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Abstract. Multi-objective evolutionary algorithms which use nonndioated sort-
ing and sharing have been mainly criticized for theirQim N3) computational
complexity (wherem is the number of objectives an¥ is the population size),
(if) non-elitism approach, and (iii) the need for specifyia sharing parameter. In
this paper, we suggest a non-dominated sorting based ohj#ttive evolution-
ary algorithm (we called it the Non-dominated Sorting GAHINSGA-II) which
alleviates all the above three difficulties. Specificalljast non-dominated sort-
ing approach withO(mN?) computational complexity is presented. Second, a
selection operator is presented which creates a mating [ppoabmbining the
parent and child populations and selecting the best (wipeet to fitness and
spread)N solutions. Simulation results on five difficult test probkeshow that
the proposed NSGA-Il is able to find much better spread oftewls in all prob-
lems compared to PAES—another elitist multi-objective ERich pays special
attention towards creating a diverse Pareto-optimal frBetause of NSGA-II's
low computational requirements, elitist approach, andupeter-less sharing ap-
proach, NSGA-II should find increasing applications in tleans to come.

1 Introduction

Over the past decade, a number of multi-objective evolatipmalgorithms (MOEAS)
have been suggested [9, 3,5, 13]. The primary reason foiightseir ability to find
multiple Pareto-optimal solutions in one single run. Sitloe principal reason why a
problem has a multi-objective formulation is because itaspossible to have a single
solution which simultaneously optimizes all objectivas agorithm that gives a large
number of alternative solutions lying on or near the Pamitimal front is of great
practical value.

The Non-dominated Sorting Genetic Algorithm (NSGA) propdén Srinivas and
Deb [9] was one of the first such evolutionary algorithms. Qe years, the main
criticism of the NSGA approach have been as follows:

High computational complexity of non-dominated sorting: The non-dominated sort-
ing algorithm in use uptil now i) (m N?) which in case of large population sizes
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is very expensive, especially since the population neebe tsorted in every gen-
eration.

Lack of elitism: Recent results [12, 8] show clearly that elitism can speethaper-
formance of the GA significantly, also it helps to preventlttes of good solutions
once they have been found.

Need for specifying the sharing parameter o,4..: Traditional mechanisms of insur-
ing diversity in a population so as to get a wide variety ofieglent solutions have
relied heavily on the concept of sharing. The main problethwharing is that it
requires the specification of a sharing parametgy, {-.). Though there has been
some work on dynamic sizing of the sharing parameter [4],rampaterless diver-
sity preservation mechanism is desirable.

In this paper, we address all of these issues and proposetaimpmved version of
NSGA which we call NSGA-II. From the simulation results onumber of difficult test
problems, we find that NSGA-II has a better spread in its ogtihsolutions than PAES
[6]—another elitist multi-objective evolutionary algtrim. These results encourage the
application of NSGA-II to more complex and real-world mwdthjective optimization
problems.

2 Elitist Multi-Objective Evolutionary Algorithms

In the study of Zitzler, Deb, and Theile [12], it was clearlysvn that elitism helps in
achieving better convergence in MOEAs. Among the existilitgseMOEAS, Zitzler
and Thiele’s [13] strength Pareto EA (SPEA), Knowles andn@tr Pareto-archived
evolution strategy (PAES) [6], and Rudolph’s [8] elitist G#e well known.

Zitzler and Thiele [13] suggested an elitist multi-critariEA with the concept of
non-domination in their strength Pareto EA (SPEA). Theygasied maintaining an
external population at every generation storing all nomitated solutions discovered
so far beginning from the initial population. This extermpalpulation participates in
genetic operations. At each generation, a combined papnlatith the external and
the current population is first constructed. All non-dont@tasolutions in the com-
bined population are assigned a fitness based on the numéautibns they dominate
and dominated solutions are assigned fitness worse thandrst fitness of any non-
dominated solution. This assignment of fitness makes saitethle search is directed
towards the non-dominated solutions. A deterministic telisg technique is used to
ensure diversity among non-dominated solutions. Althotighimplementation sug-
gested in [13] isD(mN?), with proper book-keeping the complexity of SPEA can be
reduced ta) (mN?). An important aspect of this study and subsequent studz4 [
is that they clearly show the importance of introducingigtit in evolutionary multi-
criterion optimization.

