal front is governed by S() func-
tion. However, the function g() does not allow the complete
original Pareto-optimal front to be feasible, thereby govern-
ing the shape and sensitivity of the Pareto-optimal front.

5 Simulation Results

First, we use definition 1 of making a solution a robust fea-
sible optimal solution. We incorporate the above mentioned
constraint handling strategy with both the approaches in
NSGA-II [11]. The additional constraint is handled using
the constrained-domination principle [10]. Here, the main
design parameters are the extent of neighborhood (δ) and
the number of neighboring points (H) used to compute the
mean effective objectives and the feasibility of a solution.
In the following subsections, we describe the effect of these
parameters. Throughout this paper, we have used the fol-
lowing nomenclatures:

• Original Front The front obtained when multi-
objective problem 1 is optimized. Robust criteria is
neither applied on objective function values nor on
the constraints.

• Simple Effective Front The front obtained with ro-
bustness consideration applied only on objectives.
This front is obtained when the optimization is done
using definition 1 and 2.

• Constrained Effective Front The front obtained
with robustness considerations applied on both objec-
tives as well as constraints. This type of front is ob-
tained when the optimization is done using definition
3 and 4.

5.1 Effect of Number of Neighboring Points (H) with
Definition 1

As mentioned earlier, definition 1 requires optimizing effec-
tive objective values. To compute effective objective func-
tion values and check the feasibility of a solution x, H dif-
ferent points in the δ-neighborhood of x are computed and
their average is taken. These H points are chosen in a sys-
tematic manner, as described in the earlier study [9]. To
create a pattern systematically, perturbation domain of each
variable (around [−δi, δi]) is divided into exactly H equal
grids, thereby dividing the δ-neighborhood into nH small
hyper-boxes. Thereafter, exactly H hyper-boxes are picked
randomly from nH hyper-boxes so that in each dimension

all H distinct grids are represented. In all simulations here,
we use the simulated binary crossover (SBX) and the poly-
nomial mutation operator with distribution indices of 10 and
50, respectively [10]. A population size of 100 is run for a
long enough (1,000) generations to have confidence in the
location of the robust optimal front.

For the test problem without any constraint, expressions
for the effective objective functions can be written as:

f eff
1 (x) = x1, (8)

f eff
2 (x) = (1 − x2

1) −
1

3
δ2
1 +

[

α
1

2δ1
log

(

0.2 + x1 + δ1

0.2 + x1 − δ1

)

+β

(

x2
1 +

1

3
δ2
1

)] n
∑

i=2

(

50

3
δ2
i

)

. (9)

5.1.1 Test Problem 1

The constraint g(x) suggests that for x1 ≥ 0.5 any value of
x2 would make the solution feasible. For x1 < 0.5, how-
ever, the following relationship must be true for a feasible
solution:

x2 ≥ 0.1 − 0.2x1. (10)

A closer look at the test problem and the constraint function
will reveal that xi = 0 for i ≥ 3 and the constrained original
front can be written in following parametric form:

f1 = x1,

f2 =

{

1 − x2
1 if x1 ≥ 0.5 else

1 − x2
1 + 50(0.1− 0.2x1)

2(1/(0.2 + x1) + x2
1)

(11)
This front is marked as ‘constrained original front’ in Fig-
ure 3. Now, for robustness consideration, we perturb vari-
ables xi with δi, thereby making the following relationship
among x2 and x1 for robust feasible optimal solutions hav-
ing x1 < 0.5:

x2 ≥ 0.1− 0.2(x1 − δ1) + δ2 (12)

So the solutions corresponding to constrained effective
front should satisfy equation 12, making x2 not a free vari-
able. Thus, the effective objective functions for test prob-
lem 1 in the range x1 < 0.5 can be written as follows:

f eff
1 (x) = x1, (13)

f eff
2 (x) = (1 − x2

1) −
1

3
δ2
1 +

[

α
1

2δ1
log

(

0.2 + x1 + δ1

0.2 + x1 − δ1

)

+β

(

x2
1 +

1

3
δ2
1

)] n
∑

i=3

(

100

3
δ2
i

)

+
50

2δ1

∫ x1+δ1

x1−δ1

(
α

0.2 + x1
+ βx2

1)

(0.1 − 0.2x1 + 0.2δ1 + δ2)
2
dx1. (14)

Equation 8, 9, 13 and 14 together define the constrained
effective frontier. In order to obtain the simple effective
frontier (effective function values are optimized, but only
solutions themselves are checked for feasibility), the term
(0.1−0.2x1+0.2δ1+δ2) must be replaced by (0.1−0.2x1).

