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Abstract. We derive a number of local identities involving Jacobi elliptic functions and
use them to obtain several new results. First, we present an alternative, simpler derivation
of the cyclic identities discovered by us recently, along with an extension to several new
cyclic identities. Second, we obtain a generalization to cyclic identities in which successive
terms have a multiplicative phase factor exp(2iπ/s), where s is any integer. Third, we
systematize the local identities by deriving four local ‘master identities’ analogous to the
master identities for the cyclic sums discussed by us previously. Fourth, we point out that
many of the local identities can be thought of as exact discretizations of standard non-
linear differential equations satisfied by the Jacobi elliptic functions. Finally, we obtain
explicit answers for a number of definite integrals and simpler forms for several indefinite
integrals involving Jacobi elliptic functions.
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1. Introduction

In a recent paper [1] (henceforth referred to as I), we have given many new
mathematical identities involving the Jacobi elliptic functions sn (x,m), cn (x,m),
dn (x,m), where m is the elliptic modulus parameter (0 ≤ m ≤ 1). The func-
tions sn (x,m), cn (x,m), dn (x,m) are doubly periodic functions with periods
(4K(m), i2K ′(m)), (4K(m), 2K(m) + i2K ′(m)), (2K(m), i4K ′(m)), respectively

[2,3]. Here, K(m) ≡
∫ π/2

0
dθ[1−m sin2 θ]−1/2 denotes the complete elliptic integral

of the first kind, and K ′(m) ≡ K(1 − m). The m = 0 limit gives K(0) = π/2
and trigonometric functions: sn(x, 0) = sinx, cn(x, 0) = cosx, dn(x, 0) = 1.
The m → 1 limit gives K(1) → ∞ and hyperbolic functions: sn(x, 1) →
tanhx, cn(x, 1) → sechx, dn(x, 1) → sechx. For simplicity, from now on we
will not explicitly display the modulus parameter m as an argument of the Jacobi
elliptic functions.
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The identities discussed in ref. I are all cyclic with the arguments of the Jacobi
functions in successive terms separated by either 2K(m)/p or 4K(m)/p, where p is
an integer. Each p-point identity of rank R involves on its left-hand side a cyclic
homogeneous polynomial in Jacobi elliptic functions of degree R with p equally
spaced arguments. The separation is 2K(m)/p or 4K(m)/p depending on whether
the period of any term on the left-hand side is 2K(m) or 4K(m). In another recent
publication [4] (referred to as II), we presented rigorous mathematical proofs valid
for arbitrary p and R even though, for simplicity, we only presented identities of low
rank. In ref. II, we classified the identities into four types, each with its own ‘master
identity’ which we proved using a combination of the Poisson summation formula
and the special properties of elliptic functions [4,5]. We also provided a rigorous
derivation of cyclic identities with successive terms having alternating signs.
In this paper, we provide several generalizations of previous results. Here, our

approach is different and involves the use of ‘local’ identities which focus on any one
term in a cyclic identity. This term involves a product of Jacobi elliptic functions
and is expressed via the local identity as the sum of many terms of lower rank. The
purpose of this paper is to derive and make use of a number of local identities for
Jacobi elliptic functions. These local identities form the building blocks for cyclic
as well as much more general identities. For instance, adding p local identities with
equally spaced arguments permits us to re-derive cyclic identities. More generally,
taking p local identities with a phase (−1)(j−1) = e(j−1)iπ and summing over the
index j gives previously derived identities in which successive terms have alternative
signs. Finally, as discussed below, the generalization to taking p local identities with
an even more general phase exp(2i(j− 1)π/s), where s is any integer and summing
over the index j yields interesting new identities in which successive terms have
different weights. Also, while in principle we were able to prove the general form
for identities of arbitrary rank in refs I and II, in practice it was very difficult to
obtain the explicit coefficients in these identities. The use of local identities permits
evaluation of these coefficients. As a byproduct, a number of definite integrals
involving Jacobi elliptic functions can be explicitly evaluated and a number of
indefinite integrals can be expressed in simpler form.
To clarify the above ideas, consider as an example, a specific basic local identity:

dn2(y)dn(y + a) = −cs2(a)dn(y + a) + ds(a)ns(a)dn(y)

−m cs(a)cn(y)sn(y). (1)

Choosing y = x + (j − 1)2K(m)/p with j = 1, 2, . . . , p actually corresponds to p
identities, one for each value of the integer j. Taking a = r2K(m)/p, where r is an
integer less than p and coprime to it, and summing over j yields the cyclic identity

p
∑

j=1

d2
jdj+r =

p
∑

j=1

[

A

2
dj −m cs(a)sjcj

]

, (2)

where the coefficient A is given by A = 2[ds(a)ns(a)− cs2(a)] and we have used the
notation

dj ≡ dn(x+ (j − 1)2K(m)/p,m), sj ≡ sn(x+ (j − 1)2K(m)/p,m),
cj ≡ cn(x+ (j − 1)2K(m)/p,m). (3)
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Similar manipulations using a = −r2K(m)/p yield cyclic identities for expressions
like

∑p
j=1 d

2
j [dj+r ± dj−r]. The result with the negative sign is new and will be

discussed later in this paper. The result with the positive sign is

p
∑

j=1

d2
j [dj+r + dj−r] = A

p
∑

j=1

dj , (4)

and is one of the cyclic identities derived in ref. II by more complicated techniques.
Further, while it was clear from refs I and II that the identities of arbitrary (odd)

rank which are generalizations of eq. (4) must have the structure

p
∑

j=1

d2n
j [dj+r + dj−r] = A1

p
∑

j=1

d2n−1
j + · · ·+An

p
∑

j=1

dj , (5)

we were unable to obtain the coefficients A1, . . . , An. Here, we will obtain explicit
expressions for the coefficients. In ref. II, we were able to obtain the analogue of
identity (4) with alternating signs given by

p
∑

j=1

(−1)j−1d2
j [dj+r + dj−r] = A

p
∑

j=1

(−1)j−1dj ,

A = 2
[

ds(a)ns(a) + cs2(a)
]

, a =
r2K

p
. (6)

Here, we will obtain identities with more general weights like

p
∑

j=1

ωj−1d2
j [dj+r + dj−r], ω = exp

(

2iπ

s

)

, (7)

where ω is the sth root of unity, with s being any integer (< p) and p being 0 mod
s. Finally, in ref. II we had obtained MI-II (class II master identity, also see §4
below) identities like

p
∑

j=1

d2
jd

2
j+r = −2cs2(a)

p
∑

j=1

d2
j

+
p

2K

(

∫ 2K

0

dn2(t)dn2(t+ a)dt+ 4E cs2(a)

)

,

a =
r2K

p
, (8)

where E is the complete elliptic integral of the second kind [3]. The approach in
this paper will permit an evaluation of the definite integral on the right-hand side.
The paper is organized as follows: In §2, we state several local identities and

indicate how they are derived. Each identity has an integer label R indicating
the rank of the identity, i.e. the left-hand side of the identity is a homogeneous
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polynomial of degree R. We also show here that linear combinations of cyclic
identities often yield simpler results. In §3, we use the local identities of rank 2, 3,
4 recursively to obtain local identities of arbitrary odd and even rank, using which
one can immediately obtain the corresponding cyclic identities with weight factors
ω. In §4, we provide a unified framework for the local identities by deriving four
master local identities, from which all the identities can be derived in an alternative
manner without using addition formulas. In §5, we concentrate on those identities
of ref. II in which one of the terms on the right-hand side is a definite integral (which
we were previously unable to evaluate). Using our local identities, we show that
one can obtain cyclic identities where all the terms on the right-hand side are now
explicitly known. In fact, we show that by starting from any given local identity, the
indefinite integral of the left-hand side of this identity can be analytically obtained
in terms of the well-known integrals of Jacobi elliptic functions and indefinite elliptic
integrals of the first, second and third kind [3,6]. We would like to re-emphasize that
most of these integrals do not seem to be known in the literature. In §6, we discuss
continuum limits of the local and cyclic identities, showing that these degenerate to
standard differential equations or integral formulas. Section 7 contains conclusions
and a discussion of some open problems. All local identities of rank 2 and 3 are
presented in Appendices A and B respectively. A few local identities of rank 4, 5
and arbitrary rank are presented in Appendix C. Some simple results obtained by
taking suitable linear combinations of cyclic identities are given in Appendix D.
Many new definite and indefinite integrals are given in Appendices E and F.

