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Abstract

We study the behavior of energy levels in two dimensions for exotic atoms, i.e., when
a long-range attractive potential is supplemented by a short-range interaction, and compare
the results with these of the one- and three-dimensional cases. The energy shifts are well
reproduced by a scattering length formula §E = AZ/In(a/R), where a is the scattering
length in the short-range potential, A% /(27) the square of the wave function at the origin
in the external potential, and R is related to the derivative with respect to the energy of the
solution that is regular at large distances.

1 Introduction

Hadronic atoms give valuable information about strong interactions at low energy. For a review,
see, e.g., [1]. They have also motivated several studies on the behavior of the energy levels in
a Schrodinger operator, with a potential V; + A V5, where 1} dominates at large distances, but
is superseded by V5 at short distances. The case of exotic atoms corresponds to a world with
three dimensions, where V; = —1/r (as a negatively-charged hadron orbits near the nucleus
and is almost unscreened by the remaining electrons, if any), and V5 describes the short-range
hadronic interaction. But the situation is far more general, and many features do not depend
on the Coulomb character of V;. Nevertheless, we shall use the word “exotic atom” for such a
system, “atomic” for the energy domain of the eigenstates of V; alone, and “nuclear” for any
typical energy within V5 alone, for the sake of simplicity.
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The spectral problem of exotic atoms [ 1H3] differs significantly from the ordinary perturba-
tion theory, for which an expansion of the eigenenergies in powers of \ is attempted. For exotic
atoms, the energies for 1} + AV, are often very close to the ones for V) alone, but perturba-
tion theory usually does not hold. For instance, if A V5 is an infinite hard core of small radius,
the energies are slightly shifted upwards, but the ordinary perturbative expansion diverges al-
ready at the first order. The proper concept here is “radius perturbation theory”, as described by
Mandelszweig [4]].

In this paper, we discuss how exotic atoms behave in d = 2 dimensions. It may be noted
that the study of exotic atoms in d = 1 is more straightforward, and already discussed in the
literature [3]. The d = 2 case is more delicate. The leading order term for the energy shift is
easily identified, and linked to In a, where a is the scattering length in the short-range potential.
As in the d = 3 case, the overall coefficient is the square of the wave-function at the origin in the
external potential. However, the scale regularizing this leading term, i.e., the radius R leading
to Ina — In(a/R) is not immediate, but it can be derived from a matching of the solution of 1}
which is normalizable to the asymptotic solution emerging from the short-range term A V5.

The case of d = 2 dimensions is rather special in spectral problems, as it corresponds to
the largest value of d for which an attractive potential, however weak, always holds at least one
bound state, see, e.g., [5,6]. Hence, for d < 2, if V4 is attractive, AV, immediately develops its
own bound state, which becomes the ground state of the Hamiltonian. However, this process is
less effective for d = 2 than for d = 1, and the spectrum, as a function of A evolves more slowly.

This paper is organized as follows. In Sec. [2] and Sec. [3| we give a brief reminder about
the cases of d = 3 and d = 1 space dimensions respectively, with particular emphasis on the
phenomenon of level rearrangement and on the scattering length (hereafter referred to as SL)
formula for the energy shifts. In Sec. ] we present the results for the case of d = 2 dimensions.
The theoretical framework is presented in Sec.[5] before the final discussion in Sec. [0

2 Exotic atoms in three dimensions

There is an abundant literature about exotic atoms in three dimensions, motivated by experi-
ments with pionic, kaonic and antiprotonic atoms [/1,2]. The simplest model consists of a two-
component potential

Vi+AVa, (1)

where V] is a long-range interaction with one or several bound states. Genuine exotic atoms
correspond to Vi (r) oc —1/r. The second term, with an explicit strength A introduced for the
ease of the discussion, accounts for the short-range interaction. The main results are:

e the shift is usually rather small, although A V5 can be very large at short distances,

o the shift is usually well described by the approximate formula

§E = E(\) — E(0) ~ 47 |¢(0)|?a, 2)

"More precisely, what is sufficient is that the integral of the potential over the whole space is positive.



