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3Center for Quantum Spae-time, Department of Physis,Sogang University, Shinsu-dong #1, Mapo-gu, Seoul, 121-742, KoreaThe semi-lassial limit of quantum spin systems orresponds to a dynamial Lagrangian whihontains the usual kineti energy, the ouplings and interations of the spins and an additional, �rstorder kinematial term whih orresponds to the Wess-Zumino-Novikov-Witten (WZNW) term forthe spin degree of freedom [1℄. It was shown that in the ase of the kineti dynamis determined onlyby the WZNW term, half odd integer spin systems show a lak of tunneling phenomena whereasinteger spin systems are subjet to it [3℄ in the ase of potentials with easy-plane easy-axis symmetry.Here we prove, for the theory with a normal quadrati kineti term of arbitrary strength or the �rstorder theory with azimuthal symmetry (whih is equivalently the so-alled easy-axis situation), thatthe tunneling is in fat suppressed for all non-zero values of spin. This model exempli�es the oneptthat in the presene of omplex Eulidean ation, it is neessary to use the ensuing omplex ritialpoints in order to de�ne the quantum (perturbation) theory [6℄. In the present example, if we do notdo so, exatly the opposite, erroneous onlusion, that the tunneling is unsuppressed for all spins,is reahed.PACS numbers: 11.10.-z, 03.65.Xp, 73.40.GkSemi-lassial spins - Semilassial spin systems aregoverned by an ation of the form
S =

∫

dt

(

I

2
∂tŝ · ∂tŝ− V (ŝ)

)

+ σ

∫

d2xǫij(ŝ · ∂iŝ× ∂j ŝ)(1)where ŝ ≡ (sin θ cosϕ, sin θ sinϕ, cos θ) is a three vetorof unit norm, representing semi-lassially the quantumspin [1℄. This desription is valid for large value of thespin, whih is given by σ. The seond term is the so-alledWess-Zumino-Novikov-Witten term [2℄, whih takes intoaount the fat that the original quantum spin satis�esthe algebra of the rotation group. σ the oe�ient ofthe WZNW term is quantized to be a half integer, σ =
N/2. The WZNW term is de�ned by extending the spinon�guration into an extra, auxiliary dimension. Thearbitrariness of the way to extend the �eld on�gurationinto the extra dimension makes the value of the WZNWterm ambiguous, however due to the topologial natureof the WZNW term, only disretely so. Thus quantizingthe oe�ient allows for the ation to be well de�nedmodulo 2π. Classially this is nonsense, but quantummehanially, where it is only the exponential of the itimes the ation that is meaningful, this yields a wellde�ned quantum mehanis. Bosoni spins orrespondto integer values of σ, i.e. N even, while fermioni spinsorrespond to half odd integer values, i.e. N odd.In this paper we onsider the spin system with aseond order kineti term in addition to the WZNWterm. For the ase of a potential with easy-axis, az-imuthal symmetry, with additionally a re�etion sym-metry (along the axis), we prove that in fat the tun-neling is suppressed for both bosoni and fermioni non-zero spin systems. Easy-axis re�etion symmetry means