2. The basic local identities

In this section we shall obtain several basic local identities. These identities are
easily derived using the well-known addition formulas for the sn, cn, dn functions
[2,3]:

dn(a+ b) =
dn(a)dn(b)−m cn(a)cn(b)sn(a)sn(b)

1−m sn2(a)sn2(b)
, (9)

cn(a+ b) =
cn(a)cn(b)− dn(a)sn(a)dn(b)sn(b)

1−m sn2(a)sn2(b)
, (10)

sn(a+ b) =
sn(a)cn(b)dn(b) + cn(a)dn(a)sn(b)

1−m sn2(a)sn2(b)
. (11)

We shall also use the addition formula for the Jacobi zeta function given by

Z(a+ b) = Z(a) + Z(b)−m sn(a)sn(b)sn(a+ b). (12)

One of the simplest, local, rank 2 identities is

dn(x)dn(x+ a) = dn(a) + cs(a)[Z(x+ a)− Z(x)− Z(a)], (13)
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which is easily proved by algebraic simplification after using the addition formulas
(9) to (12). The power of this local identity can be appreciated by the fact that we
can immediately derive the cyclic identity

p
∑

j=1

djdj+1 = p

[

dn

(

2K

p

)

− cs
(

2K

p

)

Z

(

2K

p

)]

, (14)

which was obtained in ref. II. This is accomplished by adding local identities like
(13) with x being replaced by x+a, x+2a, . . . , x+(p−1)a and choosing a = 2K/p.
Here p denotes the number of subdivisions of the period at which Jacobi elliptic
functions dn(x) are evaluated. A generalization of this identity to rth neighbours
is immediate, i.e., on choosing a = r2K/p (where r is coprime to and less than p),
we obtain the more general identity

p
∑

j=1

djdj+r = p[dn(a)− cs(a)Z(a)], a =
r2K

p
. (15)

We can immediately obtain a local identity for dn(x)dn(x − a) by changing a
to −a and recognizing the fact that while cn(a),dn(a) are even functions of a, the
functions sn(a), Z(a) are odd:

dn(x)dn(x− a) = dn(a)− cs(a)[Z(x− a)− Z(x) + Z(a)]. (16)

Adding and subtracting eqs (13) and (16) yields alternative simple expressions:

dn(x)[dn(x+ a) + dn(x− a)]

= 2dn(a) + cs(a)[Z(x+ a)− Z(x− a)− 2Z(a)], (17)

dn(x)[dn(x+ a)− dn(x− a)] = cs(a)[Z(x+ a) + Z(x− a)− 2Z(x)].
(18)

If we now consider the local identities analogous to (13) with x being replaced
by x + a, x + 2a, . . . , x + (p − 1)a, multiply them in turn by ω, ω2, . . . , ωp−2,
ωp−1 respectively and add to the local identity (13), then we obtain the remarkable
identity

p
∑

j=1

ωj−1djdj+r = p[dn(a)− cs(a)Z(a)]δs1 −
(

1− 1
ω

)

cs(a)

p
∑

j=1

ωj−1Zj ,

(19)

where a = r2K/p. The phase ω is as given by eq. (7) with s < p and p being 0 mod
s. For the special case s = 1 we recover the cyclic identity (15) with all terms on
the left-hand side having positive signs. For s = 2, eq. (19) gives the cyclic identity
with terms having alternating signs as obtained in ref. II. Thus the local identities
are very basic in the sense that once they are known, then the corresponding cyclic
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identities with and without arbitrary weight ω are immediately obtainable. It is
worth emphasizing here that the cyclic identities with arbitrary weight are new.
Proceeding in the same way, we have derived all possible local identities of rank 2

and 3. They are given in Appendices A and B respectively. Some examples of local
identities of rank 4, 5 and arbitrary rank are given in Appendix C. By following
the procedure explained above, in each case it is easy to obtain the corresponding
cyclic identities with weights ω.
One advantage of the local identities approach is that for the MI-II type of

cyclic identities, the right-hand side is explicitly known. In this context, it is
worth mentioning that in ref. II (also see [5]) we had obtained several MI-II cyclic
identities in which one of the terms on the right-hand side is a definite integral.
For example, one of the cyclic MI-II identities obtained in ref. II is given by eq.
(8). However, if we take the local identity (C4) given in Appendix C, and use
the procedure described above, we find a simpler, more elegant form for this cyclic
identity

p
∑

j=1

d2
jd

2
j+r = −2cs2(a)

p
∑

j=1

d2
j + p[cs2(a) + ds2(a)− 2cs(a)ds(a)ns(a)Z(a)],

a =
r2K

p
. (20)

Using various local identities obtained in this paper, the corresponding MI-II cyclic
identities are easily written where the constant on the right-hand side is now ex-
plicitly known and not just formally expressed as an unevaluated definite integral.
Let us now consider a specific local identity of rank 2

m cn(x)[sn(x+ a)− sn(x− a)]

= 2ns(a)dn(x)− ds(a)[dn(x+ a) + dn(x− a)], (21)

obtained using eqs (9)–(12). This leads to the following cyclic identity with weighted
terms:

p
∑

j=1

mωj−1cj [sj+r − sj−r] = 2

[

ns(a)− cos
(

2π

s

)

ds(a)

] p
∑

j=1

ωj−1dj ,

(22)

where a = r2K/p. Other examples of new cyclic identities of rank 3 and 4 with
weighted terms are

m

p
∑

j=1

ωj−1dj [cj+rsj+r − cj−rsj−r]

= 2p[cs(a)− ds(a)ns(a)Z(a)]δs1

− 2i sin
(

2π

s

)

ds(a)ns(a)

p
∑

j=1

ωj−1Zj − 2 cos
(

2π

s

)

cs(a)

p
∑

j=1

ωj−1d2
j ,

(23)
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p
∑

j=1

ωj−1dj [cj+rdj+r − cj−rdj−r] = 2cs(b) cos

(

2π

s

) p
∑

j=1

ωj−1sjdj

−2i sin
(

2π

s

)

ds(b)ns(b)

p
∑

j=1

ωj−1cj , (24)

m

p
∑

j=1

ωj−1cj [cj+rsj+rdj+r − cj−rsj−rdj−r]

= −2i sin
(

2π

s

)

cs(b)ns(b)

p
∑

j=1

ωj−1sjdj

− 2m cos
(

2π

s

)

ds(b)

p
∑

j=1

ωj−1c3j

+ 2ds(b)

[

(m+ cs2(b)) cos

(

2π

s

)

− cs(b)ns(b)
] p
∑

j=1

ωj−1cj ,

b =
r4K

p
. (25)

Identities (24) and (25) are of type MI-IV and hence cj ≡ cn(x+ (j − 1)4K/p,m).
Proceeding in the same way, corresponding to most of the cyclic identities discussed
in I and II, we can obtain cyclic identities with weighted terms. Some examples of
such cyclic identities are given in Appendix D.

3. Local identities of arbitrary rank

Now that we have obtained local and hence cyclic identities of low rank, we will
proceed to generalize the results to arbitrary rank. In particular, for each local low
rank identity, we will obtain a local, and hence cyclic, identity of arbitrary rank
with explicitly known coefficients. As an illustration, let us start from the local
identity

dn2(x)[dn(x+ a) + dn(x− a)] = Adn(x) +B[dn(x+ a) + dn(x− a)],

(26)

where the constants A,B are defined by

A = 2ds(a)ns(a), B = −cs2(a). (27)

This identity can be easily derived using the addition formula (9). On repeatedly
multiplying both sides of identity (26) by dn2(x) and simplifying, we obtain the
following local identity of arbitrary odd rank:
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dn2n(x)[dn(x+ a) + dn(x− a)] = A

n
∑

k=1

Bk−1dn2(n−k)+1(x)

+Bn[dn(x+ a) + dn(x− a)]. (28)

The corresponding cyclic identities with arbitrary weight ω are immediately ob-
tained:

p
∑

j=1

ωj−1d2n
j [dj+r + dj−r] = A

p
∑

j=1

n
∑

k=1

ωj−1Bk−1d
2(n−k)+1
j

+2Bn cos

(

2π

s

) p
∑

j=1

ωj−1dj , (29)

where a = 2rK/p and p = 0 mod s.
In order to obtain the corresponding local identity of arbitrary even rank, we

start from identity (28), multiply both sides by dn(x), and use the local identity
(17) to obtain

dn2n+1(x)[dn(x+ a) + dn(x− a)]

= A

n
∑

k=1

Bk−1dn2(n−k+1)(x) + 2Bndn(a)

