PrAmANA	© Indian Academy of Sciences	Vol. 73, No. 2 journal of physics
August 2009 pp. 387-395		

New quasi-exactly solvable Hermitian as well as non-Hermitian $\mathcal{P} \mathcal{T}$-invariant potentials

AVINASH KHARE ${ }^{1}$ and BHABANI PRASAD MANDAL ${ }^{2, *}$
${ }^{1}$ Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005, India
${ }^{2}$ Department of Physics, Banaras Hindu University, Varanasi 221 005, India
*Corresponding author. E-mail: bhabani.mandal@gmail.com

Abstract

We start with quasi-exactly solvable (QES) Hermitian (and hence real) as well as complex $\mathcal{P} \mathcal{T}$-invariant, double sinh-Gordon potential and show that even after adding perturbation terms, the resulting potentials, in both cases, are still QES potentials. Further, by using anti-isospectral transformations, we obtain Hermitian as well as $\mathcal{P T}$ invariant complex QES periodic potentials. We study in detail the various properties of the corresponding Bender-Dunne polynomials.

Keywords. Quasi-exactly solvable; non-Hermitian; $\mathcal{P} \mathcal{T}$ symmetry; Bender and Dunne polynomials.

PACS Nos 03.65.Ge; 11.30.Er

1. Introduction

In recent years, various features of the complex $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians have been explored in the literature (see for example refs [1-4]). In particular, it has been shown that so long as the $\mathcal{P} \mathcal{T}$-symmetry is not spontaneously broken, the energy eigenvalues of the Schrödinger equation are real. Further, several $\mathcal{P} \mathcal{T}$-symmetric complex QES [5,6] potentials have been discovered [7-9]. The purpose of this paper is to point out that even after suitably perturbing either a Hermitian or a complex $\mathcal{P} \mathcal{T}$-invariant QES potential, one can still obtain another Hermitian or complex, $\mathcal{P T}$-invariant, QES potential.

2. $\mathcal{P} \mathcal{T}$-symmetric non-Hermitian QES system

2.1 The model

We start from the well-known non-Hermitian but $\mathcal{P} \mathcal{T}$-invariant potential $-[a \cosh (2 x)-i M)^{2},(\hbar=1=2 m)[7]$ and show that even the perturbed complex $\mathcal{P} \mathcal{T}$-invariant Hamiltonian

$$
\begin{equation*}
H=p^{2}-[a \cosh (2 x)-i M]^{2}+\frac{l(l+1)}{\sinh ^{2}(x)}-\frac{l(l+1)}{\cosh ^{2}(x)} \tag{1}
\end{equation*}
$$

where a, l, M are real and $-1<l<0$ is a QES potential so long as $M-2 l-1$ or $M+2 l+1$ is a positive even integer. Note that the restriction $-1<l<0$ has been imposed so that the potential is not too singular at $x=0$ and there is a communication from the left side to the right side.

Let us first show that the above non-Hermitian Hamiltonian (1) is a $\mathcal{P} \mathcal{T}$ symmetric one. We note that in this case the parity transformation is defined as $x \rightarrow i \frac{\pi}{2}-x$, which is a reflection of coordinate about the point $x=i \frac{\pi}{4}$. Under the time reversal transformation $t \rightarrow-t$ and further, one replaces $i \rightarrow-i$. One can check easily that, under $\mathcal{P} \mathcal{T} \cosh (2 x) \rightarrow-\cosh (2 x), \cosh ^{2}(x) \rightarrow-\sinh ^{2}(x)$ and $\sinh ^{2}(x) \rightarrow-\cosh ^{2}(x)$.