V (θ, φ) ≡ V (θ) = V (π − θ), for example, the poten-tial V (ŝ) ≡ V (θ, φ) = 1
2γ sin2 θ. The potential is as-sumed to be suh that we have two, idential, degen-erate lassial ground states, one entered at the northpole while the other at the south pole and orrespondingsemi-lassially desribed, perturbative, quantum groundstates. Normally it is expeted that there is quantummehanial, non-perturbative tunneling between theseground states, usually making the symmetri ombina-tion to be the true ground state while the anti-symmetriombination to be slightly lifted in energy. We will showboth semi-lassially and analytially that this tunnelingdoes not our and the two ground states remain exatlydegenerate. The only ase for whih tunneling persistsis for zero spin but his ase is atually out of the phys-ial purview of the present analysis. Indeed the modelsonsidered here desribe spin systems only in the large σlimit.It was shown in Ref. [3℄ for situations where the ki-neti dynamis is determined only by the WZNW termand where there is assumed an easy-plane easy axis-symmetry in the potential giving rise to degenerate las-sial ground states along one axis, that tunneling betweenthese ground states is suppressed for fermioni systemswhile for bosoni systems it is not. This onlusion wasbased on the analysis of the ontribution of the WZNWterm. It gives an equal ontribution for the two pathsorresponding to instantons and anti-instantons in thease of bosoni spins, but an equal and opposite ontri-bution in the ase of fermioni spins. This analysis doesnot keep the quadrati kineti term as in Eq. (1). Astandard reason to spurn this term is that for low energydynamis, the seond order term would give a negligible
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2orretion to preditions from just the �rst order term.However, onsidering the ation based only on the �rstorder WZNW term, as done in Ref. [3℄), and applying itto our ase of easy-axis symmetry (in fat for a slightlygeneralized separable potential), we easily reprodue thesuppression of tunneling for all spins. The reason for thesuppression is di�erent in the two ases with or with-out the seond order term. Without the seond orderterm, there simply do not exist any instanton trajeto-ries that would mediate the tunneling. With the seondorder term, we �nd that even for arbitrarily small oef-�ient I in Eq. (1) that although there is an instanton,the tunneling is suppressed beause it has in�nite ation.The system onsidered in this paper is an exemplarof the general situation of omplex ations with omplexritial points [6℄, and one that is physially and phe-nomenologially relevant. The Eulidean Feynman pathintegral with imaginary terms in the ation, whih o-urs in the presene of t-violating interations suh asthe WZNW term, requires deformation of the path inte-gration ontour into the spae of omplexi�ed �eld on-�gurations, at least in order to de�ne the perturbationtheory. Perturbation theory is based on the idea of quan-tizing the Gaussian �utuations about the lassial rit-ial points of the ation. For an ation with imaginaryterms, the ritial point is generally attained only at om-plex values of the �eld variables. The ontour of pathintegration should be deformed so as to pass through theomplex ritial point in the diretion of steepest desent.Alternatively, it is proposed that it is adequate to on-sider only the real part of the ation to de�ne the measureof funtional integration, that the imaginary part onlygives a bounded phase fator whih an be integratedagainst this measure. Although this is probably orret,it is inorret to base the perturbation theory about theritial points of the real part of the ation. Indeed, wewill show that for the spin system under onsideration,expanding about these abridged, real ritial points erro-neously indiates that there is tunneling, whereas it anbe shown analytially that there is in fat none.Complex path integral - Quantum mehanially we analulate the matrix element, orresponding to the Eud-lidean persistene amplitude in an eigenstate of angularposition |θ, ϕ〉

〈θ, ϕ| e
−βĤ

~ |θ, ϕ〉 =

∫

D(θ(τ), ϕ(τ))e−
1

~
SE (2)using the Eulidean path integral. SE is the Eulideanation obtained by analytially ontinuing the Minkowskiation of Eq. (1) to imaginary time, t → −iτ . Thisyields a real positive de�nite term oming from the nor-mal, quadrati part of the ation, while the WZNW term,beause it is t-odd, remains imaginary:

SE =

∫

dτ

(

I

2
∂τ ŝ · ∂tτ ŝ+ V (ŝ)

)

−iσ

∫

d2xǫij(ŝ·∂iŝ×∂j ŝ).(3)

The matrix element on the LHS of Eq. (2) admits theexpansion in terms of energy eigenstates |Ei〉

〈θ, ϕ| e
−βĤ

~ |θ, ϕ〉 =
∑

i

e
−βEi

~ |〈θ, ϕ|Ei〉|
2. (4)In the ase with two degenerate lassial ground states,if there is tunneling, there will arise two low lying energylevels ontributing to the expansion in Eq. (4), whihan be reovered by evaluating the RHS of Eq. (2), inthe semi-lassial approximation. In this approximation,the energy splitting is alulated to be proportional to