+Bncs(a)[Z(x+ a)− Z(x− a)− 2Z(a)]. (30)

The corresponding cyclic identities with arbitrary weight are then immediately
obtainable.
Proceeding in the same way, but starting from the identity

dn2(x)[dn(x+ a)− dn(x− a)]

= Dcn(x)sn(x) +B[dn(x+ a)− dn(x− a)],

D = −2m cs(a), (31)

multiplying recursively by dn2(x), and using the identity (31), we obtain the fol-
lowing identities of arbitrary odd and even rank:

dn2n(x)[dn(x+ a)− dn(x− a)]

= D

n
∑

k=1

Bk−1cn(x)sn(x)dn2(n−k)(x)

+Bn[dn(x+ a)− dn(x− a)], (32)

dn2n+1(x)[dn(x+ a)− dn(x− a)]

= D
n
∑

k=1

Bk−1cn(x)sn(x)dn2(n−k)+1(x)

+Bncs(a)[Z(x+ a) + Z(x− a)− 2Z(x)]. (33)
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The corresponding cyclic identities are then immediately written down. Further,
by adding identities (28) and (32), we obtain the basic local cyclic identity of any
odd rank:

dn2n(x)dn(x+ a) =
D

2

n
∑

k=1

Bk−1cn(x)sn(x)dn2(n−k)(x)

+Bndn(x+ a) +
A

2

n
∑

k=1

Bk−1dn2(n−k)+1(x), (34)

where A,B,D are given by eqs (27) and (31). It is worth pointing out that using
this identity, we can immediately write down the local identity for the combination
dn(x)dn2n(x+ a). This is done by replacing x by x− a followed by changing a to
−a in eq. (34). In this way we obtain

dn(x)dn2n(x+ a) =
A

2

n
∑

k=1

Bk−1dn2(n−k)+1(x+ a)

−D
2

n
∑

k=1

Bk−1cn(x+ a)sn(x+ a)dn2(n−k)(x+ a) +Bndn(x). (35)

Now dn(x)dn2n(x − a) can be immediately obtained from here by replacing a by
−a. We find that

p
∑

j=1

d2n
j [dj+r ± dj−r] = ±

p
∑

j=1

dj
[

d2n
j+r ± d2n

j−r

]

, (36)

p
∑

j=1

(−1)j−1d2n
j [dj+r ± dj−r] = ∓

p
∑

j=1

(−1)j−1dj
[

d2n
j+r ± d2n

j−r

]

. (37)

In the next section we shall see that similar relations are in fact true in general for
any such combinations of Jacobi elliptic functions.
Proceeding in the same way, by starting from each of the lower rank identities

given in Appendices A, B, C we can write down the corresponding local and hence
cyclic identities of arbitrary rank. Some illustrative examples with arbitrary even
powers of dn(x) (or sn(x) or cn(x)) are given in Appendix C. The results for arbi-
trary odd powers of dn(x) (or sn(x) or cn(x)) are easily obtainable from the even
rank ones via the identities of Appendix A.

4. Master local identities

In ref. II, we derived four master identities from which all the cyclic identities could
be derived as special cases. In this section we show how a similar procedure works
at the level of the local identities, thereby systematizing the identities and providing
a unified framework for them. Besides, rather than using the addition formulas for
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Jacobi elliptic functions, the master identities (MI) provide an alternative way to
derive the local, and hence also cyclic, identities. We may note here the differences
that arise in the two approaches: addition formulas do not lead to unevaluated
constants in the form of integrals on the right-hand side, while the MI, in particular
one of the four classes of MI do; on the other hand MI reduces the right-hand
side maximally to standard forms, while the addition formulas approach needs
considerable algebraic manipulation to attain the simplest final form. In any case,
the two approaches are of course compatible and either of them may be used. In
this section and in §6, we will use z instead of x as the variable to emphasize that
there is no restriction to the real numbers.
The classification in ref. I and in the above sections has been in terms of the

polynomial order of the elliptic functions appearing in the left-hand side, called
the rank of the identities. In contrast, the master identities first use symmetries
to identify four classes. Within each class, the identities are characterized by a
number which is the highest order of the singularities in the fundamental domain
of the left-hand side. Thus, the analytic structure of the functions appearing on the
left-hand side of any identity determines the constants and the form of the functions
that appear on the right-hand side. It is then easy to write symbolic manipulation
programs that turn any given form of the left-hand side into a local identity.
We first recall essential details of the analytic properties of the Jacobi elliptic

functions [6]. The function dn(z) is an even function of order two; there are two
simple poles inside the period parallelogram (0, 2K, 2K + 4iK ′, 4iK ′) situated at
iK ′ and 3iK ′ with residues of −i and i respectively. The function sn(z) is an
odd function of order two; with two simple poles situated at iK ′ and iK ′ + 2K,
with residues 1/

√
m and −1/√m, inside the fundamental period parallelogram

(0, 4K, 4K+2iK ′, 2iK ′). The function cn(z) is an even function of order two; with
two simple poles situated at iK ′ and 2K + iK ′, with residues −i/√m and i/

√
m,

inside the fundamental parallelogram (−2K, 2K, 4K + 2iK ′, 2iK ′). We note that
the lattice of the poles in the complex plane is identical for all these three func-
tions. However these functions have the following important distinguishing prop-
erties: dn(z + 2iK ′) = −dn(z), sn(z + 2iK ′) = sn(z), cn(z + 2iK ′) = −cn(z),
dn(z + 2K) = dn(z), sn(z + 2K) = −sn(z), cn(z + 2K) = −cn(z).
The symmetry and periodicity properties allow us to concentrate on the region

(0, 2K, 2K+2iK ′, 2iK ′) uniformly for all the functions, and consider only one simple
pole at iK ′. We supplement these possible symmetries with one additional one, for
which we describe the properties of the elliptic function dn2(z). Equivalently one
may choose cn2(z) or sn2(z). The function dn2(z) has the fundamental domain
(0, 2K, 2K + 2iK ′, 2iK ′) and consequently is completely periodic with respect to
translations of 2K and 2iK ′. It is also of order two, with one double pole at iK ′,
with a residue of 0. Thus we classify functions f(z) constructed from the Jacobi
elliptic functions into four symmetry classes. We define the quantities P,Q by

f(z + 2iK ′) = (−1)P f(z), f(z + 2K) = (−1)Qf(z), P,Q = 0, 1. (38)

We denote the four possibilities by (−,+), (+,+), (+,−) and (−,−), where
the first sign refers to the sign of (−1)P and the second to that of (−1)Q. We
note that as far as periodicity is concerned these functions are identical to dn(z),
dn2(z), sn(z) and cn(z) respectively. We also note that repeated differentiation does
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not change the symmetry class to which the functions belong, while this creates
functions with arbitrarily high order of poles. This then allows us to tailor suitable
combinations of derivatives of these four functions such that not only the periodicity,
but also the singular parts match with the given function f(z). Thus the difference
between the function f(z) and the tailored combination is an elliptic function with
no poles anywhere including at infinity. We then use Liouville’s theorem (which
states that an analytic function with no poles anywhere including at infinity, must
be a constant) to show that the constant is zero in all cases except the second,
where it can be evaluated as a definite integral.

4.1 Master identities of Types I, III and IV

Let f(z) be an elliptic function with the symmetry properties corresponding to
P = 1, Q = 0, (Type-I) and having np poles at positions ar (r = 1, . . . , np) within
the region (0, 2K, 2K + 2iK ′, 2iK ′) which we will call ABCD. Let the principal
part around the pole ar be

Lr
∑

lr=1

α
(r)
lr

(z − ar)lr
. (39)

We note that the principal part of dn(z) around the pole iK ′ is −i/(z − iK ′).
Therefore if we consider the function g(z):

g(z) =

np
∑

r=1

Lr
∑

lr=1

i(−1)lr−1

(lr − 1)!
α

(r)
lr

dlr−1 dn(z)

dzlr−1

∣

∣

∣

∣

z−ar+iK′

, (40)

this has identical poles as f(z) and at these poles also has identical principal parts.
Due to the symmetry requirements, the functions f(z) and g(z) also have identical
periods and hence by Liouville’s theorem they can differ utmost by a constant that
is independent of z. However, integrating both these functions from 0 to 4iK ′, we
see from the antisymmetry that these must vanish, implying that the constant is
zero; and hence f(z) = g(z). This is our ‘master’ local identity of Type-I; often the
evaluated function g(z) is of a simpler form than f(z).
Consider as an illustration the identity that results when f(z) = dn2(z)[dn(z +

a) + dn(z − a)]. This function has three poles, within ABCD at a1 = iK ′, a2 =
−a + iK ′, and a3 = a + iK ′. This function has P = 1, Q = 0, and hence is
of Type-I. At a1 ≡ iK ′ the principal part is −2 ids(a)ns(a)/(z − iK ′). We note
that although dn2(z) has a double pole at iK ′ it gets ‘softened’ by one, because
dn(z+a)+dn(z−a) has a zero at iK ′ for all a. This is the reason why we expect that

the RHS of such identities are simpler than the LHS. Thus α
(1)
1 = −2ids(a)ns(a)

and L1 = 1. Similarly we get: α
(2)
1 = i cs2(a), L2 = 1 and α

(3)
1 = i cs2(a), L3 = 1.

