
ar
X

iv
:1

00
8.

45
94

v1
  [

nl
in

.S
I]

  2
6 

A
ug

 2
01

0

Staggered and short period solutions of the Saturable

Discrete Nonlinear Schrödinger Equation

Avinash Khare1, Kim Ø. Rasmussen2, Mogens R. Samuelsen3, and

Avadh Saxena2

1Institute of Physics, Bhubaneswar, Orissa 751005, India

2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA

3Department of Physics, The Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

PACS numbers: 61.25.Hq, 64.60.Cn, 64.75.+g

Abstract. We point out that the nonlinear Schrödinger lattice with a saturable nonlinearity also

admits staggered periodic as well as localized pulse-like solutions. Further, the same model also

admits solutions with a short period. We examine the stability of these solutions and find that the

staggered as well as the short period solutions are stable in most cases. We also show that the

effective Peierls-Nabarro barrier for the pulse-like soliton solutions is zero.
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The saturable discrete nonlinear Schrödinger equation is increasingly finding applications in

various physical situations. Most notably it serves as a model for optical pulse propagation in

optically modulated photorefractive media [1], and in this context the pulse dynamics it describes

have been intensely studied [2, 3, 4]. In addition to its important role for such applications the

saturable discrete nonlinear Schrödinger equation is also of interest from a purely nonlinear science

viewpoint [5, 6, 7]. This interest arises because the saturable discrete nonlinear Schrödinger equation

has been demonstrated [8] to admit onsite and intersite soliton solutions, which have the same

energy. This is contrasted by the standard cubic nonlinear Schrödinger lattice where the onsite

solution always has lower energy than the intersite solution. This phenomenon have often been

characterized in terms of a so-called Peierls-Nabarro (PN) barrier, which is the energy difference

between these two distinct solutions. The particular feature of the saturable discrete nonlinear

Schrödinger equation is thus that it allows the PN barrier to change sign and specifically vanish for

certain solutions. The vanishing of the PN barrier have been associated with the ability of these

solutions to translate undisturbed through the lattice, which is impossible in the cubic discrete

nonlinear Schrödinger equation. Here we derive analytical solutions to the saturable discrete

nonlinear Schrödinger equation and demonstrate that the localized soliton solutions have a zero

PN barrier.

Recently, we obtained [9] two different temporally and spatially periodic solutions to the

saturable equation[10]

iψ̇n + (ψn+1 + ψn−1 − 2ψn) +
ν|ψn|2

1 + µ|ψn|2
ψn = 0 , (1)

where ψn is a complex valued ‘wavefunction’ at site n, while ν and µ are real parameters. In

particular, the first solution is

ψI
n =

1√
µ

sn(β,m)

cn(β,m)
dn([n + c]β,m) exp (−i[ωt+ δ]) , (2)
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where the modulus of the elliptic functions m must be chosen such that

2− ω =
ν

µ
=

2dn(β,m)

cn2(β,m)
, β =

2K(m)

Np

, (3)

and c and δ are arbitrary constants. We only need to consider c between 0 and 1
2
(half the lattice

spacing). HereK(m) denotes the complete elliptic integral of the first kind [11]. The second solution

is

ψII
n =

√

m

µ

sn(β,m)

dn(β,m)
cn([n + c]β,m) exp (−i[ωt+ δ]) , (4)

where the modulus m is now determined such that

2− ω =
ν

µ
=

2cn(β,m)

dn2(β,m)
, β =

4K(m)

Np

. (5)

The integer Np denotes the spatial period of the solutions. In the limit Np → ∞ (m → 1), both

the solutions ψI
n and ψII

n reduce to the same localized solution

ψIII
n =

1√
µ

sinh(β)

cosh([n+ c]β)
e−i[ωt+δ], (Np → ∞), (6)

where β is now given by

2− ω =
ν

µ
= 2coshβ . (7)

In Ref. [9], we also developed the stability analysis and examined the linear stability of these

solutions to show that the solutions are linearly stable in most cases.

The purpose of this note is to point out that the same model (1) also admits the corresponding

staggered solutions. In particular, using the identities for the Jacobi elliptic functions [12], it is

easily shown that the model admits the following solutions

ψIS
n = (−1)n

1√
µ

sn(β,m)

cn(β,m)
dn([n+ c]β,m) exp (−i[ωt+ δ]) , (8)

where the modulus m must be chosen such that

ω − 2 = −ν
µ
=

2dn(β,m)

cn2(β,m)
, β =

2K(m)

Np

. (9)
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ψIIS
n = (−1)n

√

m

µ

sn(β,m)

dn(β,m)
cn([n+ c]β,m) exp (−i[ωt + δ]) , (10)

where the modulus m is now determined such that

ω − 2 = −ν
µ
=

2cn(β,m)

dn2(β,m)
, β =

4K(m)

Np

. (11)

In the limit Np → ∞ (m → 1), both the solutions ψIS
n and ψIIS

n reduce to the same localized

staggered solution

ψIIIS
n = (−1)n

1√
µ

sinh(β)

cosh([n+ c]β)
e−i[ωt+δ], (Np → ∞) , (12)

where β is now given by

ω − 2 = −ν
µ
= 2coshβ . (13)

As an illustration we have plotted the exact solutions of the type IS and IIS in Fig. 1. Here the

period Np has to be even. We have shown two periods for type IS and only one for type IIS.