We substitute

$$
\begin{equation*}
\psi(x)=\mathrm{e}^{i \frac{a}{2} \cosh (2 x)} \phi(x) \tag{2}
\end{equation*}
$$

in the Schrödinger equation $H \psi=E \psi$ with H given by eq. (1) and obtain

$$
\begin{aligned}
& \phi^{\prime \prime}(x)+2 i a \sinh (2 x) \phi^{\prime}(x)+\left[\left(E-M^{2}+a^{2}\right)\right. \\
& \left.\quad-2 i(M-1) a \cosh (2 x)-\frac{l(l+1)}{\sinh ^{2}(x)}+\frac{l(l+1)}{\cosh ^{2}(x)}\right] \phi(x)=0 .
\end{aligned}
$$

On further substituting

$$
\begin{equation*}
\phi=[\cosh (x)]^{\alpha}[\sinh (x)]^{\beta} \eta(x), \tag{3}
\end{equation*}
$$

we find that the system admits non-singular QES solutions provided

$$
\begin{equation*}
\alpha(\alpha+1)=l(l+1) \quad \text { and } \quad \beta(\beta+1)=l(l+1) \tag{4}
\end{equation*}
$$

is satisfied. The condition in eq. (4) implies either of the following four conditions, i.e. (i) $\alpha=\beta=l+1$, (ii) $\alpha=\beta=-l$, (iii) $\alpha=-l, \beta=l+1$, (iv) $\alpha=l+1, \beta=-l$. We discuss all the cases separately,

Case i. $\alpha=\beta=l+1$.
In this case, $\eta(x)$ as given by eq. (3) can be shown to satisfy

$$
\begin{align*}
& \eta^{\prime \prime}(x)+2[(l+1) \operatorname{coth}(x)+(l+1) \tanh (x)+i a \sinh (2 x)] \eta^{\prime}(x) \\
& \quad+\left[\epsilon-i z a \cosh ^{2}(x)\right] \eta(x)=0, \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& \epsilon=E-M^{2}+a^{2}+4(l+1)^{2}-2 i a(2 l-M+3) \\
& z=4(M-2 l-3) . \tag{6}
\end{align*}
$$

This system has p QES solutions in case $M-2 l-1=2 p$ with $p=1,2,3, \ldots$ These solutions are of the form

$$
\begin{equation*}
\eta(x)=\sum_{n=0}^{\infty} a_{n}(i)^{n}[\cosh 2(x)]^{n} \tag{7}
\end{equation*}
$$

Two of the low-lying solutions are

$$
\begin{align*}
& M=2 l+3, \quad \eta=\text { constant }, \quad E=-a^{2}+4 l+5 \tag{8}\\
& M=2 l+5, \quad \eta=A \cosh (2 x)+i B, \quad \frac{A}{B}=\frac{E+a^{2}-12 l-21}{4 a} \\
& E=8 l+15-a^{2} \pm \sqrt{(2 l+3)^{2}-4 a^{2}} \tag{9}
\end{align*}
$$

Note that since $\alpha=\beta$ the $\mathcal{P} \mathcal{T}$ symmetry is unbroken and hence, as expected, the energy eigenvalues are real.
Case ii. $\alpha=\beta=-l$.
The solutions in this case can be obtained from the solutions of Case i by everywhere changing $l \rightarrow-l-1$. Thus in this case, one has p QES solutions in the case $M+2 l+1=2 p$ with $p=1,2,3, \ldots$. Note that since $\alpha=\beta$, even in this case, the $\mathcal{P} \mathcal{T}$ symmetry is unbroken and the energy eigenvalues are real.
Case iii. $\alpha=-l, \beta=l+1$.
In this case we have p QES solutions in the case $M=2 p, p=1,2, \ldots$ Two of the low-lying QES solutions are

$$
\begin{align*}
& M=2, \quad E=3-a^{2}-2 a i(1+2 l) \tag{10}\\
& M=4, \quad E=11-a^{2}-2 a i(1+2 l) \pm \sqrt{\left(1-a^{2}\right)-i a(1+2 l)} \tag{11}
\end{align*}
$$

Note that since in this case $\alpha \neq \beta$, the $\mathcal{P} \mathcal{T}$ symmetry is broken spontaneously and eigenvalues are no more real. In the special case of $\alpha=\beta=\frac{1}{2}$, the $\mathcal{P} \mathcal{T}$ symmetry is restored and E becomes real.
Case iv. In this case, the solutions can simply be obtained from the solutions of Case iii by changing $l \rightarrow-l-1$.