These theoretical corresponding frontiers (constrained
original front, simple effective front and constrained effec-
tive front) of test problem 1 are shown in Figure 3. Here,
we have chosen δ1 = 0.01 and δi = 2δ1 for i ≥ 2. In Fig-
ure 4, we show the obtained NSGA-II solutions with H = 5
and H = 100 neighboring points. The effect of H is clear
from the plot. As the number of neighboring points are in-
creased, the obtained solutions get closer to the theoretical
frontier (which can be viewed as a robust optimal frontier
with H = ∞).

To investigate the effect of robustness due to constraints,
we compute the robust constraint violation (RCV) of each
solution x, defined as follows:

RCV(x) =
∑

y∈Bδ(x)

CV(y), (15)

where, the constraint violation of a solution y is defined as
follows:

CV(y) =
∑

j

〈gj(y)〉, (16)

where the operator 〈γ〉 is defined as follows:

〈γ〉 =

{

γ if γ < 0,
0 otherwise.

Thus, if the robust constraint violation is negative, some
neighboring solutions used for mean effective objective
computation is infeasible. The RCV values (computed us-
ing new 1,000 neighboring points) are plotted for all ob-
tained solutions in Figure 5. It is interesting to note that for
a fewer neighboring points (H), constraint violation is more
significant. For H = 100 points, the constraint violation is
zero. The effect of robustness is also clear from Figure 6,
which shows the corresponding x1-x2 variation. The so-
lutions of the simple effective frontier satisfies the original
constraint (x2 + 0.2x1 − 0.1 ≥ 0). With more neighboring
points, the solutions move away from these boundary solu-
tions and fall near the theoretical constraint effective fron-
tier. It is intuitive that the extent of movement from simple
effective front to the constrained effective front will depend
on the chosen δi values. Effect of constraints on variable
space is depicted in Figure 6. Relationship between x1 and
x2 is given by equation 10 and 12 respectively for simple
effective and constrained effective case. It can be observed
that as H increases relationship between x1 and x2 moves
towards the theoretical constrained effective relationship.

5.1.2 Test Problem 2

Test Problem 2 presents an example of search space which
is piece-wise feasible. We have the constraint: sin(32x1) ≥
0. So the feasible region corresponds to

2nπ/32 < x1 < (2n + 1)π/32, n = 0, 1, 2, 3, 4. (17)

Since for robustness x1 would be evaluated in a neighbor-
hood δ1, we must have:

2nπ/32+δ1 < x1 < (2n+1)π/32−δ1, n = 0, 1, 2, 3, 4.
(18)

Constrained Original Front

Simple Effective Front

Constrained Effective Front

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

Figure 3: Theoretical simple and constrained effective
fronts on test problem 1.

Constrained Effective

Simple Effective

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

H = 5
H = 100

Figure 4: Constrained effective fronts showing the effect
of number of points H on test problem 1.

−5

−4

−3

−2

−1

 0

 1

 2

 0 0.1 0.2 0.3 0.4 0.5
f_1

R
ob

us
t

C
on

st
ra

in
e

V
io

la
ti

on

Simple−Effective
H = 5

H = 10
H = 100

Figure 5: Robust constraint violation for the points ob-
tained on test problem 1 with different values of H.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.1 0.2 0.3 0.4 0.5

H = 100
H = 10
H = 5

Theoretical Simple Effective
Theoretical Constrained Effective

x_1

x_
2

Figure 6: x1 vs x2 relationship for different values of H
on test problem 1.