e−S0/~, the hallmark of a tunneling e�et, where S0 is theation of the orresponding instanton. An instanton is alassial solution of the Eulidean equations of motionthat satis�es the appropriate boundary onditions. Wewill show that there exist no �nite ation instanton solu-tions to the Eulidean equation of motion oming fromthe ation Eq. (3). Thus we �nd that the amplitude fortunneling simply vanishes.The Eulidean equations of motion, beause of theimaginary WZNW term ontain i expliitly, and as isgenerally expeted, their solution lies in the spae of om-plex on�gurations. In the ondensed matter literature,there does not seem to be any aversion to analytiallyontinuing the ontour of path integration into the spaeof omplex on�gurations, see for example [4℄. In thepartile physis literature, typially, only the real part ofthe ation is used to determine the ritial points. Weemphatially assert that this gives the wrong result inthe ase at hand. In priniple, if the path integral an bedone exatly, it should not matter what point is used as aenter point. However, if the path integral is done only ina Gaussian approximation about a enter point, then thetrue answer an be ompletely obsured. This is expli-itly seen in the ase of monopoles in the Georgi-Glashowmodel, [5℄ and a general analysis in [6℄.Abridged, real ritial points - If we put σ = 0, weobtain the ation orresponding to only the real part ofthe ation. Varying to �nd the ritial point, we get
Iθ̈ − I sin θ cos θϕ̇2 −

∂V (θ)

∂θ
= 0 (5)

I sin2 θϕ̇ = l (6)where l is a onstant whih is obtained as an integral ofthe equations of motion sine ϕ is a ylial oordinateand where the overdot refers to a derivative with respetto Eulidean time τ . Eq. (5) determines θ(τ) after re-plaing for ϕ̇ from Eq. (6), whih then in turn servesto �x ϕ(τ). The seond term in Eq (5) serves as a en-trifugal barrier, prohibiting the spin to ever be at (departfrom) the north pole unless l = 0. Therefore this mustbe the ase for the instanton solution that we searh. Eq.(5) then is integrable, yielding
I

2
θ̇2 − V (θ) = const. = 0. (7)



3The onstant is �xed by the boundary ondition that at
τ = −∞, the trajetory starts at the north pole with zeroveloity. Integrating to quadrature, assuming a re�etionsymmetri double well potential V (θ) = V (π − θ) withabsolute minima at the poles (normalized to zero) yields

∫ θ(τ)

π/2

dθ

√

I

2V (θ)
= τ − τ0. (8)The ation for the trajetory is simply alulated to be

S0 =

∫

dτ

(

I

2
θ̇2 + V (θ)

)

=

∫ π

0

dθ
√

2IV (θ) (9)using Eq. (5), and whih is evidently �nite. The ontri-bution of the WZNW term to suh a trajetory is stritlyzero, sine ϕ̇ = 0, and hene we are led to the onlusionthat there is no suppression of tunneling. This onlu-sion, as we will show, is entirely inorret.Full, omplex ritial points - In the ase at hand, theritial points of the full ation satisfy the equations ofmotion:
Iθ̈ − I sin θ cos θϕ̇2 −

∂V (θ)

∂θ
+ iσ sin θϕ̇ = 0 (10)

I
d

dτ

(

sin2 θϕ̇
)

− iσ sin θθ̇ = 0 (11)Notie the expliit i in the equations, whih prohibits asolution with real values for both θ and ϕ. The seondequation integrates immediately, analogous to the on-servation of azimuthal angular momentum,
d

dτ

(

I sin2 θϕ̇+ iσ cos θ
)

= 0 (12)yielding
I sin2 θϕ̇+ iσ cos θ = il (13)where we have antiipated that a solution requires imag-inary �eld variables and replaed l → il. We note that ϕis ompletely imaginary while θ remains real. Replaingfrom Eq. (13) into Eq. (11) and integrating one yields

I

2
θ̇2 −

1

2

(l − σ cos θ)2

I sin2 θ
− V (θ) = S (14)where S is a onstant. We an see diretly that the in-stanton orresponds to motion in minus the e�etive po-tential