There are, as expressed by Eqs. (9), (11), and (13), stringent conditions on the parameters µ

and ν for which these exact solutions exist. For example, while the nonstaggered solutions are only

valid for ν > 0 and hence ω < 2, the staggered solutions are valid only if ν < 0 and hence ω > 2.

In the case IS the limitation is

0 (m = 1) < −2µ

ν
< cos2

(

π

Np

)

(m = 0) , (14)

while in the case IIS the limitation is

0 (m = 1) < −2µ

ν
<

1

cos( 2π
Np

)
(m = 0) . (15)

Similarly, the solution ψIIIS
n exists only when −2µ

ν
is close to zero (m=1).

We have also examined the linear stability of these solutions and find that the solutions are

linearly stable in most cases. A single period (N = Npi, where N is the lattice size) is always stable

for both solutions IS and IIS. A type IIS solution with more than one period (N = jNp, where j
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Figure 1. Illustration of the exact solutions of two types. The parameters are: ν = −1, µ = 0.4,

ω = 4.5, and c = t = δ = 0. Np = 10 for ψISn and 20 for ψIISn . The dashed curves represent the

solutions given by Eqs. (8) and (10) as if n is a continuous variable. Lines are guides to the eye.

is an integer larger than one) is also stable, while a type IS solution with more than one period is

always unstable. Thus, the first example in Fig. 1 is in fact unstable.

For the solution IIIS, expressions for both the power and the Hamiltonian are identical to those

for the solution III and are given by Eqs. (13) and (14) of Ref. [9]. Hence the PN barrier for the

solutions III and IIIS is the same. We would like to point out here that the calculation of PN barrier

in I was not quite correct. In particular, since both power P and the Hamiltonian H are constants

of motion, one must compute the energy difference between the solutions when c = 0 and c = 1/2

in such a way that the power P is same in both the cases. On using the expressions for P and H as

given by Eqs. (13) and (14) of I, we find that H for the solution III as well as IIIS is given by

H = −4 sinh(β)

µ
+

2βν

µ2
+ 2

(

1− ν

2µ

)

P . (16)

Note that H is in fact independent of c, i.e. contrary to our claim in Ref. [9], the PN barrier is in

fact zero for our solution III (and hence also for IIIS).

Before completing this note, we would like to mention that the model (1) also admits a few
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short period solutions.

Using the ansatz

ψn(t) = φne
−i(ωt+δ) , (17)

in Eq. (1) it is easily checked that the only possible short period solutions are to Eq. (1) are:

(i) Period 1 solution φn = (..., a, a, ...) provided

ω = − νa2

1 + µa2
. (18)

(ii) Period 2 solution φn = (..., a,−a, ...) provided

ω = 4− νa2

1 + µa2
. (19)

(iii) Period 3 Solution φn = (..., a, 0,−a, ...) provided

ω = 3− νa2

1 + µa2
. (20)

(iv) Period 4 Solutions φn = (..., a, 0,−a, 0, ...) and (..., a, a,−a,−a, ...) provided

ω = 2− νa2

1 + µa2
. (21)

(v) Period 6 Solution φn = (..., a, a, 0,−a,−a, 0, ...) provided

ω = 1− νa2

1 + µa2
. (22)

Applying the stability analysis developed in Ref. [9] we have examined the stability of these short

period solutions and find that for a small nonlinearity (|ν| < 2µ) they are all stable. The period

4 solution (..., a, a,−a,−a, ...) is always stable while all the other short period solutions possess

regions of instabilities at larger nonlinearity. For these low period solutions the stability matrices

given by Eqs. (20) and (21) of Ref. [9] are simple and it is, for example, easy to see that the lowest

non-zero eigenvalue, λ1(a, ν), of the stability problem for the period 1 solutions is given by (µ = 1)

λ1(a, ν) = a4 +
(

2− 2

3
ν
)

a2 + 1. (23)
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Similarly, we have for the period 2 solution

λ2(a, ν) = a4 +
(

2 +
2

3
ν
)

a2 + 1, (24)

and the period 4 solution

λ4(a, ν) = a4 + (2− |ν|)a2 + 1. (25)

These expressions correspond to the relevant curves in Fig. 2.

It possible to derive similar expressions for the period 3 and period 6 solutions but the

expressions are more complicated and will be omitted here. Clearly the p period solutions are
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4

ν
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12

4 4

3 6

Figure 2. Regions of stability for the short period solutions to Eq. (1) for µ = 1. Period 1: thick

full curve, period 2: dashed-dotted curve, period 3: long-dashed curve, period 4: thin full curve,

and period 6: short-dashed curve. The instability occurs in the parameter region encompassed by

the respective curves.

unstable for the parameter values where λp(a, ν) < 0, and we have illustrated these regions in Fig.

2. Figure 2 shows the curves in the (a, ν)-plane where λp(a, ν) = 0 so that the instability occurs in

the regions that are encompassed by the respective curves. A symmetry is apparent in this stability

diagram and it is easy to realize that this symmetry arises from the fact that the transformation
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(ν, φn) → (−ν, (−1)nφn) establishes the following connection between the short period solutions: 1

↔ 2, 3 ↔ 6, and 4 ↔ 4.

In conclusion, we have obtained staggered as well as short period solutions of the saturable

discrete nonlinear Schrödinger equation. We also studied the linear stability and found the solutions

to be stable in certain parameter ranges. Finally, we found that the Peierls-Nabarro barrier for the

pulse solutions is zero. Our results are relevant to optical soliton pulse propagation in waveguides

and photorefractive media [1].
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