Hence this master identity yields the already stated result in eq. (26), which was
alternatively derived using addition formulas.
We note that in the case of cyclic identities further simplification occurs and the

α at the various poles can be summed up, while in the case of local identities they
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are left as they are. We note that the structure of the LHS yielded to simplification
because roughly a zero cancelled a pole. We can look at the ‘parts’ of this identity
where this does not happen fully. Thus when we take f(z) = dn2(z)dn(z − a) we
get the identity

dn2(z) dn(z − a) = ds(a) ns(a) dn(z) +m cs(a) cn(z) sn(z)

−cs2(a) dn(z − a). (41)

We note that the rank of the RHS is one less than that of the LHS, and further
reduction by one occurs when a is changed to −a and identities for dn2(z)dn(z+a)
and dn2(z)dn(z − a) are added which results in the already quoted identity of
eq. (26).
Similarly we derive the master identity for functions belonging to Type-III (P =

0, Q = 1):

f(z) =

np
∑

r=1

Lr
∑

lr=1

√
m(−1)lr−1

(lr − 1)!
α

(r)
lr

dlr−1 sn(z)

dzlr−1

∣

∣

∣

∣

z−ar+iK′

, (42)

and Type-IV (P = 1, Q = 1):

f(z) =

np
∑

r=1

Lr
∑

lr=1

i
√
m(−1)lr−1

(lr − 1)!
α

(r)
lr

dlr−1 cn(z)

dzlr−1

∣

∣

∣

∣

z−ar+iK′

. (43)

That the constant is zero in the case of Type-III and Type-IV identities can be seen
by integrating both sides from 0 to 4K. It may be noted that symbolic manipulation
packages that calculate series expansions can be effectively used to generate these
identities.

4.2 Master identity of Type-II

This last type of identity deserves special mention; firstly the function archetype
is dn2(z) which has a double pole at iK ′, secondly it leads to identities with non-
zero constants, and lastly the Jacobi zeta function appears in an essential way.
A function belonging to this type is periodic with periods 2K and 2iK ′ (hence
P = 0, Q = 0). Its principal part around iK ′ is −1/(z − iK ′)2. Thus we write the
master identity in this case as

f(z) = C +

np
∑

r=1

Lr
∑

lr=1

(−1)lr−1

(lr − 1)!
α

(r)
lr

dlr−2 dn2(z)

dzlr−2

∣

∣

∣

∣

z−ar+iK′

, (44)

where C is a constant. Note that the derivative order starts from −1, which should
be interpreted as an integral. Functions of this type can also have simple poles.
dn2(z) and its derivatives are not sufficient to construct these. If we include its
integral the master identity is complete. Therefore we note the standard result [6]
which can be taken to be the definition of the Jacobi zeta function Z(z):
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Z(z) =

∫ z

0

[

dn2(u) − E

K

]

du = E(z)− E

K
z, (45)

where E(z) is the incomplete elliptic integral of the second kind and E and K
are the complete elliptic integrals of the second and first kinds respectively. Thus
Z(z) is closely related to the incomplete elliptic integral of the second kind, and is
periodic with a period of 2K, but is not elliptic. It is however almost elliptic due
to the identity [6]: Z(z + 2iK ′) = Z(z)− iπ/K. If we write the lr = 1 part of this
master equation, which has the only part with the Jacobi zeta function, it is

np
∑

r=1

α
(r)
1 Z(z − ar + iK ′). (46)

We note that this is an elliptic function with the correct periods of 2K and 2iK ′,
due to the fact that

np
∑

r=1

α
(r)
1 = 0. (47)

This is the sum of the residues of the function at all the poles in ABCD. Making
use of the double periodicity of f(z) we find the integral around ABCD vanishes,
and hence from Cauchy’s theorem it follows that the sum of the residues must also
vanish, hence proving the above. Thus we are justified in using the zeta function
in this type of master identity even if it is not elliptic: it will always appear in
combinations that are elliptic functions.
Integrating both sides of the master identity from 0 to 2K we evaluate the con-

stant C:

C =
1

2K

∫ 2K

0

f(z) dz +
γ2E

K
, (48)

where γ2 =
∑np

r=1 α
(r)
2 . We can therefore evaluate the identity at some convenient

z where there is no singularity (for instance perhaps z = 0) and then make use of
the above to evaluate definite integrals. Assuming for instance that there is no pole
at z = 0 we may write

1

2K

∫ 2K

0

f(z) dz = f(0) − γ2
E

K

−
np
∑

r=1

Lr
∑

lr=1

(−1)lr−1

(lr − 1)!
α

(r)
lr

dlr−2 dn2(z)

dzlr−2

∣

∣

∣

∣

iK′−ar

. (49)

Note that this integral cannot be evaluated by a direct application of Cauchy’s
theorem due to the vanishing of both the contour integral around ABCD and its
residue.
We also point out here something that is of relevance to the cyclic identities:

p
∑

j=1

g(zj)[h(zj+1)± h(zj−1)] = ±
p
∑

j=1

h(zj)[g(zj+1)± g(zj−1)], (50)
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p
∑

j=1

(−1)jg(zj)[h(zj+1)± h(zj−1)] = ∓
p
∑

j=1

(−1)jh(zj)[g(zj+1)± g(zj−1)],

(51)

where h(z) and g(z) are combinations of Jacobi elliptic functions as above. These
relate ordinary and alternating sums under an interchange of h and g and follow
from quite general considerations related only to the periodicity of h and g. The
RHS amounts to a rewriting of the LHS if we recall that either h(zp+1) = h(z1) and
g(zp+1) = g(z1) or h(zp+1) = −h(z1) and g(zp+1) = −g(z1) as the whole function
g(z)[h(z + T/p) + h(z − T/p)] is periodic with period T .

5. Evaluation of several elliptic integrals

In ref. II, we obtained several cyclic identities of type MI-II in which the right-
hand side contained a definite integral involving products of Jacobi elliptic func-
tions. These integrals are not available in standard tables of integrals [3,6]. We now
explicitly evaluate many such definite integrals using local identities.
As an illustration, we start from local identity (C4). On integrating both sides

with respect to x over an interval [0, 2K], one gets the definite integral

∫ 2K

0

dn2(x)dn2(x+ a) dx

= −4Ecs2(a) + 2K[cs2(a) + ds2(a)− 2cs(a)ds(a)ns(a)Z(a)]. (52)

It may be noted that here a is any non-zero constant. Using this value of the integral
in the MI-II cyclic identity (8) that we obtained in ref. II and choosing a = 2rK/p,
immediately yields the cyclic identity (20) which we had directly obtained from the
local identity.
The other definite integrals which we are now able to evaluate are related to

cyclic identities containing an even number of dn or sn or cn. For example, in ref.
II, we simply stated the identity

1

p

p
∑

j=1

djdj+rdj+sdj+t ≡ A

=
1

2K

∫ 2K

0

dn(x)dn(x+ a)dn(x+ a′)dn(x+ a′′) dx, (53)

but were unable to evaluate the integral and hence find A. Here, a = 2rK/p, a′ =
2sK/p, a′′ = 2tK/p. We now use the local identities to evaluate this definite
integral for arbitrary but unequal a, a′, a′′. The proof begins with the local identity
(C1). Integrating both sides over the interval [0, 2K] yields eq. (E7). Note that
the special case a = 2rK/p, a′ = 2sK/p, a′′ = 2tK/p yields the cyclic identity (53).
Finally, there are some MI-II cyclic identities and hence definite integrals which

were not even discussed in ref. II. For example, consider the local identity (B10)
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from which by following the method explained in §2 we can deduce the cyclic
identity

