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Abstract. The simplest formulas connecting Jacobi elliptic functions with different
modulus parameters were first obtained over two hundred years ago by John Landen.
His approach was to change integration variables in elliptic integrals. We show that
Landen’s formulas and their subsequent generalizations can also be obtained from a dif-
ferent approach, using which we also obtain several new Landen transformations. Our
new method is based on recently obtained periodic solutions of physically interesting non-
linear differential equations and remarkable new cyclic identities involving Jacobi elliptic
functions.
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1. Introduction

The properties of Jacobi elliptic functions have been studied for over two hundred
years and are listed in many texts [1,2] as well as standard mathematics reference
books [3,4]. The three Jacobi elliptic functions sn(x,m), cn(x,m), dn(x,m) are
functions of the variable x and the elliptic modulus parameter m ≡ k2 (0 ≤ m ≤ 1).
The inverse functions are most easily defined in terms of elliptic integrals. For
example,

sn−1(x,m) =

∫ x

0

dz
√

(1− z2)(1−mz2)
, (1)

with similar relations for cn−1(x,m) and dn−1(x,m). The Jacobi elliptic functions
are all doubly periodic functions – the periods of sn(x,m), cn(x,m), dn(x,m)
are [4K(m), i2K ′(m)], [4K(m), 2K(m) + i2K ′(m)], [2K(m), i4K ′(m)] respectively,

where K(m) ≡
∫ π/2

0
dθ[1 − m sin2 θ]−1/2 denotes the complete elliptic integral of
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the first kind, and K ′(m) ≡ K(1−m). Most properties of Jacobi elliptic functions
found in the literature do not involve any change in the modulus parameter m. For
example, the quadratic relations

cn2(x,m) = 1− sn2(x,m), dn2(x,m) = 1−msn2(x,m), (2)

and the addition formulas for sn(x+ y,m), cn(x+ y,m), dn(x+ y,m) just involve
Jacobi elliptic functions with the same modulus parameter [3,4]. The exceptions
are the Landen transformation formulas [2,5]

dn

[

(1 + k′)u,

(

1− k′
1 + k′

)2
]

=
1− (1− k′) sn2(u,m)

dn(u,m)
, (3)

cn

[

(1 + k′)u,

(

1− k′
1 + k′

)2
]

=
1− (1 + k′) sn2(u,m)

dn(u,m)
, (4)

sn

[

(1 + k′)u,

(

1− k′
1 + k′

)2
]

=
(1 + k′) sn(u,m) cn(u,m)

dn(u,m)
, (5)

where k′ ≡
√
1−m. These results are obtained by making a change of integration

variables [2] in the elliptic integrals in eqs (1)–(3). In the Landen formulas, the right-
hand side involves Jacobi elliptic functions with modulus parameter m, whereas
the Jacobi functions on the left-hand side have a smaller modulus parameter m̃ ≡
(1−

√
1−m)2/(1+

√
1−m)2 which also lies in the range 0 ≤ m̃ ≤ 1. There are also

similar formulas, known as the Gauss transformations [3,4], where the transformed
parameter m̃G = 4

√
m/(1+

√
m)2 is always greater thanm, and which are obtained

by a different change of integration variables [2].
The Landen transformation formulas given above are said to be of order two,

since there are two terms on the right-hand side. They show no obvious pattern,
but a detailed study of modular transformations does permit generalizations of
these formulas to arbitrary order p [1]. In this paper, we obtain these generalized
transformations by an entirely different method. In particular, we have recently
shown [6,7] that a specific limited superposition principle works for several non-
linear problems like λφ4 theory and for numerous non-linear equations of phys-
ical interest (Korteweg de Vries equation, modified Korteweg de Vries equation,
non-linear Schrödinger equation, sine-Gordon equation). Using the idea of super-
position, we have obtained seemingly new periodic solutions of these non-linear
problems in terms of Jacobi elliptic functions. Here, we will argue on both mathe-
matical and physical grounds that these solutions cannot really be new, but must
be re-expressions of known periodic solutions [8]. In the process of proving this, we
discover and derive the generalized Landen transformations and also obtain some
new Landen formulas.