Knowles and Corne [6] suggested a simple MOEA using an geoistrategy (ES).
In their Pareto-archived ES (PAES) with one parent and oild,¢he child is compared
with respect to the parent. If the child dominates the pateetchild is accepted as the
next parent and the iteration continues. On the other héite iparent dominates the
child, the child is discarded and a new mutated solutionaateld) is found. However,
if the child and the parent do not dominate each other, theeehmetween the child and
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the parent considers the second objective of keeping diy@rsong obtained solutions.
To maintain diversity, an archive of non-dominated solugiégs maintained. The child
is compared with the archive to check if it dominates any memnolbthe archive. If yes,
the child is accepted as the new parent and the dominatetiosois eliminated from
the archive. If the child does not dominate any member of tbkize, both parent and
child are checked for theirear ness with the solutions of the archive. If the child resides
in a least crowded region in the parameter space among théersraf the archive, it
is accepted as a parent and a copy of added to the archive. thatesuggested a multi-
parent PAES with similar principles as above. Authors haaleudated the worst case
complexity of PAES foiV evaluations a® (am N), wherea is the archive length. Since
the archive size is usually chosen proportional to the patpan size N, the overall
complexity of the algorithm i©)(mN?).

Rudolph [8] suggested, but did not simulate, a simple elitiglti-objective EA
based on a systematic comparison of individuals from pamendt offspring popula-
tions. The non-dominated solutions of the offspring popataare compared with that
of parent solutions to form an overall non-dominated setofifittons, which becomes
the parent population of the next iteration. If the size df #et is not greater than the
desired population size, other individuals from the offisgrpopulation are included.
With this strategy, he has been able to prove the convergafnités algorithm to the
Pareto-optimal front. Although this is an important acleieent in its own right, the al-
gorithm lacks motivation for the second task of maintairdingersity of Pareto-optimal
solutions. An explicit diversity preserving mechanism s added to make it more
usable in practice. Since the determinism of the first nomidated front isO(mN?),
the overall complexity of Rudolph’s algorithm is aléqm N?).

3 Elitist Non-dominated Sorting Genetic Algorithm (NSGA-I11)

The non-dominated sorting GA (NSGA) proposed by Srinivad Beb in 1994 has
been applied to various problems [10, 7]. However as meataarlier there have been
a number of criticisms of the NSGA. In this section, we modifg NSGA approach in
order to alleviate all the above difficulties. We begin bygameting a number of different
modules that form part of NSGA-II.

3.1 A fast non-dominated sorting approach

In order to sort a population of siz& according to the level of non-domination, each
solution must be compared with every other solution in thpypation to find if it is
dominated. This require3(mN') comparisons for each solution, whereis the num-

ber of objectives. When this process is continued to find teentrers of the first non-
dominated class for all population members, the total cexipyl is O(mN?). At this
stage, all individuals in the first non-dominated front aoeirid. In order to find the
individuals in the next front, the solutions of the first ft@re temporarily discounted
and the above procedure is repeated. In the worst case stheftinding of the second
front also require$)(mN?) computations. The procedure is repeated to find the sub-
sequent fronts. As can be seen the worst case (when thete erly one solution in
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each front) complexity of this algorithm 3(m N?). In the following we describe a fast
non-dominated sorting approach which will require at m@ét. N2) computations.

First, for each solution we calculate two entities: «i) the number of solutions
which dominate the solutioiy and (ii) S;, a set of solutions which the solutiérdomi-
nates. The calculation of these two entities requiés N2) comparisons. We identify
all those points which have; = 0 and put them in a lisfF;. We call 7, the current
front. Now, for each solution in the current front we visitthamember f) in its setS;
and reduce its:; count by one. In doing so, if for any membgithe count becomes
zero, we put it in a separate ligf. When all members of the current front have been
checked, we declare the members in theistas members of the first front. We then
continue this process using the newly identified frahas our current front.