1

p

p
∑

j=1

mdjsj+rcj+s =
1

2K

∫ 2K

0

mdn(x)sn(x+ a)cn(x+ a′) dx, (54)

where a = 2rK/p, a′ = 2sK/p. By using the local identity (B10), we can in
fact obtain this integral for arbitrary but unequal values of a, a′. In particular,
integrating eq. (B10) over the interval [0, 2K] yields

1

2K

∫ 2K

0

mdn(x)sn(x+ a)cn(x+ a′) dx

= −ds(a− a′)[dn(a)− cs(a)Z(a)] + ns(a− a′)[dn(a′)− cs(a′)Z(a′)].
(55)

In the special case when a = 2rK/p, a′ = 2sK/p, one recovers the cyclic identity
(54).
Proceeding in the same way, we have obtained expressions for all the definite

integrals which appear in the cyclic identities of the type MI-II. Some of these
definite integrals are given in Appendix E.
We can even simplify several indefinite integrals. In fact, by starting from any

local identity we can obtain the indefinite integral of its left-hand side in terms of
the well-known integrals [3,6] of snn(x),dnn(x), cnn(x). The only exceptions are
those MI-II local identities in which the right-hand side has a term proportional
either to [Z(x+a)+Z(x−a)−2Z(x)] or [Z(x+a)−Z(x−a)]. We show below that
in that case the indefinite integral of the left-hand side also has terms containing
indefinite elliptic integrals of the first, second and third kind [3,6].
We start from the local identity

dn2(x)dn(x+ a) = B dn(x+ a) + ds(a)ns(a)dn(x)−m cs(a)sn(x)cn(x),

B ≡ −cs2(a), (56)

which is obtained by adding the identities (26) and (31). On integrating both sides
with respect to x and using the known integral of dn(x) [3] we then obtain

∫

dn2(x)dn(x+ a) dx = B am(x+ a) + ds(a)ns(a)am(x) + cs(a)dn(x),

(57)

where
∫

dn(x) dx = am(x) = sin−1(sn(x)) = i ln [cn(x)− i sn(x)]. On multiplying

both sides of eq. (56) by dn2(x) and using eq. (57) we then find that
∫

dn4(x)dn(x+ a) dx = B2am(x+ a)

+ds(a)ns(a)
[

1 +B − m

2

]

am(x)

+B cs(a)dn(x) +
cs(a)

3
dn3(x)

+
mds(a)ns(a)

2
sn(x)cn(x). (58)
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Proceeding in this way, one can find the indefinite integral of dn2n(x)dn(x+ a).
One can also derive a recursion relation relating the various integrals. In particular,
using eq. (34) one can show that

dn2n(x)dn(x+ a) = B dn2n−2(x)dn(x+ a) + ds(a)ns(a)dn2n−1(x)

−m cs(a)sn(x)cn(x)dn2n−2(x). (59)

On integrating both sides with respect to x, we find a recursion relation relating
various integrals:

In = BIn−1 +
cs(a)

(2n− 1)dn
2n−1(x) + ds(a)ns(a)

∫

dn2n−1(x) dx;

Ik ≡
∫

dn2k(x)dn(x+ a) dx. (60)

Note that the integral of any power of dn(x) (as well as sn(x), cn(x)) is known in
principle [3]. We might also add that once the integral of say dn2n(x)dn(x+ a) is
known then the integral of dn(x)dn2n(x+a) is obtained from it by simply replacing
x by x− a followed by a→ −a.
Using the above procedure one can obtain indefinite integrals of the left-hand

sides of all the local identities given in this paper except for those MI-II local
identities in which the combination [Z(x+ a)−Z(x− a)] or [Z(x+ a)+Z(x− a)−
2Z(x)] occurs on the right-hand side. To handle these integrals, we start from the
local identity (17). On using eq. (9) it is easily shown that

dn(x)[dn(x+ a) + dn(x− a)] =
2dn(a)[1−m sn2(x)]

1−m sn2(a)sn2(x)
. (61)

On integrating both sides of eq. (17) over x, using eq. (61) and well-known integrals
(see integrals 336.01 and 337.01 of [6]) we finally find that

∫

dn(x)[dn(x+ a) + dn(x− a)] dx = 2[dn(a)− cs(a)Z(a)]x

+ cs(a)

∫

[Z(x+ a)− Z(x− a)] dx

= 2ds(a)ns(a)F (am x, k)− 2dn(a)cs2(a)Π(am x, k2sn2(a), k), (62)

where k2 = m. Here F (am x, k) and Π(am x, k2sn2(a), k) are indefinite elliptic
integrals of first and third kind respectively. Similarly, on using eqs (9) and (18) it
is easy to show that

∫

dn(x)[dn(x+ a)− dn(x− a)] dx

= cs(a)

∫

[Z(x+ a) + Z(x− a)− 2Z(x)] dx

= cs(a) ln[1−m sn2(a)sn2(x)], (63)

and hence
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∫

dn(x)dn(x+ a) dx = [dn(a)− cs(a)Z(a)]x

− cs(a)
∫

[Z(x+ a)− Z(x)] dx

= ds(a)ns(a)F (am x, k)− dn(a)cs2(a)Π(am x, k2sn2(a), k)

+ (1/2)cs(a) ln[1−m sn2(a)sn2(x)]. (64)

We now show that using eq. (64) one can obtain the indefinite integral of the
left-hand side of any local MI-II identity. As an illustration, consider the local
identity (C15). It is easy to show from here that

dn2n(x)dn2(x+ a)

= B dn2n−2(x)[dn2(x) + dn2(x+ a)]

− (1−m)dn2n−2(x) + 2Bn−1ds(a)ns(a)dn(x+ a)dn(x)

+ 2ds(a)ns(a) [ds(a)ns(a)dn(x)−m cs(a)sn(x)cn(x)]

×
n−1
∑

k=1

Bk−1[dn(x)]2(n−k)−1, (65)

where B ≡ −cs2(a) and n ≥ 2. On integrating both sides of this equation, we get
the recursion relation

In = BIn−1 +

∫

B dn2n(x) dx− (1−m)

∫

dn2n−2(x) dx

+2Bn−1ds(a)ns(a)

∫

dn(x+ a)dn(x) dx

+cs(a)ds(a)ns(a)

n−1
∑

k=1

Bk−1 dn
2n−2k(x)

n− k

+2ds2(a)ns2(a)
n−1
∑

k=1

∫

Bk−1dn2(n−k)(x) dx, (66)

where I1 is easily obtained by using the integral (64) and the local identity (C4).
We find

I1 ≡
∫

dn2(x)dn2(x+ a) dx

= −cs2(a)[E(am x, k) + E(am(x+ a), k)]

−(1−m)x+ 2ds(a)ns(a)

∫

dn(x+ a)dn(x)dx, (67)

where E(am x, k) is the indefinite elliptic integral of the second kind.
Similar recursion relations for several other indefinite elliptic integrals are given

in Appendix F.
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6. Continuum limit of local and cyclic identities

We now study what happens to the local identities as a→ 0. Although the identities
are not valid at a = 0, this limit leads to well-known non-linear ordinary differential
equations satisfied by the Jacobi elliptic functions. Thus, the local identities may
be viewed as an exact discretization of these differential equations. This provides
the justification for calling these identities ‘local’. This is to be contrasted with
the cyclic identities that are exact discretizations of integral identities. Just as the
differential equation can be integrated, the local identities are simply summed to
produce cyclic identities.
Take the simple Type-I identity:

dn2(z)[dn(z + a) + dn(z − a)]

= 2ds(a)ns(a)dn(z)− cs2(a)[dn(z + a) + dn(z − a)]. (68)

Since cs2(a) has a pole of order two at a = 0, we expand to second order in a:

dn(z + a) + dn(z − a) = 2dn(z) + a2 d
2

dz2
dn(z) +O(a3). (69)

Using lima→0 [ds(a)ns(a)−cs2(a)] = 1−m/2, then leads to the limiting differential
equation:

(2−m)y − d
2y

dz2
= 2y3, (70)

with y = dn(z). Of the many applications of such differential equations, the most
straightforward one would be the interpretation of this as Newton’s equation of
motion for a particle in a one-dimensional double well potential, with z taking the
role of time.
It is well-known that finite difference versions of such non-linear one-dimensional

problems tend to exhibit chaos, and therefore the difference equation does not have
analytical solutions in terms of the Jacobi elliptic functions. However, we precisely
achieve this when converting this differential equation into a finite difference equa-
tion in the following manner:

(2−m)y(z)− [y(z +∆) + y(z −∆)− 2y(z)]
∆2

= y2(z)[y(z +∆) + y(z −∆)]. (71)