As an illustration, let us first focus on eq. (3). Using the identity (2), and changing
variables to x = (1 + k′)u, one can re-write the order two ‘dn’ Landen formula (3)
in the alternative form
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dn

[

x,

(

1− k′
1 + k′

)2
]

= α {dn [αx,m] + dn [αx+K(m),m]} ,

α ≡ 1

(1 + k′)
. (6)

Here, the right-hand side contains the sum of two terms with arguments separated
by K(m) [3,4]. As mentioned above, the generalized Landen formulas will have not
two but p terms on the right-hand side. We will show that the generalization of eq.
(3) [or equivalently eq. (6)], valid for any integer p is given by

dn(x, m̃) = α

p
∑

j=1

dn[αx+ 2(j − 1)K(m)/p,m] , (7)

where

α ≡







p
∑

j=1

dn[2(j − 1)K(m)/p,m]







−1

, (8)

and

m̃ = (m− 2)α2 + 2α3

p
∑

j=1

dn3[2(j − 1)K(m)/p,m] . (9)

However, if one starts from the ‘cn’ or ‘sn’ Landen formulas of order 2 as given
by eqs (4) and (5), the generalization to arbitrary order p is different depending on
whether p is even or odd. The main results which we obtain are

cn(x, m̃) ∝
p
∑

j=1

cn(x̃j ,m), p odd,

∝
p
∑

j=1

(−1)j−1dn(xj ,m), p even, (10)

sn(x, m̃) ∝
p
∑

j=1

sn(x̃j ,m), p odd,

∝
p
∏

j=1

sn(xj ,m), p even, (11)

where m̃ is as given in eq. (9), and we have used the notation

xj ≡ αx+ 2(j − 1)K(m)/p, x̃j ≡ αx+ 4(j − 1)K(m)/p. (12)

Note that all the above formulas have the same non-trivial scaling factor α of
the argument x, as well as real shifts which are fractions of the periods of Jacobi
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elliptic functions. The richness of the generalized results is noteworthy and reflects
the many different forms of periodic solutions for non-linear equations which we
have recently obtained [6,7]. Some formulas involve the sum of p terms, the even p
‘cn’ formula involves alternating + and − signs, and the even p ‘sn’ formula has a
product of p terms. In fact, there are also several interesting additional alternative
forms for the above results which follow from use of several identities involving
Jacobi elliptic functions which we have recently discovered [9–11]. For instance, we
will later show that for odd p, the Landen formulas for dn, cn, sn which have been
written above as the sum of p terms, can also be written as the product of the same
p terms!

The plan of this paper is as follows: In §2 we obtain solutions of the sine-Gordon
equation in two different ways and by requiring these solutions to be the same,
thereby obtain the Landen transformations for the basic Jacobi elliptic functions
dn, cn, sn for both odd and even p. In §3 we show that these Landen transformations
can be expressed in other alternative forms. Further, we also show that for a given
p, the relationship between m̃ and m is the same, regardless of the type of Landen
formula that one is considering. Finally, concluding remarks are given in §4.

2. Generalized Landen formulas

Given the diversity of the generalized Landen formulas for Jacobi elliptic functions,
it is necessary to establish them one at a time.

2.1 ‘dn’ Landen formulas

To get an idea of our general approach, let us first focus on the proof of eq. (7)
in detail. Consider the periodic solutions of the static sine-Gordon field theory in
one space and one time dimension, that is, consider the periodic solutions of the
second-order differential equation

φxx = sinφ. (13)

Note that the time dependent solutions are easily obtained from the static ones by
Lorentz boosting. One of the simplest periodic solutions of eq. (13) is given by

sin[φ(x)/2] = dn(x+ x0, m̃), (14)

where x0 is an arbitrary constant and this is immediately verifiable by direct substi-
tution. It was shown in refs [6,7] that a kind of linear superposition principle works
even for such non-linear equations as a consequence of several highly non-trivial,
new identities satisfied by Jacobi elliptic functions [9–11]. In particular, one can
show [7] that for any integer p, one has static periodic solutions of eq. (13) given
by

sin[φ(x)/2] = α

p
∑

j=1

dn[αx+ 2(j − 1)K(m)/p,m] , (15)
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where α is as given by eq. (8).
The question one would like to address here is whether solution (15) is completely

new, or if it can be re-expressed in terms of simpler solutions like (14), but where
m and m̃ need not be the same. To that end, consider eq. (13) more generally. We
note that on integrating once, we obtain

