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Abstract

A cross between two well-known integrable multi-particle dynamics, an affine Toda
molecule and a Sutherland system, is introduced for any affine root system. Though
it is not completely integrable but partially integrable, or quasi exactly solvable, it
inherits many remarkable properties from the parents. The equilibrium position is
algebraic, i.e. proportional to the Weyl vector. The frequencies of small oscillations
near equilibrium are proportional to the affine Toda masses, which are essential ingre-
dients of the exact factorisable S-matrices of affine Toda field theories. Some lower
lying frequencies are integer times a coupling constant for which the corresponding
exact quantum eigenvalues and eigenfunctions are obtained. An affine Toda-Calogero
system, with a corresponding rational potential, is also discussed.
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1 Introduction

Calogero-Moser systems and (affine) Toda molecules1 are best known examples of inte-

grable/solvable many-particle dynamics on a line which are based on root systems. The

original Toda model [1] and the Calogero [2] and the Sutherland [3] models are based on

the Ar root system which correspond to the Lie algebra su(r + 1). Later integrable Toda

[4, 5] and Calogero-Moser (C-M) [6, 5, 7, 8, 9] systems are formulated for any root system.

The potentials of Toda systems are exponential functions of the coordinates, whereas those

of Calogero-Moser systems are rational 1/q2, trigonometric 1/ sin2 q, hyperbolic 1/ sinh2 q

and elliptic ℘(q) functions, in which ℘ is Weierstrass function and q denotes the coordinates

generically. In the C-M systems, the elliptic potentials are the most general ones and the

rest (trigonometric, hyperbolic and rational) is obtained by various degeneration. In fact,

a Toda molecule is obtained from an elliptic C-M system by a special limiting procedure

[10, 11, 12]. While the potential of a C-M system depends on all (positive) roots, that of

an (affine) Toda system contains (affine) simple roots only. For the A-type root systems the

above feature is usually referred to that the C-M potential gives a pair-wise interactions and

the Toda potential is of the nearest neighbour interaction type and the affine simple root

corresponds to a periodic boundary condition.

In this paper we will present two new types of multi-particle dynamics related to any

root system. Roughly speaking each could be considered as a cross between an (affine)

Toda molecule and a C-M system. The first, to be tentatively called an (affine) Toda-

Sutherland system, has trigonometric potentials 1/ sin2 q and depends on the (affine) simple

roots only. The second, to be tentatively referred to as an (affine) Toda-Calogero system,

has rational potentials 1/q2 plus a harmonic confining potential q2 and depends on the

(affine) simple roots only. The former has much richer structure than the latter and in this

paper we mainly discuss the affine Toda-Sutherland systems. We do not think that they

are integrable, either at the classical or the quantum level. But they have many remarkable

features as shown in some detail for the systems based on the A-type root systems [13, 14, 15].

Their potentials have the nearest and next-to-nearest neighbour interactions, in contrast to

the nearest neighbour interactions of the (affine) Toda molecule. These dynamical systems

1In this article we use the terminology ‘molecule’ to emphasise the finite degrees of freedom instead of
the more familiar ‘lattice’ which might be misinterpreted as meaning an infinitely or macroscopically large
system.
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exhibit a behaviour intermediate to regular and chaotic. Like the C-M systems, these multi-

particle dynamics are closely related to random matrix theory [13].

At the classical level, the frequencies of small oscillations at equilibrium [16] of an affine

Toda-Sutherland system have exactly the same pattern as those of the affine Toda molecule

based on the same root system. Let us point out that the pattern of the frequencies of

small oscillations at equilibrium of an affine Toda molecule, or the so-called affine Toda

masses appearing in the affine Toda field theory in 1 + 1 dimensions [17], are the essential

ingredient for its exact factorisable S-matrices. At the quantum level, most (but not all) of

the multi-particle systems discussed in this paper are Quasi Exactly Solvable (QES) [18, 19].

That is, on top of the ground state eigenfunctions, a certain small number of eigenvalues

and eigenfunctions are obtained exactly. The mechanism for QES seems very different from

that of known ones [18, 19, 20].

This paper is organised as follows. In section 2, the salient features of affine Toda

molecules are reviewed with a brief summary of roots and weights as essential ingredients.

Section 3 is the main body of the paper. In section 3.1 we obtain the frequencies of small

oscillations for Toda-Sutherland systems based on affine root systems. For these multipar-

ticle systems we present some exact eigenvalues and eigenfunctions in section 3.2. They

correspond to the low lying integer (times a coupling constant) frequencies of the small os-

cillations at equilibrium [16, 21]. In section 4 the affine Toda-Calogero systems are briefly

discussed. The final section is reserved for summary and comments. In this paper we adopt

the convention that ~ = 1 and do not show the dependence on the Planck’s constant.