Of course depending on the smallness of ∆, the above discrete equation will only
be an approximation to the actual solution dn(z). However, replacing 2−m in the
difference scheme with 2[ds(∆)ns(∆)−cs2(∆)] and the 1/∆2 factor multiplying the
second difference with cs2(∆) leads to an exact difference scheme:

2[ds(∆)ns(∆)− cs2(∆)]yn − cs2(∆)[yn+1 + yn−1 − 2yn]
= y2

n[yn+1 + yn−1], (72)

where y(n) ≡ y(z + n∆), which is identical to the local identity in eq. (68) when
we put ∆ ≡ a. This is of course just the reverse of the small a limit.
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The local identity implies that yn = dn(an) is a solution of this difference equation
with the initial condition y0 = 1, y1 = dn(a). The modulus parameter ism in all the
elliptic functions involved. This is analogous to the differential equation (eq. (70))
whose solution is y(z) = dn(z), when the initial conditions are y(0) = 1, y′(0) = 0,
where the prime denotes differentiation. It may be noted that the local identity in
eq. (41) also has the same continuum limit as the above, and that the difference
equation is therefore genuinely second order rather than first. All of the two-point
local identities limit to well-known differential equations, or to those that can be
derived from these.
Cyclic identities limit to definite integrals, but we can generalize to indefinite

integrals. For instance, consider the Type-I local identity in eq. (68). Let zi =
z0 + A (i − 1)/p, with i = 1, . . . , p. Here A is arbitrary and p is an integer, zi are
the sample points between z0 and z ≡ z0 +A. The local identities give

p
∑

i=1

dn2(zi)[dn(zi+1) + dn(zi−1)]

= [2ds(a)ns(a)− cs2(a)]
p
∑

i=1

dn(zi)

− cs2(a)[dn(zp+1)− dn(z1) + dn(z0)− dn(zp)], (73)

with a = A/p. This becomes a cyclic identity when A = 2K in which case the
‘end correction’ that is the last term in the above equation vanishes due to the
periodicity of dn(z). Multiply both sides by A/p and then take the a → 0 (or
equivalently p → ∞) limit. The end corrections are rewritten and evaluated as
follows:

−A
p
cs2(a)[dn(zp+1)− dn(z1) + dn(z0)− dn(zp)]

→ − p

A
[dn(zp+1)− dn(zp) + dn(z0)− dn(z1)] (74)

→ m sn(z)cn(z)−m sn(z0)cn(z0).

Here we have used that the derivative of dn(z) is −m sn(z)cn(z). Thus the entire
identity in eq. (73) limits effectively to the indefinite integral

∫

dn3(z) dz =
1

2
(2−m)

∫

dn(z) dz +
m

2
sn(z)cn(z), (75)

which is a standard identity, for instance eq. (314.03) of Byrd and Friedman [6].
Thus the cyclic identities are exact Riemann sums of integral identities while local
identities are discretizations of differential equations.
In the case of three-point local identities (those which have the elliptic functions

evaluated at three points, z, z + a and z + a′) there are more than one limiting
cases. The case a′ → a or a′ → 0 leads to two-point local identities involving z
and z + a. For instance starting from the local identity in eq. (B1) and taking the
a→ a′ limit or the a′ → 0 limit leads essentially to the local two-point identity in
eq. (41).
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7. Comments and discussion

In this paper, we have proved a wide class of local identities, using which we have
obtained corresponding cyclic identities with arbitrary weights. These results are
easily extended in several directions. For example, we could evaluate these identities
at points separated by gaps of T/p with imaginary or complex period T thereby
obtaining corresponding local identities for pure imaginary as well as complex shifts.
Secondly, we can also obtain similar identities for all nine auxiliary Jacobi functions
like ns(x,m) as well as six ratios of Jacobi functions like cn(x)dn(x)/sn(x). Further,
by following the procedure in ref. II, we can readily write down the corresponding
local as well as cyclic identities for Weierstrass functions, as well as for the ratio of
any two of the four Jacobi theta functions.
Many of these identities have non-trivial m = 0, 1 limits. For example, a cyclic

identity derived in ref. II, which is valid for any odd integer p, and l < p, is

p
∑

j=1

djdj+r...dj+(l−1)r

=

[ (l−1)/2
∏

k=1

cs2(ka) + 2(−1)(l−1)/2

(l−1)/2
∑

k=1

l
∏

n=1,n6=k

cs([n− k]a)

] p
∑

j=1

dj ,

(76)

while for l = p, we have the simpler identity

p
∏

j=1

dj =

(p−1)/2
∏

n=1

cs2
(

2Kn

p

) p
∑

j=1

dj , (77)

where a = r2K/p. At m = 0, these identities reduce to interesting trigonometric
identities

1 =

(l−1)/2
∏

k=1

cot2
(

rkπ

p

)

+ 2(−1)(l−1)/2

(l−1)/2
∑

k=1

l
∏

n=1,n6=k

cot

(

[n− k]
rπ

p

)

,

(78)

1

p
=

(p−1)/2
∏

n=1

cot2
(

nπ

p

)

. (79)

Actually, identity (78) is also valid for even p and r = 1, provided l < (p+ 2)/2.
For the special case of l = 3, one can write down cyclic identities for products

of three dn’s at arbitrary separation (in units of 2K/p) for both even and odd p.
In particular, using the local identity (B1), one can immediately write down cyclic
identities for combinations like

∑p
j=1 djdj+rdj+s with r and s being unequal but

arbitrary otherwise. In the limit m = 0, summing of all such independent cyclic
identities yields the following remarkable trigonometric identities:
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(p− 1)(p− 2)
3

=

p−1
∑

j=1

cot2
(

jπ

p

)

, p > 2. (80)

Similarly, many of the other local identities we have derived in this paper also
reduce to interesting trigonometric identities in the limit m = 0.
Finally, note that even though our local identities have been derived assuming

that a is an arbitrary constant, the identities are also valid when a is any function
of x. For example, on calling x + a = b, the local identities (A4) and (A5) give
generalized addition theorems

dn(a− b)sn(a)sn(b) + cn(a)cn(b) = cn(a− b), (81)

dn(a− b)sn(a)cn(b)− cn(a)sn(b) = −dn(a)sn(a− b), (82)

which in the limit m = 0 reduce to the well-known addition theorems for the
trigonometric functions.

Appendix A: Local identities of rank 2

Rank 2 identities with 2 distinct arguments (x, x+ a)

dn(x)dn(x+ a) = dn(a) + cs(a) [Z(x+ a)− Z(x)− Z(a)] , (A1)

m sn(x)sn(x+ a) = −ns(a) [Z(x+ a)− Z(x)− Z(a)] , (A2)

m cn(x)cn(x+ a) = m cn(a) + ds(a) [Z(x+ a)− Z(x)− Z(a)] , (A3)

dn(x)sn(x+ a) = ns(a)cn(x)− cs(a)cn(x+ a), (A4)

dn(x)cn(x+ a) = −ds(a)sn(x) + cs(a)sn(x+ a), (A5)

m sn(x)cn(x+ a) = ds(a)dn(x)− ns(a)dn(x+ a). (A6)

Appendix B: Local identities of rank 3

Rank 3 identities with 3 distinct arguments (x, x+ a, x+ a′)

dn(x)dn(x+ a)dn(x+ a′) = −cs(a)cs(a′)dn(x)

−cs(a)cs(a− a′)dn(x+ a) + cs(a′)cs(a− a′)dn(x+ a′), (B1)

m sn(x)sn(x+ a)sn(x+ a′) = ns(a)ns(a′)sn(x)

+ns(a)ns(a− a′)sn(x+ a)− ns(a′)ns(a− a′)sn(x+ a′), (B2)
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m cn(x)cn(x+ a)cn(x+ a′) = −ds(a)ds(a′)cn(x)

−ds(a)ds(a− a′)cn(x+ a) + ds(a′)ds(a− a′)cn(x+ a′), (B3)

dn(x)dn(x+ a)sn(x+ a′) = −cs(a)ns(a′)sn(x)

−cs(a)ns(a− a′)sn(x+ a) + cs(a′)cs(a− a′)sn(x+ a′), (B4)

dn(x)dn(x+ a)cn(x+ a′) = −cs(a)ds(a′)cn(x)

−cs(a)ds(a− a′)cn(x+ a) + cs(a′)cs(a− a′)cn(x+ a′), (B5)

m sn(x)sn(x+ a)dn(x+ a′) = ns(a)cs(a′)dn(x)