φ2
x = C − 2 cosφ, (16)

where C is a constant of integration. Integrating again, one gets
∫

dφ√
C − 2 cosφ

= x+ x0, (17)

where x0 is a second constant of integration, which we put equal to zero without
loss of generality since it corresponds to a choice of the origin of coordinates. On
substituting sin(φ/2) = ψ, eq. (17) takes the form

∫

dψ
√

1− ψ2

√

C−2
4 + ψ2

= x. (18)

Now the important point to note is that if we perform the integral for different
values of C then we will get all the solutions of eq. (13). Further, if two solutions
have the same value of C, then they must necessarily be the same. As far as the
integral (18) is concerned, it is easily checked that the three simplest solutions
covering the entire allowed range of C are

ψ = sech x, C = 2, (19)

ψ = dn(x, m̃), C = 4m̃− 2, (20)

ψ = cn(x/
√
m̃ , m̃), C =

4

m̃
− 2, (21)

where 0 ≤ m̃ ≤ 1. Note that the constant C has been computed here by using eq.
(16), which in terms of ψ(x) takes the form

C = 2− 4ψ2 +
4ψ2

x

1− ψ2
. (22)

Thus, whereas for solution (20), C lies in the range −2 ≤ C ≤ 2, for solution (21),
C lies between 2 and ∞. Note that for C < −2, there is no real solution to eq.
(18).

Now the strategy is clear. We will take solution (15) and compute C for it and
thereby try to relate it to one of the basic solutions as given by eqs (19)–(21).
One simple way of obtaining the constant C from eq. (22) is to evaluate it at a
convenient value of x, say x = 0. In this way, we find that for solution (15), C is
given by

C = −2 + 4α2(m− 2) + 8α3

p
∑

j=1

dn3(2(j − 1)K(m)/p,m). (23)
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Now, as m→ 0, α = 1/p, dn(x,m = 0) = 1 and hence C = −2. On the other hand,
as m→ 1, K(m = 1) =∞, dn(x,m = 1) = sech x and hence α = 1 so that C = 2.
Thus for solution (15), as m varies in the range 0 ≤ m ≤ 1, the value of C varies
in the range − 2 ≤ C ≤ 2. Hence it is clear that solutions (15) and (20) must be
same. On equating the two C values as given by eqs (20) and (23), we find that the
two solutions are identical provided m and m̃ are related by eq. (9) and hence the
appropriate Landen transformation valid for any integer p is given by eq. (7). Note
that when p = 2, one recovers the Landen formula (6), since dn(K(m),m) = k′,
and m̃ simplifies to (1− k′)2/(1 + k′)2.

2.2 ‘cn’ Landen formulas

Unlike the dn case, it turns out that in this case the Landen transformation formulas
for odd and even p have very different forms. We first derive the form for the odd
p case and then consider the even p case.

As shown in ref. [7], another periodic solution of the static sine-Gordon eq. (13)
is

sin(φ(x)/2) = α1

p
∑

j=1

cn

[

α1x√
m

+ 4(j − 1)K(m)/p,m

]

, p odd, (24)

with α1 being given by

α1 ≡







p
∑

j=1

cn[4(j − 1)K(m)/p,m]







−1

. (25)

Using eq. (22), we can now compute the corresponding value of the constant C.
We obtain

C = −2 + 4α2
1(1− 2m)

m
+ 8α3

1

p
∑

j=1

cn3[4(j − 1)K(m)/p,m] . (26)

It is easily checked that since 0 ≤ m ≤ 1, C varies from 2 to ∞, and hence the
solutions (21) and (24) must be identical. On equating the two values of C as given
by eqs (21) and (26), we then find that for odd p, the Landen transformation is

cn(x, m̃1) = α1

p
∑

j=1

cn

[

α1

√
m̃1x√
m

+ 4(j − 1)K(m)/p,m

]

, (27)

where m̃1 is given by

m̃1 =
m

α2
1







(1− 2m) + 2mα1

p
∑

j=1

cn3[4(j − 1)K(m)/p,m]