Veff.(θ) =
1

2

(l − σ cos θ)2

I sin2 θ
+ V (θ) (15)that is in general divergent at both θ = 0 and θ = π. V (θ)is assumed to be a well behaved potential with symmetriminima at the north and south poles. We an adjust

l = σ, whih removes the divergene at the north pole,or l = −σ whih removes it at the south pole, but it

is not possible to remove the divergene at both polessimultaneously. We let the reader verify that for l =
σ, any trajetory whih starts with zero veloity at thenorth pole at τ = −∞, moves with in�nite veloity atthe south pole at a �nite time. It is easy to see that suha trajetory has in�nite Eulidean ation. The boundaryondition that θ, θ̇ → 0 as τ → −∞ implies that theintegration onstant S = 0. Then
S0 =

∫

dτ

(

I

2
θ̇2 + Veff.(θ)

)

=

∫ π

0

dθ
√

2IVeff.(θ)

=

∫ π

0

dθ
√

σ2 tan2 (θ/2) + 2IV (θ) = ∞ (16)sine the integral diverges at the south pole θ = π. Thus
e−S0/~ = 0 and tunneling is suppressed for all σ, i.e.for all spins. We see that it is ruial to onsider theomplex ritial points of the full ation in order not toget a misleading, erroneous onlusion.Quantum mehanial system - Our result an be on-�rmed by looking at the orresponding Shrödinger quan-tum mehanial system, where it is easy to see, inon-trovertibly, that tunneling is suppressed for all non-zerovalues of the spin σ. The Lagrangian in Eq. (1), al-though oneived as to desribe a semilassial spin, anbe equally well thought of as the Lagrangian that de-termines the dynamis of a harged partile on a two-sphere that is subjet to the magneti �eld of a magnetimonopole loated at the enter of the sphere. Evidentlythe eletri �eld due to the harged partile itself is nottaken into aount, sine it is topologially impossible tohave net harge on a ompat manifold suh as a sphere.Suppression of tunneling would imply that the groundstate of this system is degenerate even in the presene ofan easy axis, re�etion symmetri potential.The Shrödinger desription of the quantum systemof Eq. (2) orresponds to the transverse (spherial)Laplaian in the presene of a gauge �eld of a magnetimonopole at the enter of the sphere

(

−
~

2

2I

(

ŝ× (~∇− iσ ~A±)
)2

+ V (θ)

)

Ψ± = EΨ± (17)where the gauge �eld is atually a onnexion on a non-trivial �bre bundle. Aθ = 0 and the azimuthal ompo-nent of the gauge �eld is given by
Aϕ =

{

A+
ϕ = σ(1 − cos θ)/ sin θ θ ∈ [0, π)

A−
ϕ = −σ(1 + cos θ)/ sin θ θ ∈ (0, π]

(18)where A+
ϕ is related to A−

ϕ by a gauge transformation
U(ϕ) = ei2σϕ, on the domain where they are both de-�ned, θ ∈ (0, π). The eigensetions of this problem in theabsene of the potential are well studied, in the seminalpaper of Wu and Yang, [7℄, where the monopole harmon-is are de�ned as setions of the assoiated vetor bundle,and they are analog to the usual spherial harmonis (no-tationally, our σ orresponds to their q). We an expand



4our solution in terms of the monopole harmonis for �xed
m, sine our problem has azimuthal symmetry
Ψ±

n,m =

{

∑

l≥|m| ψn,l,mΘn,l,m(θ)ei(m+σ)ϕ θ ∈ [0, π)
∑

l≥|m| ψn,l,mΘn,l,m(θ)ei(m−σ)ϕ θ ∈ (0, π]

≡

{

ψn,m(θ)ei(m+σ)ϕ θ ∈ [0, π)

ψn,m(θ)ei(m−σ)ϕ θ ∈ (0, π]
(19)where l = |σ|, |σ| + 1, · · · while m = −l,−l + 1, · · · , l.Then in ψn,m(θ) the only vestige of the monopole thatremains is that m is a half odd integer for fermioni spinwhile it is an integer for bosoni spin. ψn,m(θ) satis�esthe equation