+ns(a)cs(a− a′)dn(x+ a)− ns(a′)ns(a− a′)dn(x+ a′), (B6)

m sn(x)sn(x+ a)cn(x+ a′) = ns(a)ds(a′)cn(x)

+ns(a)ds(a− a′)cn(x+ a)− ns(a′)ns(a− a′)cn(x+ a′), (B7)

m cn(x)cn(x+ a)dn(x+ a′) = −ds(a)cs(a′)dn(x)

−ds(a)cs(a− a′)dn(x+ a) + ds(a′)ds(a− a′)dn(x+ a′), (B8)

m cn(x)cn(x+ a)sn(x+ a′) = −ds(a)ns(a′)sn(x)

−ds(a)ns(a− a′)sn(x+ a) + ds(a′)ds(a− a′)sn(x+ a′), (B9)

mdn(x)sn(x+ a)cn(x+ a′) = −ds(a− a′)

×{dn(a) + cs(a) [Z(x+ a)− Z(x)− Z(a)]}

+ns(a− a′){dn(a′) + cs(a′) [Z(x+ a′)− Z(x)− Z(a′)]}. (B10)

Rank 3 identities with two distinct arguments (x, x+ a)

As explained in the text, local identities for say m cn(x)sn(x + a)dn(x + a) and
m sn(x)dn(x)cn(x+ a) are related to each other by x→ x− a followed by a→ −a
and hence only one of these identities is given below.

dn2(x)dn(x+ a) = −cs2(a)dn(x+ a) + ds(a)ns(a)dn(x)

−m cs(a)cn(x)sn(x), (B11)

m sn2(x)sn(x+ a) = ns2(a)sn(x+ a)− cs(a)ds(a)sn(x)

−ns(a)cn(x)dn(x), (B12)

m cn2(x)cn(x+ a) = −ds2(a)cn(x+ a) + cs(a)ns(a)cn(x)

−ds(a)sn(x)dn(x), (B13)

dn(x)sn(x)dn(x+ a) = −cs(a)ns(a)sn(x+ a) + ds(a)ns(a)sn(x)

+cs(a)cn(x)dn(x), (B14)
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dn(x)cn(x)dn(x+ a) = −cs(a)ds(a)cn(x+ a) + ds(a)ns(a)cn(x)

−cs(a)sn(x)dn(x), (B15)

mdn(x)sn(x)sn(x+ a) = cs(a)ns(a)dn(x+ a)− cs(a)ds(a)dn(x)

+mns(a)cn(x)sn(x), (B16)

m sn(x)cn(x)sn(x+ a) = ds(a)ns(a)cn(x+ a)− cs(a)ds(a)cn(x)

+ns(a)sn(x)dn(x), (B17)

mdn(x)cn(x)cn(x+ a) = −cs(a)ds(a)dn(x+ a) + cs(a)ns(a)dn(x)

−mds(a)cn(x)sn(x), (B18)

m sn(x)cn(x)cn(x+ a) = −ds(a)ns(a)sn(x+ a) + cs(a)ns(a)sn(x)

+ds(a)cn(x)dn(x), (B19)

mdn(x)sn(x)cn(x+ a) = −ds(a)− cs(a)ns(a)[Z(x+ a)− Z(x)− Z(a)]

+ds(a)dn2(x), (B20)

m cn(x)dn(x)sn(x+ a) = −ds(a)dn(a)− cs(a)ds(a)

× [Z(x+ a)− Z(x)− Z(a)] + ns(a)dn2(x),

(B21)

m sn(x)cn(x)dn(x+ a) = −cs(a)− ds(a)ns(a) [Z(x+ a)− Z(x)− Z(a)]

+cs(a)dn2(x). (B22)

Appendix C: Some examples of local identities of rank > 3

dn(x)dn(x+ a)dn(x+ a′)dn(x+ a′′)

= dn(a)dn(a′)dn(a′′) + cs(a)cs(a′)cs(a′′)Z(x)

− cs(a)cs(a′ − a)cs(a′′ − a)[Z(x+ a)− Z(a)]

+ cs(a′)cs(a′ − a)cs(a′′ − a′)[Z(x+ a′)− Z(a′)]

− cs(a′′)cs(a′′ − a)cs(a′′ − a′)[Z(x+ a′′)− Z(a′′)], (C1)

dn2(x)dn(x+ a)dn(x+ a′)

= −cs(a)cs(a− a′){dn(a) + cs(a)
[

Z(x+ a)− Z(x)− Z(a)
]

}

+ cs(a′)cs(a− a′){dn(a′) + cs(a′)
[

Z(x+ a′)− Z(x)− Z(a′)
]

}

− cs(a)cs(a′)dn2(x), (C2)
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dn3(x)dn(x+ a) = −m cs(a)sn(x)cn(x)dn(x) + ds(a)ns(a)dn2(x)

−cs2(a)dn(a)− cs3(a)[Z(x+ a)− Z(x)− Z(a)],

(C3)

dn2(x)dn2(x+ a) = −cs2(a)[dn2(x) + dn2(x+ a)] + [ds2(a) + cs2(a)]

+2cs(a)ds(a)ns(a) [Z(x+ a)− Z(x)− Z(a)] ,

(C4)

dn(x)dn(x+ a)dn(x+ a′)sn(x+ a′′)

= −cs(a)cs(a′)
[

ns(a′′)cn(x)− cs(a′′)cn(x+ a′′)
]

− cs(a)cs(a− a′)

×
[

ns(a′′ − a)cn(x+ a)− cs(a′′ − a)cn(x+ a′′)
]

+ cs(a′)cs(a− a′)
[

ns(a′′ − a′)cn(x+ a′)− cs(a′′ − a′)cn(x+ a′′)
]

,

(C5)

m2cn(x)sn(x+ a)cn(x+ a′)sn(x+ a′′)

= m2sn(a)cn(a′)sn(a′′)− ns(a)ds(a′)ns(a′′)Z(x)

+ ds(a)ds(a′ − a)ns(a′′ − a)[Z(x+ a)− Z(a)]

− ds(a′)ns(a′ − a)ns(a′′ − a′)[Z(x+ a′)− Z(a′)]

+ ds(a′′)ns(a′′ − a)ds(a′′ − a′)[Z(x+ a′′)− Z(a′′)], (C6)

mdn(x)cn(x)sn(x+ a)cn(x+ a′)

= −ds(a)ds(a− a′)
[

ns(a)cn(x)− cs(a)cn(x+ a)
]

+ ds(a′)ns(a− a′)
[

ns(a′)cn(x)− cs(a′)cn(x+ a′)
]

− ns(a)ds(a′)sn(x)dn(x), (C7)

mdn(x)sn(x)cn(x)dn(x+ a)sn(x+ a)

= −cs(a)ns(a)[cs2(a) + ds2(a) + ns2(a)]cn(x)

+
[

ns2(a)(ds2(a) + cs2(a)) + cs2(a)ds2(a)
]

cn(x+ a)

+ cs(a)ds(a)ns(a)sn(x+ a)dn(x+ a)

+ ds(a)[cs2(a) + ns2(a)]sn(x)dn(x) +m cs(a)ns(a)cn3(x). (C8)

In the following identities, B ≡ −cs2(a), B1 ≡ ns2(a), B2 ≡ −ds2(a). We only give
identities involving arbitrary even powers 2n of Jacobi elliptic functions. The iden-
tities for odd powers 2n+1 are easily obtained by multiplication of the even power
identity by one additional Jacobi elliptic function and using the rank 2 identities
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of Appendix A for simplification – as an illustration, see the derivation of identity
(30) from identity (28) in the text.

dn2n(x)dn(x+ a) = Bndn(x+ a)

+ [ds(a)ns(a)dn(x)−m cs(a)cn(x)sn(x)]

×
n
∑

k=1

Bk−1[dn(x)]2(n−k), (C9)

mn sn2n(x)sn(x+ a) = Bn
1 sn(x+ a)

− [cs(a)ds(a)sn(x) + ns(a)cn(x)dn(x)]

×
n
∑

k=1

mn−kBk−1
1 [sn(x)]2(n−k), (C10)

mncn2n(x)cn(x+ a) = Bn
2 cn(x+ a)

+ [cs(a)ns(a)cn(x)− ds(a)sn(x)dn(x)]

×
n
∑

k=1

mn−kBk−1
2 [cn(x)]2(n−k), (C11)

mn cn2n(x)sn(x)dn(x+ a) = −Bn
2 ns(a)cn(x+ a)

+cs(a)mncn2n+1(x)− ns(a)