−1

. (28)
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What happens if p is an even integer? As shown in [7], in that case another
periodic solution of the static sine-Gordon eq. (13) is

sin(φ(x)/2) = α2

p
∑

j=1

(−1)j−1dn[α2x+ 2(j − 1)K(m)/p,m], p even,

(29)

where α2 is given by

α2 ≡







p
∑

j=1

(−1)j−1dn[2(j − 1)K(m)/p,m]







−1

. (30)

Using eq. (22), the value of C for this solution is easily computed and we find that
2 ≤ C ≤ ∞. On comparing with solution (21) we find that in this case the Landen
formula is

cn(x, m̃2) = α2

p
∑

j=1

(−1)j−1dn[α2

√

m̃2 x+ 2(j − 1)K(m)/p,m], (31)

where m̃2 is given by

m̃2 =
1

α2
2







(m− 2) + 2α2

p
∑

j=1

(−1)j−1dn3[2(j − 1)K(m)/p,m]







−1

.

(32)

As expected, in the special case of p = 2, we immediately recover the Landen
formula (4).

2.3 ‘sn’ Landen formulas

As in the cn case, here too the Landen formulas for even and odd values of p have
very different forms and so we consider them separately.

We start from the sine-Gordon field equation

φxx − φtt = sinφ, (33)

and look for time-dependent, traveling wave solutions with velocity v > 1 (which
are called optical soliton solutions in the context of condensed matter physics). In
terms of the variable

η ≡ x− vt√
v2 − 1

, (34)

eq. (33) takes the simpler form
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φηη = − sinφ. (35)

Note that the only change from eq. (13) is an additional negative sign on the right-
hand side. On integrating this equation once, we obtain

φ2
η = C + 2 cosφ. (36)

On integrating further, we get

∫

dφ√
C + 2 cosφ

= η + η0, (37)

where η0 is a constant of integration which we put equal to zero without loss of
generality. Substituting sin(φ/2) = ψ, yields

∫

dψ
√

1− ψ2

√

C+2
4 − ψ2

= η. (38)

If we now perform the integral for different values of C, then we get all the solutions.
It is easily checked that the three simplest solutions of eq. (38) covering the entire
allowed range of C are

ψ = tanh η, C = 2, (39)

ψ =
√
m̃ sn (η, m̃), C = 4m̃− 2, (40)

ψ = sn

(

η√
m̃
, m̃

)

, C =
4

m̃
− 2, (41)

where 0 ≤ m̃ ≤ 1. Note that the constant C has been computed here using eq.
(36), which in terms of ψ takes the form

C = −2 + 4ψ2 +
4ψ2

η

1− ψ2
. (42)

Thus, for solution (40), C is in the range −2 ≤ C ≤ 2, whereas for solution (41), C
lies between 2 and ∞. Note that for C < −2, there is no real solution to eq. (38).

Using appropriate linear superposition, it was shown in ref. [7] that for odd p one
of the solutions of eq. (35) is given by

sin(φ(η)/2) =
√
mα

p
∑

j=1

sn[αη + 4(j − 1)K(m)/p,m], p odd, (43)

with α being given by eq. (8). Using eq. (42), we can now compute the corre-
sponding value of C. We find

C = −2 + 4mα2

α2
1

, (44)
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where α, α1 are given by eqs (8) and (25) respectively. It is easily checked that
since 0 ≤ m ≤ 1, C has values between −2 and 2. Hence solutions (40) and (43)
must be identical. On equating the two values of C as given by eqs (40) and (44),
we then find that the ‘sn’ Landen transformation formula for odd p is given by

sn(x, m̃3) = α1

p
∑

j=1

sn[αx+ 4(j − 1)K(m)/p,m], (45)

with m̃3 and m being related by

m̃3 = m
α2

α2
1

. (46)

Finally, we turn to the ‘sn’ Landen transformation formula for the case when p is
an even integer. One can show [7] that in this case, a solution to eq. (35) is given
by

sin(φ(η)/2) = mp/2αA0

p
∏

j=1

sn[αη + 2(j − 1)K(m)/p,m], p even, (47)

with α being given by eq. (8) and A0 defined by

A0 =

p−1
∏

j=1

sn(2jK(m)/p,m). (48)

Using eq. (42), we can now compute the corresponding value of C. We obtain

C = −2 + 4mpα4A4
0. (49)