Each such iteration requirg3(N) computations. This process continues till all
fronts are identified. Since at most there cam\béonts, the worst case complexity of
this loop isO(N?). The overall complexity of the algorithm nowd(mN?2) + O(N?)
orO(mN?).

It is worth mentioning here that although the computatidnaiden has reduced
from O(mN?) to O(mN?) by performing systematic book-keeping, the storage has
increased fron(N) to O(N?) in the worst case.

The fast non-dominated sorting procedure which when agiea populatiorP
returns a list of the non-dominated frorits

fast - nondomi nat ed-sort ( P)

foreachp € P
foreachg € P
if (p < ¢) then if p dominateg; then
Sy =S, U{q} includeg in S,
elseif(¢ < p) then if p is dominated by, then
np=mn, +1 incrementn,,
if n, = 0then if no solution dominatgsthen
Fi1=F1U{p} p is a member of the first front
1=1
while F; # 0
H=0
foreachp € F; for each membep in F;
foreachqg € S, modify each member from the s§},
ng =mng — 1 decrement,, by one

if ny, =0then =HU{q} Iif n,iszero,qisamemberofa list
t=1+1
Fi=H current front is formed with all members &

3.2 Density Estimation

To get an estimate of the density of solutions surroundingréiqular point in the pop-
ulation we take the average distance of the two points oredide of this point along
each of the objectives. This quantity;s;.nc.c SErves as an estimate of the size of the
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largest cuboid enclosing the poinvithout including any other point in the population
(we call this thecrowding distance). In Figure 1, the crowding distance of tl¢h so-
lution in its front (marked with solid circles) is the avemgide-length of the cuboid
(shown with a dashed box). The following algorithm is useddfrulate the crowding

0O

_——— - — —

Fig. 1. The crowding distance calculation is shown.

distance of each point in the sét

crowdi ng- di st ance- assi gnment ( Z)

l=17| number of solutions il
for eachi, setZ[i]aistance initialize distance

for each objectiven

=0

Z =sort{Z,m)
I[l]disf,ance :I[l]distrz,nce
fori =2to(l-1)

=0

sort using each objective value
so that boundary points are always selected
for all other points

Z[i]distance = I[i]distance + (I[Z + 1]m - I[Z - 1]m)

HereZ[i].m refers to them-th objective function value of théth individual in
the setZ. The complexity of this procedure is governed by the sorafgprithm. In
the worst case (when all solutions are in one front), tharsgrequiresO(mN log N)
computations.

3.3 Crowded Comparison Operator

The crowded comparison operator,() guides the selection process at the various
stages of the algorithm towards a uniformly spread out Basptimal front. Let us
assume that every individualn the population has two attributes.

1. Non-domination rankif,,)
2. Local crowding distance {;stance)

We now define a partial order,, as :
1 Zn 7 |f (irn,nk < ,jrank) or ((irank = jrrz,nk) and édista,nce > jdisf,ance) )
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That is, between two solutions with differing non-domioatranks we prefer the
point with the lower rank. Otherwise, if both the points beddo the same front then
we prefer the point which is located in a region with lessember of points (the size
of the cuboid inclosing it is larger).