× [cs(a)ns(a)cn(x)− ds(a)sn(x)dn(x)]

×
n
∑

k=1

mn−kBk−1
2 [cn(x)]2(n−k), (C12)

mn sn2n(x)cn(x)dn(x+ a) = Bn
1 ds(a)sn(x+ a)

−cs(a)mnsn2n+1(x)− ds(a)

× [cs(a)ds(a)sn(x) + ns(a)cn(x)dn(x)]

×
n
∑

k=1

mn−kBk−1
1 [sn(x)]2(n−k), (C13)

mdn2n(x)cn(x)sn(x+ a) = −Bnds(a)dn(x+ a)

+ns(a)dn2n+1(x)− ds(a)

× [ds(a)ns(a)dn(x)−m cs(a)cn(x)sn(x)]

×
n
∑

k=1

Bk−1[dn(x)]2(n−k), (C14)

Pramana – J. Phys., Vol. 62, No. 6, June 2004 1225



Avinash Khare, Arul Lakshminarayan and Uday Sukhatme

dn2n(x)dn2(x+ a) = 2nBn−1ds(a)ns(a)

×[dn(a) + cs(a)(Z(x+ a)− Z(x)− Z(a))]

−(1−m)Bn−1 +

n−1
∑

k=1

Bk−1

×[B2 − (1−m) + 2kds2(a)ns2(a)][dn(x)]2(n−k)

+Bndn2(x+ a) +B dn2n(x)

−2m cs(a)ds(a)ns(a)sn(x)cn(x)

×
n−1
∑

k=1

kBk−1[dn(x)]2(n−k)−1. (C15)

Appendix D: Examples of identities with weighted terms

and their linear combinations

In this appendix a = 2rK/p, a′ = 2sK/p, b = 4rK/p.

m

p
∑

j=1

cj [sj+r − sj−r] = 2[ns(a)− ds(a)]
p
∑

j=1

dj , (D1)

p
∑

j=1

d2
j [dj+r − dj−r] = −2m cs(a)

p
∑

j=1

cjsj , (D2)

m

p
∑

j=1

cjsj [sj+r − sj−r] = 2ns(b)

p
∑

j=1

sjdj , (D3)

m

p
∑

j=1

sjdj [cj+r − cj−r] = 2ds(a)

p
∑

j=1

d2
j − 2pns(a)[dn(a)− cs(a)Z(a)],

(D4)

m

p
∑

j=1

cj [c
3
j+r − c3j−r] = 2ds(a)

p
∑

j=1

cjsjdj , (D5)

m

p
∑

j=1

cjsjdj [sj+r − sj−r]

= −2ns(b)[1− ds2(b) + cs(b)ds(b)]
p
∑

j=1

sj − 2mns(b)
p
∑

j=1

s3j . (D6)
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Appendix E: Some definite integrals

Here K,E correspond to the complete elliptic integrals of the first and second kind
respectively.

∫ 2K

0

dn3(x)dn(x+ a) dx = 2ds(a)ns(a)E − 2Kcs2(a)[dn(a)− cs(a)Z(a)],

(E1)

∫ 2K

0

m2sn3(x)sn(x+ a) dx

= 2cs(a)ds(a)E − 2K[cs(a)ds(a)− ns3(a)Z(a)], (E2)

∫ 2K

0

m2 cn3(x)cn(x+ a) dx

= 2cs(a)ns(a)E + 2K[m2cn(a)− cs(a)ns(a) + ds3(a)Z(a)], (E3)

∫ 2K

0

mdn(x)sn(x)dn(x+ a)sn(x+ a) dx

= 4cs(a)ns(a)E − 2Kns(a)

× [cs(a)(1 + dn2(a))− (1 + cn2(a))ds(a)ns(a)Z(a)], (E4)

∫ 2K

0

mdn(x)cn(x)dn(x+ a)cn(x+ a)dn

= −4cs(a)ds(a)E + 2K[2cs(a)ds(a)− (cs2(a) + ds2(a))ns(a)Z(a)], (E5)

∫ 2K

0

m2 sn(x)cn(x)sn(x+ a)cn(x+ a)dx

= 4ds(a)ns(a)E + 2Kns(a)(1 + dn2(a))[cs(a)ns(a)Z(a)− ds(a)], (E6)

1

2K

∫ 2K

0

dn(x)dn(x+ a)dn(x+ a′)dn(x+ a′′)dx

= dn(a)dn(a′)dn(a′′) + cs(a)cs(a′ − a)cs(a′′ − a)Z(a)

− cs(a′)cs(a′ − a)cs(a′′ − a′)Z(a′) + cs(a′′)cs(a′′ − a)cs(a′′ − a′)Z(a′′),

(E7)

1

2K

∫ 2K

0

m2 sn(x)sn(x+ a)sn(x+ a′)sn(x+ a′′)dx

= ns(a)ns(a′ − a)ns(a′′ − a)Z(a)− ns(a′)ns(a′ − a)ns(a′′ − a′)Z(a′)

+ ns(a′′)ns(a′′ − a)ns(a′′ − a′)Z(a′′), (E8)
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1

2K

∫ 2K

0

m2 cn(x)cn(x+ a)cn(x+ a′)cn(x+ a′′)dx

= m2cn(a)cn(a′)cn(a′′) + ds(a)ds(a′ − a)ds(a′′ − a)Z(a)

− ds(a′)ds(a′ − a)ds(a′′ − a′)Z(a′)

+ ds(a′′)ds(a′′ − a)ds(a′′ − a′)Z(a′′), (E9)

1

2K

∫ 2K

0

m2 cn(x)sn(x+ a)cn(x+ a′)sn(x+ a′′)dx

= m2sn(a)cn(a′)sn(a′′)− ds(a)ds(a′ − a)ns(a′′ − a)Z(a)

+ ds(a′)ns(a′ − a)ns(a′′ − a′)Z(a′)

− ds(a′′)ns(a′′ − a)ds(a′′ − a′)Z(a′′), (E10)

1

2K

∫ 2K

0

m sn(x)dn(x+ a)sn(x+ a′)dn(x+ a′′)dx

= −ns(a)ns(a′ − a)cs(a′′ − a)Z(a)

+ ns(a′)cs(a′ − a)cs(a′′ − a′)Z(a′)

− ns(a′′)cs(a′′ − a)ns(a′′ − a′)Z(a′′). (E11)

Appendix F: Some indefinite integrals

We give below recursion relations expressing certain arbitrary order integrals in
terms of lower order integrals, well-known integrals of snn(x), dnn(x), cnn(x) [3],
and incomplete elliptic integrals of the first, second and third kind, which essentially
occur due to the integral (64). It should be noted that in view of the identities (A2)
and (A3), the integrals for m sn(x + a)sn(x) and m cn(x + a)cn(x) are related to
the integral (64). In this appendix, n ≥ 1.

In = ns
2(a)In−1 −

mn−1ns(a)

(2n− 1) sn
2n−1(x)

−cs(a)ds(a)mn−1

∫

sn2n−1(x)dx, (F1)

where Ik ≡
∫

mksn2k(x)sn(x+ a)dx.

In = ns
2(a)In−1 −

mn−1ds(a)ns(a)

(2n− 1) sn2n−1(x)

+cs(a)mn

∫

sn2n−1(x)cn2(x)dx, (F2)
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where Ik ≡
∫

mksn2k(x)cn(x)dn(x + a)dx, I0 ≡ ds(a)
∫

sn(x + a)dx − cs(a)
∫

sn(x)dx.

In = BIn−1 +
ds(a)ns(a)

(2n− 1) dn
2n−1(x)

+2ds(a)ns(a)

n−1
∑

k=1

Bk [dn(x)]
2(n−k)−1

2(n− k)− 1

−2cs(a)ds(a)ns(a)
∫

dn(x+ a)dx

+cs(a)[m+ 2ds2(a)]

∫

dn2n−1(x)dx

−2cs(a)ds2(a)ns2(a)
n−1
∑

k=1

Bk−1

∫

[dn(x)]2(n−k)−1dx, (F3)

where Ik ≡
∫

mdn2k(x)cn(x+ a)sn(x+ a)dx, B ≡ −cs2(a), I0 = −dn(x+ a).

In = −cs2(a)In−1 +
cs(a)

(2n)
dn2n(x) + ds(a)ns(a)

∫

dn2n(x)dx, (F4)

where Ik ≡
∫

mdn2k+1(x)dn(x+ a)dx, I0 ≡
∫

dn(x+ a)dn(x)dx.
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