It is easily checked that since 0 ≤ m ≤ 1, the value of C varies between −2 and 2
and hence solutions (40) and (47) must be identical. On equating the two values of
C as given by eqs (40) and (49), we find that for even p, the Landen transformation
formula is

A0 α sn(x, m̃4) =

p
∏

j=1

sn[αx+ 2(j − 1)K(m)/p,m], (50)

with m̃4 given by

m̃4 = mpα4A4
0. (51)

Not surprisingly, for p = 2 we recover the Landen transformation formula (5). It is
amusing to notice that as m→ 0,

A0(p,m = 0) =

p−1
∏

j=1

sin(jπ/p) =
p

2p−1
. (52)
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At this point, we have generalized all three of the celebrated two hundred year old
p = 2 Landen formulas [eqs (3)–(5)] to arbitrary values of p, the generalization being
different depending on whether p is an even or odd integer. In the next section,
we re-cast the formulas in even simpler form. Although several of these Landen
formulas are already known [1], to our knowledge, they have never been derived via
the novel approach of this article which makes use of solutions of non-linear field
equations.

3. Alternative forms for Landen transformations

3.1 Relation between the transformed modulus parameters m̃i and m

So far, we have obtained several seemingly different relationships between the trans-
formed modulus parameters m̃, m̃1, m̃2, m̃3, m̃4 and m. Let us recall that while
relation (7) for m̃ is valid for all p, relations (27) and (45) for m̃1 and m̃3 are valid
only for odd p and relations (31) and (50) for m̃2 and m̃4 are valid only for even
p. One would like to know if for any given p, the different Landen transformations
give the same relationship between m̃i and m or not. For p = 2, it is known that
m̃ = m̃2 = m̃4 [ see eqs (3)–(5)]. Similarly, with a little algebraic manipulation,
one can show that for p = 3 the corresponding relations are

m̃ = m̃1 = m̃3 = m
(1− q)2

(1 + q)2(1 + 2q)2
, (53)

where q ≡ dn(2K(m)/3,m). Note that while deriving this result, use has been
made of the fact that cn(4K(m)/3,m) = − q

1+q and that q satisfies the identity

q4+2q3−2(1−m)q− (1−m) = 0. Similarly, using the relations dn(K(m)/2,m) =
dn(3K(m)/2,m) = (1 −m)1/4 ≡ t and dn(K(m),m) = t2, it is easily proved that
for p = 4, the relations are m̃ = m̃2 = m̃4 = (1− t)4/(1 + t)4.

As p increases, the algebra becomes messier and it is not easy to write the cor-
responding relations between m̃i and m in a neat closed form. However, we can
still establish the equivalence of all m̃i for any given p. For this purpose we equate
the periods of the left- and right-hand sides of the various Landen transformation
relations [(7), (27), (31), (45), (50)]. We get

K(m̃) =
K(m)

pα
, K(m̃3) =

K(m)

pα
, K(m̃4) =

K(m)

pα
, (54)

K(m̃1) =
K(m)

√
m

pα1

√
m̃1

, K(m̃2) =
K(m)

pα2

√
m̃2

. (55)

From eq. (54) one immediately sees that m̃ = m̃3 for odd p and m̃ = m̃4 for even
p. In order to establish that m̃1 = m̃3 for odd p, we suitably rescale, square and
add the Landen transformations (27) and (45). This yields

sn2(x, m̃) + cn2

(

α
√
mx

α1

√
m̃1

, m̃1

)

= C, (56)
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where the constant C on the right-hand side comes from making use of cyclic
identities [9–11]. Since eq. (56) is valid for all x, and in particular for x = 0, it
follows that C = 1, and hence one must have

sn2(x, m̃) = sn2

(

α
√
mx

α1

√
m̃1

, m̃1

)

. (57)

This implies that (α
√
m/α1

√
m̃1) = 1 and hence m̃1 = m̃ for odd p. Similar

reasoning yields (α/α2

√
m̃2) = 1 and m̃2 = m̃ for even p.

Consequently, for odd p, the three Landen transformations are

dn(x, m̃) = α

p
∑

j=1

dn(xj ,m), (58)

cn(x, m̃) = α1

p
∑

j=1

cn(x̃j ,m), sn(x, m̃) = α1

p
∑

j=1

sn(x̃j ,m), (59)

where α, α1 are given by eqs (8) and (25), xj , x̃j are as given by eq. (12) while m̃
and m are related by eq. (9).