2 Affine Toda molecule

The dynamical variables of a classical (quantum) multi-particle system to be discussed in this

paper, an (affine) Toda molecule, a C-M system, an (affine) Toda-Sutherland system and an

(affine) Toda-Calogero system, are the coordinates {qj | j = 1, . . . , r} and their canonically

conjugate momenta {pj| j = 1, . . . , r}, with the Poisson bracket (Heisenberg commutation)

relations:

{qj , pk} = δj k, {qj, qk} = {pj, pk} = 0,

[qj, pk] = iδj k, [qj , qk] = [pj, pk] = 0.
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These will be denoted by vectors in Rr

q = (q1, . . . , qr), p = (p1, . . . , pr),

in which r is the number of particles and it is also the rank of the underlying root system

∆.

2.1 Roots and weights

Let Π be the set of simple roots of ∆:

Π = (α1, α2, . . . , αr). (2.1)

Any positive roots in ∆ can be expressed as a linear combination of the simple roots with

non-negative integer coefficients

α =
r∑

j=1

mjαj, mj ∈ Z+, ∀α ∈ ∆+. (2.2)

In the case of simply laced root systems (A, D, E) all the roots have the same length. We

adopt the convention α2 = α ·α = 2. In the case of non-simply laced root systems (B, C, F4,

G2), there are long roots and short roots. We adopt the convention α2
L = 2 except for the

C-series of the root system in which we adopt α2
S = 2. Since ∆ is a finite set, there exists

an element αh for which
∑r

j=1mj is the maximum in ∆+. We call it the highest root and

write it

αh =
r∑

j=1

njαj , nj ∈ Z+. (2.3)

For the non-simply laced root systems, the highest roots are always long. We also introduce

highest short root and denote it in the same way as (2.3) to avoid duplicating many formulas.

The positive integers {nj} are called Dynkin-Kac labels . We define the affine simple root

α0 as the lowest (short) root , that is the negative of the highest (short) root:

α0 = −αh = −(
r∑

j=1

njαj). (2.4)

The above relationship can be rewritten in a symmetrical way:

r∑

j=0

njαj = 0, n0 ≡ 1. (2.5)

4



We call Π0 the set of affine simple roots:

Π0 = α0 ∪ Π = (α0, α1, . . . , αr), (2.6)

which specifies the affine Lie algebra, to be denoted as A
(1)
r , E

(2)
6 , D

(3)
4 , etc. It has the

necessary and sufficient information for defining affine Toda molecule (and its field theory

version, the affine Toda field theory [17], too).

The fundamental weights {λj} are the dual to the simple roots:

α∨
j · λk = δjk, α∨

j ≡ 2αj

α2
j

, j = 1, . . . , r, (2.7)

αj · λ∨j = δjk, λ∨j ≡ 2

α2
j

λj , j = 1, . . . , r. (2.8)

The equation (2.7) defines {λj} and (2.8) defines {λ∨j } in turn. Next we define ̺:

̺ ≡
r∑

j=1

λ∨j , (2.9)

which is essentially the Weyl vector having the following properties

αj · ̺ = 1, j = 1, . . . , r, (2.10)

α0 · ̺ = −(
r∑

j=1

njαj) · ̺ = −(
r∑

j=1

nj) = −(h− 1), (2.11)

in which h is the (dual) Coxeter number :

h ≡
r∑

j=0

nj = 1 +
r∑

j=1

nj. (2.12)

2.2 Hamiltonian, equilibrium position and frequencies of small

oscillations

The Hamiltonian of the affine Toda molecule based on the set of affine simple roots Π0 is

H =
1

2
p2 + V (q), (2.13)

V (q) =
1

β2

r∑

j=0

nje
βαj ·q, (2.14)

in which β ∈ R is the coupling constant. Note that all the particle masses are the same and

normalised to unity. The potential V (q) has a minimum (equilibrium point) at q = 0 as

V (q) =
h

β2
+

1

β
(

r∑

j=0

njαj) · q +
1

2

r∑

j=0

r∑

k,l

nj(αj)k(αj)lqkql + o(q3). (2.15)
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Here, (αj)k is the k-th component of the (affine) simple root αj . The linear term vanishes

due to (2.5) and the constant term is proportional to the Coxeter number h given by (2.12).

The symmetric matrix M

Mkl =

r∑

j=0

nj(αj)k(αj)l, or M =

r∑

j=0

njαj ⊗ αj , (2.16)

is called affine Toda mass matrix . Its eigenvalues

Spec(M) =
{
m2

1, m
2
2, . . . , m

2
r

}
, mj > 0. (2.17)

are called affine Toda masses (squared). The set {m1, m2, . . . , mr} gives r (angular) frequen-

cies of small oscillations at the equilibrium q = 0. The above Hamiltonian (2.13)-(2.14) is

completely integrable and classical Lax pair is known for all the affine simple root systems.

This is a periodic Toda lattice if Π0 is for A
(1)
r .

3 Affine Toda-Sutherland systems

The multi-particle dynamics with nearest and next-to-nearest trigonometric interactions in-

troduced in [13, 14] can be called affine Toda-Sutherland model based on A
(1)
r . They can be

generalised to any root system as follows.

Given an affine root system Π0, let us introduce a prepotential W

W (q) = β

r∑

j=0

nj log | sin(αj · q)|, (3.1)

in which β ∈ R+ is a positive coupling constant and {nj} are the Dynkin-Kac labels for Π0.