The effect of variation of H is shown in Figure 7 and 8. As
can be seen from Figure 7, the constraint makes the frontier
disjointed. However a close look at Figure 7 reveals that
each segment of constrained effective frontier correspond-
ing to H=10, is shorter than its simple effective counter-
part. Here the effect of constraint is to contract each seg-
ment rather than lifting the frontier as in test problem 1. As
in test problem 1, we again compute the robust constraint
violation of the solutions obtained for constrained effective
fronts using 1,000 points. Variation of robust constraint vi-
olation is shown in Figure 8. It can be seen that for a large
enough value of H (= 50) the robust constraint violation is
very close to zero. As in this problem the constraint is only
in one variable (x1), only corner points in each strip are
violating the constraint. It can be seen that the corner so-
lutions in simple effective fronts are highly infeasible with
respect to robust constrain violation. With H = 10 robust
constraint violation is very small when compared with solu-
tions in simple effective frontier solutions. It shows that the
above mentioned constraint handling strategy is indeed able
to find robust feasible solutions.

5.1.3 Test Problem 3

Test problem 3 represents a case where the constraint is
formed using objective values directly. Effect of variation of
H on the obtained front is shown in Figure 9 and Figure 10.

The solid line represents the original front. Simple effective
front (computed with H = 50) is also shown. It can be seen
that constrained effective front with H = 10 lies above than
simple effective front(computed with H = 50). The con-
strained effective front with H = 50 lies even above and
approaches the theoretical effective front. The robust con-
straint violation for the solutions is shown in Figure 10. It
is observed that with increasing value of H , the RCV value
decreases.

5.2 Effect of δ with Approach 1 (Definition 3)

The variation of the simple effective front with δ has been
extensively discussed in an earlier study [9]. Variation of
constrained effective front with H is discussed above. Here,
we discuss the effect for a change in δi values. With the in-
crease in δi, the shift in constrained effective front from the
original front increases as shown in Figure 11 for test prob-
lem 2. Theoretical variation of boundary of constrained ef-
fective front with δ is also shown and is found to be match-
ing with the experimental results.

It is clear that the solutions for small values of f1 are
more sensitive to neighborhood size. The boundary lines
indicate that with an increase of δi, the range of robust fron-
tier decreases. After a certain δ vector, the perturbation is
so large that no solution is found to be robust.

Figure 12 shows the effect of neighborhood size on test

Simple Effective

H = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

Figure 7: Constrained Effective fronts showing the effect
of number of points H on test problem 2.

H = 50

H = 10

Simple Effective

−80

−70

−60

−50

−40

−30

−20

−10

 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

R
ob

us
t

C
on

st
ra

in
t

V
io

la
ti

on

Figure 8: Robust Constraint Violation for the points ob-
tained on test problem 2 with different values of H .

Original Front

 Simple Effective

H = 10

H = 50

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

Figure 9: Constrained effective fronts showing the effect
of number of points H on test problem 3.

H = 50

H = 10

Simple Effective

−60

−50

−40

−30

−20

−10

 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

R
ob

us
t

C
on

st
ra

in
t

V
io

la
ti

on

Figure 10: Robust constraint violation for the points ob-
tained on test problem 3 with different values of H .

problem 3. With the increase in δi, the effective frontier
moves away from the simple effective front. Figure 13 plots
the corresponding G() function values. All the above re-
sults indicate that NSGA-II with a simple constraint han-
dling procedure is able to find the resulting effective robust
frontier in different scenarios.

6 Constrained Robust Multi-objective opti-
mization with Approach 2 (Definition 4)

As discussed earlier, in definition 2, the original objectives
are optimized but a constraint is added to limit the extent of
change in function values. This approach requires a user-
defined parameter η. Various advantages of this approach
over the previous approach are described in [9].

Incorporation of the above mentioned constraint han-
dling strategy with definition 2 is straightforward. Figure 14
and Figure 16 show the effect of variation of η on test prob-
lems 2 and 3, respectively. With a decreasing value of η
(tighter requirement for a solution to be defined as robust),
the resulting robust frontier becomes more different than the
original constrained front. Figures 15 and 17 show the cor-
responding variations in the decision variable space.

7 Conclusions and Future Work

This paper suggests a couple of constraint-handling strate-
gies for robust multi-objective optimization. These strate-
gies are extensions of an earlier robust multi-objective op-
timization strategies [9]. It has been argued that solutions
on simple effective front (without robustness consideration)
are no longer feasible, because a perturbation to these so-
lutions may produce an infeasible solution. Thus, ideally a
constrained effective robust front should lie somewhat away
from the simple effective front.