34 TheMain Loop

Initially, a random parent populatioR, is created. The population is sorted based on
the non-domination. Each solution is assigned a fithessl équts non-domination
level (1 is the best level). Thus, minimization of fitnesssswamed. Binary tournament
selection, recombination, and mutation operators are tseteate a child population
Qo of size N. From the first generation onward, the procedure is differéhe elitism
procedure fot > 1 and for a particular generation is shown in the following:

Ry = P UQ; combine parent and children population
F =fast-nondom nat ed- sort ( Ry) F = (F1,Fs,...), all non-dominated
fronts of R,

until |Pyyq| < N till the parent population is filled

crowdi ng- di st ance- assi gnment ( F;) calculate crowding distance if;

Py =P 1UF; includei-th non-dominated front in the parent pop
Sort(Pry1,>n) sort in descending order usirg,
Piy1 = Py1]0: N] choose the first N elements 6%, ;
Q++1 =make- new pop( P;11)  use selection,crossover and mutation to create
t=t+1 a new populatiod); 1

First, a combined populatioR; = P; U ), is formed. The populatio; will be
of size2N. Then, the populatio®; is sorted according to non-domination. The new
parent populatiorP;, is formed by adding solutions from the first front till the siz
exceedsV. Thereafter, the solutions of the last accepted front areed@ccording to
>, and the first\V points are picked. This is how we construct the populatipry of
size N. This population of sizéV is now used for selection, crossover and mutation to
create a new populatio);,, of size N. It is important to note that we use a binary
tournament selection operator but the selection criteisonow based on the niched
comparison operatog .

Let us now look at the complexity of one iteration of the emtigorithm. The
basic operations being performed and the worst case coitipteassociated with are
as follows:

1. Non-dominated sort i©(mN?),
2. Crowding distance assignmentd$mN log N), and
3. Sorton>,, isO(2N log(2N)).

As can be seen, the overall complexity of the above algorithd(m N?2).

The diversity among non-dominated solutions is introdumgdsing the crowding
comparison procedure which is used in the tournament seteahd during the popula-
tion reduction phase. Since solutions compete with thewding distance (a measure



Fast Elitist NSGA 7

of density of solutions in the neighborhood), no extra mgfparameter (such asphare
needed in the NSGA) is required here. Although the crowdistadce is calculated in
the objective function space, it can also be implementetiénplarameter space, if so
desired [1].

It is interesting to note here the connection of this aldnitwith the algorithm
proposed by Rudolph [8]. Since the non-dominated front figdalgorithm used in
Rudolph’s algorithm isO(mN?) for each front, Rudolph control’s the complexity of
his algorithm by working with just the first few fronts in theugnt and the child pop-
ulations and treating the rest of the individuals in the dlpibpulation at par. With the
availability of a fast non-domination sorting algorithm wan now afford to combine
the parent and child populations and do a complete sort tatifgieall the fronts and
allocate fitness accordingly.

4 Results

We compare NSGA-II with PAES on five test problems (minimizatof both objec-
tives):

2
fi(z) =1—exp (Z?—] (T17 ﬁ) > 4 <z, z0,23 <4

MOP2: 1)
n 1 2
fz(w) =1 exp (— Zi:l (371 + ﬁ) >
J fil®) =14 (A1 — B1)? + (42 — By)?]
MOPS.{ fo(x) = [(z +3)? + (y + 1)?] (2)
A7 =0.5¢8in1 —2cos1 +sin2 — 1.5cos2
where Ay =1.5¢8inl —cos1+2sin2 —0.5¢cos2
By =0.5sinxz —2cosz +siny — 1.5cosy
Bs = 1.5sinxz —cosz + 2siny — 0.5cosy
MOP4: filx) = z;’;l] (—10 exp (—0.2, [x? + Cl?%_H)) —5< 1z, 29,23 < 5(3)
fo(x) =30, (Joi|°8 + 5sin(z;)?)
filz) =z 0<z; <1
EC4: f2($):g(1—\/%1) -9 < x3,...,Z10 <D @)
10
where g(z) =91+ Z (27 — 10 cos(4mx;))
i=2
[ filz) =1 —exp(—da)sin®(6rz;) 0<2; <1 i=1,...,10
EC6: 5
e 2o 0 ®

10 0.25
where g(z) =1+9 <Z mi/9>
=2

Since the diversity among optimized solutions is an imgdrtaatter in multi-
objective optimization, we devise a measure based on theecative distances among
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the solutions of the best non-dominated front in the finalytation. The obtained set
of the first non-dominated solutions are compared with aannifdistribution and the
deviation is computed as follows:

|F1]

|di —d|
A= .
2 A ®)

In order to ensure that this calculation takes into accdumspread of solutions in the
entire region of the true front, we include the boundary sohs in the non-dominated
front F;. For discrete Pareto-optimal fronts, we calculate a weidlgverage of the
above metric for each of the discrete regions. In the abouatémn,d; is the Euclidean
distance between two consecutive solutions in the firstshaminated front of the final
population in the objective function space. The paraméter the average of these
distances.