where ¢ is the normalized wave function for A = 0, and a the scattering length in V5 alone.
In case V; is Coulombic, one recovers the well-known SL formula by Deser, Golberger,
Bauman and Thirring, and Trueman [/7, 8]
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where B is the Bohr radius and n the principal number for the energy EY in V; alone or
L, in the total potential. Many improvements and further corrections to this formula have
been discussed in the literature [9,/10].

e When ) is varied, the shift usually varies very slowly, except near the specific values A, Ao,
..., where the energy levels change very rapidly, and a level rearrangement occurs: near
A = \,, the n'" energy drops toward very large (negative) values in the nuclear domain,
and is replaced in the upper part of the spectrum by the next level, which in turn is replaced
by the next one, etc. An example is given is Fig.|l| Further examples are provided, e.g.,
in [3]. The critical values ), correspond to the coupling thresholds for which the short-
range interaction A V5 starts supporting a first or an additional bound state.
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Figure 1: Level rearrangement in three dimensions. A wide and weak external square well
V ==X\ 0O(r; —r), with \y = 4 and r; = 1, is supplemented by a short-range square well of
increasing depth, AV, = =\ O(r — ry), with o = 0.1, in units where A%/(2u) = 1, j1 being the
reduced mass. The first few energy levels are shown against A 2. Bottom: first three levels. Top:
magnification for ground-state alone, with the exact value (thick line) compared to the first-order
perturbation theory and SL formula.
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3 Results in one dimension

An example of spectrum of exotic atom in d = 1 is shown in Fig. It consists again of a
superposition of two square wells, the strength of the short-range one being varied. The main
differences, as compared to the more familiar d = 3 case are:

e As soon as A slightly departs from zero, the atomic ground state energy immediately drops
towards the range of the nuclear energies.
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e Asacoupling threshold in A V5 is reached and A further increases, a plateau is observed; the
corresponding energy drops, and, by rearrangement, a upper level makes another plateau
near the same value. This plateau in the sector of the even parity states, corresponds to an
unperturbed energy level in the odd sector of V;. Indeed, the orthogonality with the ground
state forces a zero in the wave function near z = 0, and mimics an odd state.

e The Deser—Trueman formula, if translated for d = 1, reads

2
57~ 2 PO "

The presence of the scattering length a in the denominator can be understood by dimen-
sional analysis. Also, weaker the short-range interaction A V5, more flat the zero-energy
wave function, and thus larger the scattering length a, defined (as for d = 3) as the abscissa
where the asymptotic zero-energy wave function vanishes.

20 40 5
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Figure 2: Level rearrangement in one dimension. Same interaction and same notation as Fig.

4 Results for two dimensions

The calculation can be repeated for the isotropic (i.e., azimuthal quantum number m = 0) states
with d = 2. If the atomic spectrum is examined for increasing values of the strength of the
short-range interaction, a pattern of level rearrangement is clearly identified, see Fig.

The behavior of the ground state is displayed again in Fig. 4] where it is compared to the
d = 1 and d = 3 cases. The trend is clearly intermediate between the plateau of d = 3 and the
immediate fall-off of d = 1.

For small values of A\, we can easily identify the following behavior for the d = 2 energy
shift 6 &/

_ A

" In(a/R)
If one plots, as in the example shown in Fig. [S| —1/6 as a function of In a, one hardly distin-
guishes the exact values from the results of a linear fit.
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Figure 3: Level rearrangement in two dimensions, for the first four levels. Same interaction and
same notation as Fig. [T}
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Figure 4: Ground-state energy for d = 1 (left), d = 2 (middle) and 3 (right) dimensions, with
the same interaction as in the previous figures.

As discussed below, A2 ~ 27 |(0)|? and a is the d = 2 scattering length, as recently revisited
[11,{12]]. The value of R is found of the order of magnitude of the “Bohr radius” of the wave
function in the external potential, that is to say, the average radius. Its expression is derived in
the next section.

Ina

Figure 5: 1/0E against In a for the ground-state energy in the double square-well of Fig. 4| The
linear fit cannot be distinguished from the exact results.



S Derivation of the energy shift

5.1 General formula

There are many approaches to the SL formula for d = 3, and various corrections and generaliza-
tions, see, e.g., [3,/4,7-10] and references there. For the d = 2 case, the following simple minded
derivation is just based on the matching condition between solutions of the Schrodinger equation
that are regular at short and at large distances.