Ordinarily, the boundary conditions that give the quantized energy levels are $\psi(x) \rightarrow 0$ as $|x| \rightarrow \infty$ on the real axis. However, in the present case, we have to continue the eigenvalue problem into the complex $-x$ plane [6]. On putting, $x=u+i v$ where u and v are real, it is easy to see that for $u>0$ the boundary condition is satisfied so long as $-\pi<v<-\frac{\pi}{2}(\bmod \pi)$ while for $u<0$ it is satisfied if $-\frac{\pi}{2}<v<0(\bmod \pi)$.

It is worth mentioning that, the non-Hermitian $\mathcal{P} \mathcal{T}$-symmetric Hamiltonian in eq. (1) after a suitable change of variable can be expressed in terms of the $S L(2, R)$ generators (at most quadratic). To show this we substitute $t=\cosh (2 x)$ in eq. (5) to obtain $H_{g} \eta=E \eta$ where,

$$
\begin{align*}
H_{g}= & -4\left(t^{2}-1\right) \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}-\left[(8 l+12) t+4 a i\left(t^{2}-1\right)\right] \frac{\mathrm{d}}{\mathrm{~d} t} \\
& -\left[-M^{2}+a^{2}+4(l+1)^{2}-2 a i(2 l-M+3)-\frac{i z}{2}(t+1)\right] . \tag{12}
\end{align*}
$$

This gauged Hamiltonian then can be expressed in terms of the generators of the $S L(2, R)$ by

$$
\begin{align*}
H_{g}= & -4\left[\left(J_{0}^{2}-J_{-}^{2}\right)+i a\left(J_{+}-J_{-}\right)+(n+2 l+2) J_{0}\right] \\
& -\left[-M^{2}+a^{2}+4(l+1)^{2}+4 n(l+1)+n^{2}\right] \tag{13}
\end{align*}
$$

while the generators are given by $J_{-}=\mathrm{d} / \mathrm{d} t, J_{0}=t(\mathrm{~d} / \mathrm{d} t)-(n / 2)$ and $J_{+}=$ $t^{2}(\mathrm{~d} / \mathrm{d} t)-n t$. Gauged Hamiltonian in terms of $S L(2, R)$ for a more general system has been discussed in refs $[10,13]$.

2.2 Bender-Dunne ($B D$) polynomials

Case i. $\alpha=l+1=\beta$. We make a change of variable in eq. (5), $\cosh ^{2}(x)=t$, yielding

$$
\begin{align*}
& t(t-1) \eta^{\prime \prime}(t)-\left[(l+3 / 2)-(2 l+3-2 i a) t-2 i a t^{2}\right] \eta^{\prime}(t) \\
& \quad+(1 / 4)[\epsilon-i a z t] \eta(t)=0 . \tag{14}
\end{align*}
$$

On further substituting

$$
\begin{equation*}
\eta(t)=\sum_{n=0}^{\infty} \frac{P_{n}(\epsilon) t^{n}}{n!\Gamma(n+l+3 / 2)} \tag{15}
\end{equation*}
$$

yields the three-term recursion relation satisfied by the polynomials, $P_{n}(\epsilon)$

$$
\begin{align*}
P_{n+1}(\epsilon)- & {\left[\frac{\epsilon}{4}+n(n+2 l+2-2 i a)\right] P_{n}(\epsilon) } \\
& +i a(n+l+1 / 2) n[M-2 l-2 n-1] P_{n-1}(\epsilon)=0 . \tag{16}
\end{align*}
$$

First few polynomials are:

$$
\begin{align*}
& P_{0}(\epsilon)=1 \\
& P_{1}(\epsilon)=\frac{\epsilon}{4} \\
& P_{2}(\epsilon)=\frac{\epsilon^{2}}{16}+\frac{\epsilon}{4}(2 l+3-2 i a)+i a\left(l+\frac{3}{2}\right)(2 l+3-M) \tag{17}
\end{align*}
$$

For the case, $M=2 l+3, \quad P_{1}(\epsilon)$ is the critical polynomial [11]. On demanding $P_{1}(\epsilon)=0$ correctly yields the QES energy eigenvalue as given by eq. (8). On the other hand, for $M=2 l+5, P_{2}(\epsilon)$ is the critical polynomial, and demanding $P_{2}(\epsilon)=0$ correctly yields the QES energy as given by eq. (9).
Following Bender and Dunne [11], it is easy to compute the norm $\left(\gamma_{n}\right)$ of the nth polynomial. We find

$$
\begin{equation*}
\gamma_{n}=(4 a i)^{n} n!\prod_{k=1}^{n}(k+l+1 / 2)(M-2 k-2 l-1) \tag{18}
\end{equation*}
$$