(

−
~

2

2I

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

(m+ σ cos θ)2

sin2 θ

))

ψn,m(θ)

+V (θ)ψn,m(θ) = En,mψn,m(θ). (20)This equation has a doubly degenerate spetrum due tothe assumed re�etion symmetry of the potential, V (θ) =
V (π−θ). The replaementm→ −m, θ → π−θ yields thesame equation. Evidently for fermioni spins, all levelsare doubly degenerate, i.e. espeially the ground state.For bosons, the state m = 0 is not paired, however, theground state is ahieved for m = ±σ. If m 6= ±σ thespin must stay away from both poles where the e�e-tive potential (m+σ cos θ)2

sin2 θ
diverges, whih fores it intoregions where the potential V (θ) is non-vanishing andorrespondingly lifts the energy. For m = ±σ the e�e-tive potential diverges at only one of the poles, and thewave funtion is loalized at the opposite pole, givingrise to the doubly degenerate ground states. The groundstate being doubly degenerate implies the absene of tun-neling.First order theory - We an onsider our system whenonly the �rst order term is onsidered, to show that therealso the tunneling is suppressed for all spins. The or-responding Eulidean ation is just obtained from Equ.(3) by putting I = 0 giving the orresponding equationsof motion:

−
∂V (θ)

∂θ
+ iσ sin θϕ̇ = 0 (21)
−iσ sin θθ̇ = 0 (22)Multiplying the �rst by θ̇, the seond by ϕ̇ and adding thetwo yields simply −∂V (θ)

∂θ θ̇ = 0 i.e. V (θ) = const. = 0.This is just a speial ase of the general result, that theonserved Hamiltonian for a Lagrangian theory that is�rst order, is just given by the potential. In generalwe �nd that the onserved energy is just V (θ, ϕ) = 0(where we have normalized the potential so that it van-ishes at the initial point, and hene always). Thusany instanton must satisfy this onstraint. The instan-tons of Refs. [3℄ and [4℄ an be easily reprodued us-ing this analysis. For the easy-axis ase that we study

here, V (θ, ϕ) → V (θ) = 0, there simply are no solu-tions. We an even allow for the possibility of solutionsthrough omplex �eld variables, θ → θ+ iξ, however, theequation V (θ + iξ) = 0 still a�ords no solutions sine
V (θ + iξ) = u(θ, ξ) + iv(θ, ξ) = 0 requires u(θ, ξ) = 0and v(θ, ξ) = 0. But these are harmoni funtions, thereal and imaginary parts of a holomorphi funtion. Thelevel urves of u(θ, ξ) are the paths of steepest desent of
v(θ, ξ) and vie versa. It is impossible that both of themremain onstant along any path. An evident generaliza-tion to the ase V (θ, ϕ) = V (θ)U(ϕ) is left to the reader,where the same onlusions an be drawn. Thus in the�rst order theory, the tunneling is suppressed for all spinsfor the simple reason that there are no instantons.Conlusions - We have shown that there is suppres-sion of quantum tunneling for both fermioni and bosonispin systems in the ase of easy-axis, azimuthally and re-�etion symmetri quantum spin systems. We have alsoshown that it is absolutely ruial to take into aountomplex ritial points of the Eulidean ation when theMinkowski ation ontains t-odd terms. In the presentase, this leads to suppression of tunneling of marosopispin systems. The experimental veri�ation of our resultsshould be interesting.Aknowledgments - We thank The Institute ofPhysis, Bhubaneswar for hospitality, where this workwas started, Bum-Hoon Lee, Jeong-Hyuk Park and Cor-neliu Sohihiu of CQUeST for useful disussions, (Paul)Hoong-Chien Lee and the Graduate Institute of SystemsBiology and Bioinformatis, College of Siene, NationalCentral University, Zhongli, Taiwan for hospitality whilethis work was ompleted, Yutaka Hosotani, Departmentof Physis, Osaka University for hospitality where thiswork was written up, and NSERC of Canada and theCenter for Quantum Spaetime of Sogang University withgrant number R11-2005-021, for �nanial support.
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