For the sake of clarity, one can identify several approximations that are made when solving
the bound-state problem in the potential V; + A V5:

1. V; dominates at large distances
2. the energy £ in V; alone is a smooth function of the boundary condition enforced at r = 0,
3. Vj and the energy term F u can be neglected at very small distances, where A 1, dominates.

Let us start with Schrodinger equation for the external potential alone, i.e.,
u

"
—u —
472

+Viu—Eu=0, (6)
where u is the reduced radial wave function and we are working in the units with 7 = 2m = 1.
We denote h(E,r) the solution that is regular at infinity, i.e., h(E,7) oc /7 Ko(kr) at large
distance, with £ = —k? and K|, the usual Bessel function. The case of a confining interaction
V] is treated later. At short distance, this solution behaves as

h(E,r) = B(E)vr Inr + A(E)\/r+---,

7
h(Eo,r) = Ao/ + -+ @

for the modified energy F and the unperturbed one . The unperturbed energy corresponds to
B(Ep) = 0, i.e., a solution that is regular as 7 — 0, and is normalized, leading to a real value
Ap = A(E)y) at energy Fj, that can be chosen to be positive. For £/ # Ej in the neighborhood of
Ey, we impose that the solution remains normalized, i.e.,

400
/ h(E,r)*r=1. (8)
0
By combining (6)) for A(E, r) and h(Ey, r), one obtains the exact relation
+o0
AB(E)=(E~E) [ h(E.r)h(Eo.r)x ©
0

which gives for the energy shift 6 = E — Ej a first relation 0 ~ B A,. It is rather precise.
Indeed, if the solution is kept to be normalized as per (8), and if h(E,r) — h(Ey,r) as E — Ej,
the integral of h(E, r) h(Ey, r) entering (9) is also equal to 1, up to second order in 0 E.



Now, A = Ay + AgdE + ---, one can identify the short-range behavior of h(E,r) with
V7 [Inr — In al, to obtain
B Ay+ Ay 0E
1 —Ina
which when combined with B ~ §E /A gives

; (10)

A

Ina+ Ag Ay
where the denominator can be cast as In a — In R. This relation gives explicitly the link between
the energy and the boundary condition at » = 0, expressed by Ina, where a is the scattering
length in the short-range interaction alone, in terms of the quantities A, and Ay linked to the
value of the unperturbed solution at the origin.

The effective range correction to the scattering length approximation can be worked out ex-

plicitly, but turns out to be very small in most cases. For a positive energy E = k2, the m = 0
solution to the scattering problem in A V5 alone is [|1 1H13]]

us(k,r) = /1 [cot (k) Jo(kr) + Yo(kr)] | (12)

where Jy and Yj are Bessel functions, and

0F ~ (11)

cot o(k) = % In(ak/2) + 4] +%7’0 I (13)

involving the scattering length a and effective range ry. This expression is easily translated for
negative energies I/ = —k?, and, anyhow, the range of £ which is explored is small as compared
to the typical energy scale in the short-range potential, and thus the solution coming out is safely
approximated by its small £ limit

uy =r(lnr+InaFnrgE/4) . (14)

This means one can replace Ina by Ina + 7r9Fy/4 to probe the contribution of the effective
range, which turns out negligible, provided the energy shift J £’ remains small as compared to
Ey.

5.2 First example: double delta-shell

To illustrate (T1]), we consider as long range interaction an attractive delta-shell of strength g;
and radius that can be set to R; = 1 to fix the length scale. The solution can be worked out
analytically, in particular \/r Ko(k r) is regular at large r and /7 Io(k r) at small r. The delta-
shell interaction imposes the continuity of the radial solution v near r = R; and the proper step
in its derivatives, to fix the unperturbed energy Fj,. A second delta-shell can be implemented
at r = Ry < R;, leading to an explicit transcendental equation for the exact energy F, and

shift 6 = E — Ej, to be compared to the simple approximate value 6 " = —A2/Ina and the
improved J E” given by (I1). For g; = 1/2, Ry = 0.04, and g = 0.1, one gets
oE OE' SE"