New QES potentials

Weight factors (ω_{1} and ω_{2}) [11], for $M=2 l+5$ are

$$
\begin{align*}
& \omega_{1}=\frac{2 l+3-2 a i}{\sqrt{(2 l+3)^{2}-4 a^{2}}}+\frac{1}{2} \\
& \omega_{2}=-\frac{2 l+3-2 a i}{\sqrt{(2 l+3)^{2}-4 a^{2}}}+\frac{1}{2} . \tag{19}
\end{align*}
$$

Moments of weight function is defined by

$$
\begin{equation*}
\mu_{n}=\int \mathrm{d} E \omega(E) E^{n} \tag{20}
\end{equation*}
$$

It is easily shown that the nth moment, for large n, is proportional to $\left(M+a^{2}\right)^{n}$.
One can similarly study the properties of the Bender-Dunne polynomials in the other three cases.

3. Periodic $\mathcal{P} \mathcal{T}$-invariant QES system

As has been shown in [12], if under the anti-isospectral transformation $x \rightarrow i x \equiv y$, the potential $v(x) \rightarrow \bar{v}(y)$ and if the potential $v(x)$ has m QES levels with energy eigenvalues and eigenfunctions $E_{k}(k=0,1,2, \ldots, m-1)$ and $\psi_{k}(x)$ respectively then the energy eigenvalues of $\bar{v}(y)$ are given by

$$
\begin{equation*}
\bar{E}_{k}=-E_{m-1-k}, \quad \bar{\psi}_{k}(y)=\psi_{m-1-k}(i x) . \tag{21}
\end{equation*}
$$

Under this anti-isospectral transformation, $x \rightarrow i x \equiv \theta$, it is easily seen that the Hamiltonian (1) goes over to

$$
\begin{equation*}
H=p^{2}+[a \cos (2 \theta)-i M]^{2}+\frac{l(l+1)}{\sin ^{2}(\theta)}+\frac{l(l+1)}{\cos ^{2}(\theta)} \tag{22}
\end{equation*}
$$

with $-1<l<0$. In this case $U(x)=U(x+\pi)$. This complex Hamiltonian is invariant under combined parity $\left(x \rightarrow \frac{\pi}{2}-x\right)$ and time reversal $(t \rightarrow-t$ and $i \rightarrow$ $-i)$. Explicit QES solutions can be obtained from the solutions of hyperbolic case discussed in detail in $\S 2.1$ by using the anti-isospectral transformation as given in eq. (21). One can easily construct the BD polynomials and their properties for this case by following the methods outlined in $\S 2.2$.

4. Real QES systems

Before completing this paper, it may be worthwhile to point out that, starting from the Hermitian, QES, DSHG potential $V(x)=[a \cosh (2 x)-M]^{2}$, one can add several perturbing terms and the resulting Hamiltonians are all examples of QES systems. In this section, we consider three such perturbing terms.

Case I. Perturbation term, $V_{1}=l(l+1) / \sinh ^{2}(x)$ with $-1<l<0$.
The combined perturbed system is described by the Hamiltonian,

$$
\begin{equation*}
H_{\mathrm{I}}=p^{2}+[a \cosh (2 x)-M]^{2}+\frac{l(l+1)}{\sinh ^{2}(x)} \tag{23}
\end{equation*}
$$

We show that for integral values of $M-l-1$ or $M+l$, this is a QES problem and one can obtain p QES eigenstates if $M=l+1+p+s$ or $M=-l+p+s$ respectively, where $p=1,2,3, \ldots$ and $s=0,1$.