Likewise, for even p, the three Landen formulas are

dn(x, m̃) = α

p
∑

j=1

dn(xj ,m), cn(x, m̃) = α2

p
∑

j=1

(−1)j−1dn(xj ,m),

A0 α sn(x, m̃) =

p
∏

j=1

sn(xj ,m), (60)

where α, α2, A0 are given by eqs (8), (30) and (48) respectively while m̃ and m are
related by eq. (9).

We might add here that for any fixed value of p, as m increases from 0 to 1, m̃
also increases monotonically from 0 to 1 (but is always less than m). Further, for a
given fixed value of m, m̃ decreases monotonically as p increases and is always less
than m.

3.2 Alternative forms of Landen transformation formulas

Recently we [9–11] have obtained several new identities for Jacobi elliptic functions.
Three of these, valid for odd p, are

p
∏

j=1

dn(xj ,m) =

(p−1)/2
∏

n=1

cs2
(

2Kn

p
,m

) p
∑

j=1

dn(xj ,m), (61)

p
∏

j=1

sn(x̃j ,m) = (−1/m)(p−1)/2

(p−1)/2
∏

n=1

ns2
(

4Kn

p
,m

) p
∑

j=1

sn(x̃j ,m),

(62)
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p
∏

j=1

cn(x̃j ,m) = (1/m)(p−1)/2

(p−1)/2
∏

n=1

ds2
(

4Kn

p
,m

) p
∑

j=1

cn(x̃j ,m). (63)

Here ds(x,m), etc. are defined by ds(x,m) = dn(x,m)/sn(x,m). Hence, for odd p,
the three Landen transformation formulas can also be written as products (rather
than sums) of p terms. In particular, for odd p the three Landen transformation
formulas can also be written in the form

dn(x, m̃) =

∏p
j=1dn(xj ,m)

∏p−1
n=1 dn(2nK(m)/p,m)

, (64)

cn(x, m̃) =

∏p
j=1 cn(x̃j ,m)

∏p−1
n=1 cn(4nK(m)/p,m)

, (65)

sn(x, m̃) =

∏p
j=1 sn(x̃j ,m)

α(m)
∏p−1

n=1 sn(4nK(m)/p,m)
. (66)

Similarly, for even p, on making use of the identity [9,10]

(m)p/2
p
∏

j=1

sn(xj ,m) =





p

2
−1
∏

n=1

ns2(2nK(m)/p,m)





p
∑

j=1

(−1)j−1Z(xj ,m),

(67)

where Z(u,m) is the Jacobi zeta function, we can rewrite the Landen formula (60)
for sn in the form

sn(x, m̃) = α2

p
∑

j=1

(−1)j−1Z(xj ,m). (68)

We have not seen this particular form for the sn Landen transformation in the
mathematics literature. Here the coefficient multiplying the right-hand side of eq.
(68) has been fixed by demanding consistency.

On comparing eqs (60), (67) and (68) we obtain an interesting identity

mp/2αα2

p−1
∏

j=1

sn(2jK(m)/p,m) =

p

2
−1
∏

n=1

ns2(2nK(m)/p,m). (69)

In concluding this section, we note that many of the Landen transformation
formulas derived above lead to interesting known trigonometric relations by taking
the limiting case m = m̃ = 0. For instance, eqs (60), (65) and (66) lead to [4]

sin px = 2p−1

p
∏

j=1

sin[x+ (j − 1)π/p], p even, (70)
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cos px = 2p−1

p
∏

j=1

cos[x+ 2(j − 1)π/p], p odd, (71)

sin px = (−4) p−1

2

p
∏

j=1

sin[x+ 2(j − 1)π/p], p odd. (72)