The efficacy of the two procedures has been demon-
strated on three test problems. In some cases, the NSGA-II
robust solutions are found to lie close to the theoretical ro-
bust frontiers. The effect of three parameters (neighborhood
size, number of neighboring solutions, and limiting robust-
ness) on the extent of movement of the frontiers has also
been shown.

Constraints are inevitable in real-world optimization
problems. The techniques of this paper, along with the orig-
inal robust multi-objective optimization study, should now
stand as a complete procedure for finding robust Pareto-
optimal frontiers in real-world problems.

As an extension to this study, we are currently pursu-
ing a study to find the effect of location of H neighboring
points in computing the mean effective objective values. Al-
though in this study we have used a systematic procedure

δ = 0.015

δ = 0.01

δ = 0.005
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

Figure 11: Constrained effective fronts showing the effect of
delta δ on test problem 2.

Original Front

δ = 0.015

δ = 0.005

δ = 0.01

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

Figure 12: Constrained effective fronts showing the effect
of delta δ on test problem 3.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

G
()

Original
δ = 0.005

δ = 0.01
δ = 0.015

Figure 13: Effect on Variable Space for different values of
δ on test problem 3.

of spreading the solutions across the entire δ-neighborhood,
there is some merit in choosing the solutions exactly on the
δ-boundary for constraint violation computation. In con-
straint robust optimization, the latter makes sense, as if a
δ-boundary point is feasible, it can be assumed that the in-
terior of the δ-neighborhood is also feasible in most prob-
lems. Also, the use of an archive to store already-computed
solutions would be another avenue for future research.

Bibliography

[1] J. Branke. Efficient evolutionary algorithms for
searching robust solutions. ACDM, pages 275–286,
2000.

[2] J. Branke and C. Schmidt. Faster convergence by
means of fitness estimation. In Soft Computing, 2000.

[3] J. Branke. Creating robust solutions by means of an
evolutionary algorithm. Parallel Problem Solving from
Nature, pages 119–128, 1998.

[4] Y. Jin and B. Sendhoff. Trade-off between perfor-
mance and robustness: An evolutionary multiobjective
approach. In EMO2003, pages 237–251, 2003.

[5] S. Tsutsui and A. Ghosh. Genetic algorithms with a
robust solution searching scheme. IEEE transactions
on Evolutionary Computation, pages 201–219, 1997.

[6] I.C. Parmee. The maintenance of search diversity for
effective design space decomposition using cluster-
oriented genetic algorithms(cogas) and multi-agent
strategies(gaant). In ACEDC, 1996.

[7] J. Teich. Pareto-front exploration with uncertain ob-
jectives. In Evolutionary Multi-Criteria Optimization,
pages 314–328, 2001.

[8] Hughes E. Evolutionary multi-objective ranking with
uncertainty and noise. In Evolutionary Multi-Criteria
Optimization, pages 329–343, 2001.

[9] K. Deb and H. Gupta. Searching for robust pareto-
optimal solutions in multi objective optimization. In
Evolutionary Multi-Criteria Optimization, pages 150–
164, 2005.

[10] K. Deb. Multi-Objective Optimization Using Evolu-
tionary Algorithms. First Edition, Chichester, Wiley,
2001.

[11] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan.
A fast and elitist multi-objective genetic algorithm:

η = 0.05

η = 0.1

η = 0.15

Original Front

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

Figure 14: Constrained effective fronts showing the effect
of η on test problem 2.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

η = 0.05
η = 0.1

η = 0.15

f_1

G
()

Figure 15: Effect of η on G() function for test problem 2.

η = 0.08

η = 0.2

η = 0.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

f_
2

Figure 16: Constrained effective fronts showing the effect
of η on test problem 3.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f_1

G
()

η = 0.2
η = 0.1

η = 0.08

Figure 17: Effect of η on G() function for test problem 3.

Nsga-2. IEEE transactions on Evolutionary Compu-
tation, pages 182–197, 2000.