We substitute

$$
\begin{equation*}
\psi(x)=\mathrm{e}^{-\frac{a}{2} \cosh (2 x)} \phi(x) \tag{24}
\end{equation*}
$$

in the Schrödinger equation $H \psi=E \psi$ with H as given by eq. (23) and obtain

$$
\begin{align*}
& \phi^{\prime \prime}(x)-2 a \sinh (2 x) \phi^{\prime}(x) \\
& \quad+\left[\left(E-M^{2}-a^{2}\right)+2(M-1) a \cosh (2 x)-\frac{l(l+1)}{\sinh ^{2}(x)}\right] \phi(x)=0 . \tag{25}
\end{align*}
$$

On further substituting

$$
\begin{equation*}
\phi=[\sinh (x)]^{\alpha} \eta \tag{26}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \eta^{\prime \prime}(x)+2[\alpha \operatorname{coth}(x)-a \sinh (2 x)] \eta^{\prime}(x)+\left[E-M^{2}-a^{2}\right. \\
& \left.\quad+\alpha^{2}-2(M-1) a+4(M-\alpha-1) a \cosh ^{2}(x)\right] \eta(x)=0 \tag{27}
\end{align*}
$$

provided

$$
\begin{equation*}
\alpha(\alpha-1)=l(l+1) \tag{28}
\end{equation*}
$$

Equation (28) implies either $\alpha=l+1$ or $\alpha=-l$. We first consider $\alpha=l+1$ and then it is easy to see that eq. (27) with $\alpha=l+1$ has p QES solutions in the case $M=l+1+p+s$ where $s=0$ or $s=1$. In particular the solutions are of the form

$$
\begin{equation*}
\eta=[\cosh (x)]^{s} \sum_{n=0}^{\infty} a_{n}\left[\cosh ^{2}(x)\right]^{n} \tag{29}
\end{equation*}
$$

where $s=0$ if $M=l+2 p$ while $s=1$ if $M=l+2 p+1$. Few low-lying solutions are

$$
\begin{align*}
& M=l+2, \quad \eta=\operatorname{constant}, \quad E=a^{2}+2 a(l+1)+2 l+3 \\
& M=l+3, \quad \eta=\cosh (x), \quad E=a^{2}+2 a l+2 l+5 \tag{30}\\
& M=l+4, \quad E=y+a^{2}+3(2 l+5)+2(l+3) a \\
& \eta=A \cosh ^{2}(x)+B, \quad y=-2(l+2+2 a) \pm 2 \sqrt{(l+2+2 a)^{2}-4 a} \tag{31}
\end{align*}
$$

New QES potentials

$$
\begin{align*}
& M=l+5, \quad E=y+a^{2}+8(l+3)+2(l+4) a \\
& \eta=A \cosh ^{3}(x)+B \cosh (x) \\
& y=-(4 l+9+8 a) \pm 2 \sqrt{(l+2 a)^{2}+3(2 l+3)} \tag{32}
\end{align*}
$$

The results for $\alpha=-l$ are immediately obtained from the above by replacing everywhere l by $-l-1$.

By making the substitution $\cosh ^{2}(x)=t$ in eq. (27), one can show that the corresponding Bender-Dunne polynomials satisfy three-term recursion relation.
Case II. Perturbation term, $V_{2}=-\left(l(l+1) / \cosh ^{2}(x)\right)$.
The Hamiltonian of the system is thus given by

$$
\begin{equation*}
H_{2}=p^{2}+[a \cosh (2 x)-M]^{2}-\frac{l(l+1)}{\cosh ^{2}(x)} \tag{33}
\end{equation*}
$$

where l is any real number. We again show that for integral values of $M-l-1$ or $M+l$, this is a QES problem and one can obtain p QES eigenstates if $M=l+1+p+s$, $M=-l+p+s$ respectively, where $p=1,2,3, \ldots$ and $s=0,1$.

We substitute

$$
\begin{equation*}
\psi(x)=\mathrm{e}^{-\frac{a}{2} \cosh (2 x)} \cosh ^{\alpha}(x) \eta \tag{34}
\end{equation*}
$$

in the Schrödinger equation $H_{2} \psi=E \psi$ with H_{2} as given by eq. (14) to obtain

$$
\begin{align*}
& \eta^{\prime \prime}(x)+2[\alpha \tanh (x)-a \sinh (2 x)] \eta^{\prime}(x)+\left[E-M^{2}-a^{2}\right. \\
& \left.\quad+2 a(2 \alpha-M+1)+\alpha^{2}+4(M-\alpha-2) a \cosh ^{2}(x)\right] \eta(x)=0, \tag{35}
\end{align*}
$$