—0.000833975  —0.0008265  —0.0008340 (15

i.e., an almost perfect agreement, when the In R correction is taken into account.
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5.3 Double exponential well

As an example involving smooth potentials, we consider the exponential potential V; = —g; exp(—r/r1)
with g = 1 and take r; = 2 for the long-range interaction, and study the changes due to another
exponential interaction, —\ exp(—r/ry) with a much shorter range ro = 0.02 and a variable
strength. The results are displayed in Fig.[6] Again, there is a net gain as compared to the ordi-

nary perturbation theory, and a good agreement with the exact calculation as long as the deviation

from the unperturbed energy is not too large.

E 0.1 0.2
: I /\7”2
—02+
—04+ N
N
\
—0.6 + \

Figure 6: Exponential well supplemented by another exponential of shorter range. Thick
line: exact, dashed line: SL formula, thin line: perturbation theory. We use here V' =
—g1 exp(—r/rl) — X exp(—r/ry) withr; = 2, g; = 1 and r, = 0.02.

5.4 Harmonic confinement

The problem is to study how the levels, in particular the ground state, are modified when a
d = 2 harmonic oscillator is supplemented by a short-range interaction. A recent contribution
is by Farrell and van Zyl [14]]. They first stressed the property of universality, namely that the
energy shift does not depend on the details of the short-range potential, but instead is governed
by the scattering length alone. This is, indeed, a very general property of the exotic atoms, in the
general sense define in the introduction [3]]. For V; = r2, the general solution that is regular at
large distances can be written as

h(k,r) = exp(—r?/2) VT U(1/2 — k*/4,1,7%) , (16)

in terms of the confluent hypergeometric function U. This expression is simpler, but equivalent to
the one given in [14]]. From (16)), one can calculate explicitly the normalization integral /(F) and
its derivative. The short-range behavior of h(k, r) is known and if the ratio of the —/7 to v/r Inr
coefficients is identified with In a, one recovers the formula given in [14]. Our prescription (I1)
corresponds to an approximate, but accurate, solution to the matching equation. For instance,
using AV, = —\ exp(—r/R3) as an additional potential, with Ry = 0.02 and A = —80, one
gets, using the same notation as above and OF for [14],

oF oF SE SE"

—0.06999 —0.07017 —0.07092 —0.07020 17



Clearly, the main discrepancy comes from reducing this short-range interaction to a zero-range
ansatz. Once this is accepted, our approximate treatment is nearly exact as compared to the
precise matching of h(k,r) to the \/r In(r/a) boundary condition.

6 Summary

In this note, we have studied how the energy levels in a wide potential are modified by a short-
range attraction of increasing strength, focusing on the case of d = 2 space dimensions, as
compared to the d = 1 and d = 3 situations.

The energy shifts in a given external potential are well described by the following SL formu-
las,

Afa (d=1)
§E =< A3/In(a/R) (d=2) (18)
Aja (d=3)

i.e., a perfect fit is obtained if A2 (and R for d = 2) are treated as free parameters. Moreover,
Ap can be identified with the first non vanishing coefficient of the short-range expansion of the
radial wave function and is thus proportional to ¢(0), the wave function at the origin for the state
in the external potential alone. The ratio is A2/|¢(0)]? = 2 (d = 1),27 (d = 2), 47 (d = 3),
the unit-sphere area in d dimensions.

In the d = 2 case which is our main concern, a formula has been derived for R, namely
InR = —AyA'(Ey), where A(E) is the coefficient of /7 in the normalized wave function,
assumed to be real and positive and to match Ay at energy FEj.

This SL relation becomes more accurate when additional potential V5 becomes more short-
ranged. In particular, it improves significantly the simple prediction from first order perturbation
theory ind = 2 and d = 3.

This study of exotic atoms is intimately linked to the statistical physics of bosons. The
common tool is the pseudo-potential, which enables one to replace a finite (but short) range
interaction by a contact interaction. Deriving the pseudo-potential as a function of the scattering
length for different values of the space dimension d has been extensively discussed. The case of
d = 2 is notoriously delicate, see, e.g., [|[14-17] for recent contributions.
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