The deviation measurd of these consecutive distances is then calculated for each
run. An average of these deviations over 10 runs is calallasethe measure\) for
comparing different algorithms. Thus, it is clear that agosithm having a smalle/\
is better, in terms of its ability to widely spread solutionghe obtained front.

For all test problems and with NSGA-II, we use a populatiosipé 100, a crossover
probability of 0.8, a mutation probability df/n (wheren is the number of variables).
We run NSGA-II for 250 generations. The variables are tréate real numbers and
the simulated binary crossover (SBX) [2] and the real-pat@mmutation operator are
used. For the (1+1)-PAES, we have used an archive size of A@@epth of 4 [6].
A mutation probability 0f0.01 is used. In order to make the comparisons fair, we have
used 25,000 iterations in PAES, so that total number of fon@valuations in NSGA-II
and in PAES are the same.

Table 1 shows the deviation from an ideal (uniform) spred)l 4nd its variance
in 10 independent runs obtained using NSGA-II and PAES. Wevstwo columns
for each test problem. The first column presentsthealue of 10 runs and the second
column shows its variance. It is clear from the table thatlifie test problems NSGA-

Il has found much smallert, meaning that NSGA-II is able to find a distribution of
solutions closer to a uniform distribution along the nonviloated front. The variance
columns suggest that the obtainddsalues are consistent in all 10 runs.

Table 1. Comparison of mean and variance of deviation measuobtained using NSGA-Il and
PAES

Algorithm MOP2 MOP3 MOP4 EC4 EC6
NSGA-110.3610.000680.4450.000430.3810.001640.3830.000990.3650.01613
PAES [1.6090.006711.3410.004951.0870.006871.5630.057231.1950.05151

In order to have a better understanding of how these algostire able to spread so-
lutions over the non-dominated front, we present the entire-dominated front found
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by NSGA-II and PAES in two of the above five test problems. Fégl2 and 3 show
that NSGA-Il is able to find a much better distribution tharB3\on MOP4.

In EC4, converging to the global Pareto-optimal front isféidilt task. As reported
elsewhere [11], SPEA converged to a front with= 4.0 in at least one out of five
different runs. With NSGA-II, we find a front withh = 3.5 in one out of five different

0 5 ! ! ! | .
e NSGA-II + PAES +

f2
&
o
2
&
"

10k

-20 -19 -18 -17 -16 -15 -14 -20 -19 -18 -17 -16 -15 -14
f1 f1

Fig. 2. Non-dominated solutions obtained us- Fig. 3. Non-dominated solutions obtained us-
ing NSGA-II on MOPA4. ing PAES on MOP4.

runs.

Figure 4 shows the non-dominated solutions obtained us®@AH I and PAES for
EC6. Once again, it is clear that the NSGA-Il is able to bettstribute its population
along the obtained front than PAES. It is worth mentioningetthat with similar num-
ber of function evaluations, SPEA, as reported in [11], hauhfl only five different
solutions in the non-dominated front.

5 Conclusions

In this paper, we have proposed a computationally fasseiiiulti-objective evolution-
ary algorithm based on non-dominated sorting approach.v@rdffficult test problems
borrowed from the literature, it has been found that the psaol NSGA-II outperforms
PAES—another multi-objective EA with the explicit goal afgerving spread on the
non-dominated front. With the properties of a fast non-duated sorting procedure, an
elitist strategy, and a parameterless approach, NSGAalllsHind increasing attention
and applications in the near future.
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