provided

$$
\begin{equation*}
\alpha(\alpha-1)=l(l+1) \tag{36}
\end{equation*}
$$

This implies $\alpha=l+1$ or $\alpha=-l$. Let us consider first, $\alpha=l+1$. It is easy to see that eq. (35) with $\alpha=l+1$ has p QES solutions if $M=l+1+p+s$ where $s=0$ or $s=1$. In particular the solutions are of the form

$$
\begin{equation*}
\eta=[\sinh (x)]^{s} \sum_{n=0}^{\infty} a_{n}\left[\sinh ^{2}(x)\right]^{n}, \tag{37}
\end{equation*}
$$

where $s=0$ in the case $M=l+2 p$ while $s=1$ in the case $M=l+2 p+1$. Few low-lying solutions are

$$
\begin{align*}
& M=l+2, \quad \eta=\mathrm{constant}, \quad E=a^{2}-2 a(l+1)+2 l+3, \\
& M=l+3, \quad \eta=\sinh (x), \quad E=a^{2}-2 a l+2 l+5 \tag{38}\\
& M=l+4, \quad E=y+a^{2}+3(2 l+5)-2 a(l-1) \\
& \eta=A \cosh ^{2}(x)+B \\
& y=-2(l+2+2 a) \pm 2 \sqrt{(l+2+2 a)^{2}-4 a(2 l+3)} . \tag{39}
\end{align*}
$$

$$
\begin{align*}
& M=l+5, \quad E=y+a^{2}+8(l+3)-2 a(l-2) \\
& \eta=A \sinh ^{3}(x)+B \sinh (x) \\
& y=-(4 l+9+4 a) \pm 2 \sqrt{(l-2 a)^{2}+3(2 l+3)} \tag{40}
\end{align*}
$$

It is easy to convince oneself that all the above solutions are still solutions with replacement of l by $-l-1$ everywhere.

The three-term recursion relations for the associate polynomials is obtained in this case by making the substitution $\sinh ^{2}(x)=t$ in eq. (35).
Case III. Perturbation term, $V_{3}=\frac{l(l+1)}{\sinh ^{2}(x)}-\frac{g(g+1)}{\cosh ^{2}(x)}$.
We now show that it is still a QES problem even if the perturbation is the sum of the two perturbations considered in Case I and Case II, i.e. consider the Hamiltonian

$$
\begin{equation*}
H_{3}=p^{2}+[a \cosh (2 x)-M]^{2}+\frac{l(l+1)}{\sinh ^{2}(x)}-\frac{g(g+1)}{\cosh ^{2}(x)} \tag{41}
\end{equation*}
$$

where $-1<l<0$ so that the singularity at $x=0$ is not strong enough. We show that for positive integral values of either $(M-l-g-1) / 2$ or $(M+l+g+1) / 2$ or $(M+l-g) / 2$ or $(M-l+g) / 2$, this is a QES problem and one can obtain p QES eigenstates if $M=l+g+2 p+1, M=-l-g+2 p-1, M=-l+g+2 p$ or $M=l-g+2 p$, where $p=1,2,3, \ldots$.

We substitute

$$
\begin{equation*}
\psi(x)=\mathrm{e}^{-\frac{a}{2} \cosh (2 x)}[\cosh (x)]^{\alpha}[\sinh (x)]^{\beta} \eta, \tag{42}
\end{equation*}
$$

in the Schrödinger equation $H_{3} \psi=E \psi$ with H_{3} as given by eq. (41) we find that QES solutions exist only when $\alpha=g+1,-g$ and $\beta=l+1,-l$. On choosing $\alpha=g+1, \beta=l+1$, we obtain

$$
\begin{align*}
& \eta^{\prime \prime}(x)+2[(l+1) \operatorname{coth}(x)+(g+1) \tanh (x)-a \sinh (2 x)] \eta^{\prime}(x) \\
& \quad+\left[y+z \cosh ^{2}(x)\right] \eta(x)=0 \tag{43}
\end{align*}
$$

where

$$
\begin{align*}
& y=E-M^{2}-a^{2}+(l+g+2)^{2}+2 a(2 g-M+3) \\
& z=4 a(M-l-g-3) \tag{44}
\end{align*}
$$