4. Concluding remarks

We have used a novel method to obtain generalized Landen transformation formulas
involving changes of the modulus parameter. Analogous to the generalized Landen
transformations, it is also possible to obtain generalized Gauss transformations in
which the parameter m̃G is greater than m. In particular, the generalized Gauss
transformations can be systematically obtained [12] from the Landen transforma-
tions of arbitrary order p by considering shifts in the arguments by pure imaginary
amounts and making use of the fact that the Jacobi elliptic functions are doubly
periodic. In particular, one can start from any Landen transformation formula, use
the relations [2,3]

dn(x,m′) = dc(ix,m), cn(x,m′) = nc(ix,m),

sn(x,m′) = −isc(ix,m), (73)

and then redefine ix = u. Here m′ = 1 −m while dc(x,m) = dn(x,m)/cn(x,m).
As an illustration, the Landen transformation formula (58), which is valid for any
p, takes the form

dc(x, m̃) = β

p
∑

j=1

dc[βx+ 2i(j − 1)K ′(m)/p,m] , (74)

where

β ≡ β(m) = α(m′) =

( p
∑

j=1

dn[2(j − 1)K ′(m)/p,m′]

)−1

. (75)

We might add here that just as we have considered Landen formulas where the
shifts are in units ofK(m) or iK ′(m) on the real or pure imaginary axis respectively,
we can also consider [12] Landen formulas corresponding to shifts in units ofK(m)+
iK ′(m) in the complex plane. In particular, one can start from any of the Landen
formula, change m(m̃) to 1/m(1/m̃), change x to kx and obtain the corresponding
Landen transformation in the complex plane by using the formulas

dn

(

kx,
1

m

)

= cn(x,m), cn

(

kx,
1

m

)

= dn(x,m),

sn

(

kx,
1

m

)

= ksn(x,m). (76)
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We would like to point out here that by multiplication, integration and differenti-
ation of the Landen formulas for the three basic Jacobi elliptic functions sn, cn, dn,
we can readily obtain useful Landen formulas for their products and various other
combinations [12]. For example, squaring the Landen formula (58) and using the
cyclic identity [9,10]

p
∑

j=1

dn(xj ,m) dn(xj+r,m) = p[dn(a,m)− cs(a,m)Z(a,m)],

a ≡ 2rK(m)/p , (77)

yields the Landen formula for dn2, i.e. we get

dn2(x, m̃) = α2

[ p
∑

j=1

dn2(xj ,m) + 2Ad

]

, (78)

where

Ad ≡
p
∑

i<j=1

dn(xi,m)dn(xj ,m)

= p

(p−1)/2
∑

j=1

[dn(2jK(m)/p,m)

−cs(2jK(m)/p,m)Z(2jK(m)/p)] , p odd ,

= (p/2)
√
1−m+ p

(p−2)/2
∑

j=1

[dn(2jK(m)/p,m)

−cs(2jK(m)/p,m)Z(2jK(m)/p)] , p even. (79)

If we now integrate both sides of eq. (78) with respect to x, then we simultane-
ously obtain Landen transformations for both the Jacobi zeta function as well as
the complete elliptic integral of the second kind E(m). In particular, on using the
well-known formula [3,4]

∫

dn2(x,m) dx = Z(x,m) +
xE(m)

K(m)
, (80)

and integrating eq. (78) yields the following two remarkable identities

Z(x, m̃) = α

p
∑

j=1

Z(xj ,m) , E(m̃) = α [E(m) + 2AdK(m)/p] . (81)

While deriving this relation, use has been made of the fact that Z(x = 0,m) = 0,
that it is an odd function of its argument x and that it is a periodic function of x
with period 2K(m).
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Finally, it is worth pointing out that recently we [9–11] have obtained a large
number of cyclic identities where combinations of Jacobi elliptic functions at dif-
ferent points are expressed in terms of sums like

∑p
j=1 dn(xj ,m). But, the remark-

able thing is that, it is precisely these sums for which Landen formulas, mentioned
above, have been obtained. Thus by combining the cyclic identities and the Lan-
den formulas given in this paper, we can obtain a wide class of generalized Landen
transformations for many combinations of the Jacobi elliptic functions [12]. For
example, a simple cyclic identity valid for both even and odd integral p is

p
∑

j=1

dn2(xj ,m)[dn(xj+r,m) + dn(xj−r,m)]

= 2[ds(a,m)ns(a,m)− cs2(a,m)]

p
∑

j=1

dn(xj ,m), (82)

where a = 2rK(m)/p. On combining it with relation (58), we obtain the Landen
formula

p
∑

j=1

dn2(xj ,m)[dn(xj+r,m) + dn(xj−r,m)]

= (2/α)[ds(a,m)ns(a,m)− cs2(a,m)]dn(x, m̃) . (83)
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