It is easy to see that eq. (43) has p QES solutions in the case $M=l+g+2 p+1$ with $p=1,2,3, \ldots$. In particular the solutions are of the form

$$
\begin{equation*}
\eta=\sum_{n=0}^{\infty} P_{n}\left[\cosh ^{2}(x)\right]^{n} \tag{45}
\end{equation*}
$$

in the case $M=l+g+2 p+1$. Two of the low-lying solutions are

$$
\begin{equation*}
M=l+g+3, \quad \eta=\mathrm{constant}, \quad E=a^{2}-2 a(2 g+3)+2 l+2 g+5 \tag{46}
\end{equation*}
$$

New QES potentials

$$
\begin{align*}
& M=l+g+5, \quad \eta=A \cosh ^{2}(x)+B \\
& y=-2(l+g+3+2 a) \pm 2 \sqrt{(l+g+3+2 a)^{2}-4 a(2 g+3)} \tag{47}
\end{align*}
$$

The results for the remaining three cases are immediately obtained from here by replacing (l, g) with $(-l-1,-g-1),(-l-1, g)$ or $(l,-g-1)$.

5. Conclusion

In this paper, we have shown that the known QES DSHG (and hence DSG) systems (both Hermitian and complex $\mathcal{P} \mathcal{T}$-invariant one) can be further enlarged by adding perturbations and still it continues to be a QES system. It will be interesting to look at other QES examples and obtain new QES systems by adding suitable perturbating terms.

References

[1] C M Bender and S Boettcher, Phys. Rev. Lett. 80, 5243 (1998)
[2] Ali Mostafazadeh, arXiv:0810.5643, and references therein
[3] C M Bender and S Boettcher, J. Phys. A31, L273 (1998) C M Bender, S Boettcher, and P N Meisinger, J. Math. Phys. 40, 2210 (1999) C M Bender, S Boettcher, H F Jones and Van M Savage, quant-ph/9906057 C M Bender and G V Dunne, J. Math. Phys. 40, 4616 (1999)
C M Bender, G V Dunne and P N Meisinger, Phys. Lett. A252, 272 (1999)
C M Bender, K A Milton and P N Meisinger, J. Math. Phys. 40, 2201 (1999)
C M Bender and K A Milton, hep-th/9802184 F M Fernandez, R Guardiola, J Ros and M Znojil, J. Phys. A32, 3105 (1999) M Znojil, J. Phys. A32, 4563 (1999); Phys. Lett. A264, 108 (1999)
F Cannata, G Junker and J Trost, Phys. Lett. A246, 219 (1998)
B Bagchi and R Roychoudhury, J. Phys. A33, L1 (2000)
[4] B Basu-Malik and B P Mandal, Phys. Lett. A284, 231 (2001)
B Basu-Malik, T Bhattacharyya and B P Mandal, Mod. Phys. Lett. A20, 543 (2005) B Basu-Malik, T Bhattacharyya, A Kundu and B P Mandal, Czech. J. Phys. 54, 5 (2004)

B P Mandal, Mod. Phys. Lett. A20, 655 (2005)
[5] A Ushveridze, Quasi-exactly solvable models in quantum mechanics (Inst. of Physics Publishing, Bristol, 1994) and references therein
[6] C M Bender and A Turbiner, Phys. Lett. A173, 442 (1993)
[7] A Khare and B P Mandal, Phys. Lett. A272, 53 (2000)
[8] A Khare and B P Mandal, J. Math. Phys. 39, 3476 (1998)
[9] Y Brihaye, A Nininahazwe and B P Mandal, J. Phys. A40, 13063 (2007)
[10] P E G Assis and A Fring, J. Phys. A: Math. Theor. 42, 015203 (2009)
[11] C M Bender and G V Dunne, J. Math. Phys. 37, 6 (1996)
[12] A Krajewska, A Ushveridze and Z Walczak, Mod. Phys. Lett. A12, 1225 (1997)
[13] F Finkel, A Gonzaler-Lopez and M A Rodriguez, J. Math. Phys. 40, 3268 (1999)