This leads to the Hamiltonians with the classical and quantum potentials VC and VQ as [9]

HC =
1

2
p2 + VC(q), VC(q) =

1

2

r∑

j=1

(
∂W

∂qj

)2

, (3.2)

HQ =
1

2
p2 + VQ(q), VQ(q) =

1

2

r∑

j=1

[(
∂W

∂qj

)2

+
∂2W

∂q2
j

]
. (3.3)

Again note that all the particle masses are the same and normalised to unity. Explicitly VQ

reads

VQ =
1

2

r∑

j=0

βnj(βnj − 1)α2
j

sin2(αj · q)
+ β2

∑

j<k

njnkαj · αk cot(αj · q) cot(αk · q) − E0, (3.4)

E0 =
β2

2

r∑

j=0

n2
jα

2
j , (3.5)
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in which the constant part E0 can be considered as the ground state energy . The extended

Dynkin diagram of Π0 encodes all the necessary information {α2
j}, {αj · αk} and {nj} to

determine VQ. See [9, 16, 21] for the formulation of Hamiltonian dynamics in terms of a

prepotential and the frequencies of small oscillations at equilibrium. The corresponding

ground state wavefunction is

HQψ0 = 0, ψ0(q) = eW (q) =
r∏

j=0

| sin(αj · q)|βnj . (3.6)

In contrast to the Calogero-Moser systems [7, 8], the prepotential (3.1), potential (3.3) and

thus the Hamiltonian are not Weyl-invariant. For simplicity we consider the configuration

space in the principal Weyl alcove:

PWT = {q ∈ Rr| α · q > 0, α ∈ Π, αh · q < π}, (3.7)

where αh is the highest root. (Due the non-invariance under the Weyl group, theories with

different configuration spaces are physically different. For example, they have different (non-

equivalent) equilibrium positions.)

For the simplest affine Lie algebra of A
(1)
r the quantum Hamiltonian reads2

HQ =
1

2
p2 + β(β − 1)

r+1∑

j=1

1

sin2(qj − qj+1)

−β2
r+1∑

j=1

cot(qj−1 − qj) cot(qj − qj+1) − β2(r + 1). (3.8)

This has the nearest and next-to-nearest neighbour interactions [13, 14]. The B, BC and D

models in [13, 14, 15] are different from those in this paper.

3.1 Classical equilibrium

The equilibrium point (q̄) of the classical Hamiltonian of the affine Toda-Sutherland system

H =
1

2
p2 + VC(q), VC(q) =

1

2

r∑

j=1

(
∂W

∂qj

)2

, (3.9)

∂W

∂qj
= β

r∑

k=0

nk(αk)j cot[αk · q], j = 1, . . . , r. (3.10)

2For Ar models, it is customary to introduce one more degree of freedom, qr+1 and pr+1 and embed all
of the roots in R

r+1. Here we also adopt the ‘periodic’ convention, qr+1 ≡ q0, qr+2 ≡ q1, etc.
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has a very intuitive characterisation. It is proportional to the Weyl vector ̺ (2.9), q̄ ∝ ̺, the

fundamental quantity of the Lie algebra. This is much simpler than the cases in the Calogero

as well as Sutherland systems in which q̄ correspond to the zeros of certain polynomials, i.e.

the Hermite, Laguerre, Chebyshev and Jacobi polynomials for classical root systems [22, 16].

Since [16, 21]

∂W (q̄)

∂qj
= 0, j = 1, . . . , r ⇒ ∂VC(q̄)

∂ql
=

r∑

j=1

∂2W (q̄)

∂qj∂ql

∂W (q̄)

∂qj
= 0, (3.11)

the equilibrium is achieved at the point q̄ where all ∂W/∂qj vanish, i.e. at the maximum of

the ground state wavefunction. It is easy to see that

q̄ = c̺, c : const., (3.12)

gives a solution. Using (2.9)–(2.11),

αk · q̄ =

{
c k = 1, . . . , r,

−(h− 1)c k = 0,
(3.13)

we obtain
∂W (q̄)

∂qj
= β

(
cot(c)

r∑

k=1

nk(αk)j − cot[(h− 1)c](α0)j

)
. (3.14)

For

c =
π

h
, (3.15)

c̺ is in the principal Weyl alcove (3.7) and

cot[(h− 1)c] = cot(π − c) = − cot(c). (3.16)

Thus we find q̄ = π̺/h is the equilibrium

∂W (q̄)

∂qj
= β cot[

π

h
]

(
r∑

k=0

nkαk

)

j

= 0. (3.17)

The equilibrium points are equally spaced for all the classical root systems. The situation is

different for the exceptional root systems. The equilibrium point q̄ = π̺/h is unique in the

principle Weyl alcove (3.7).

The squared frequencies of small oscillations at equilibrium q̄ are given by the eigenvalues

of the matrix
∂2VC(q)

∂qj∂qk

∣∣∣∣
q̄

=

r∑

j=1

∂2W (q)

∂qj∂ql

∣∣∣∣
q̄

∂2W (q)

∂ql∂qk

∣∣∣∣
q̄

= (W̃ 2)jk. (3.18)
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Thus the frequencies of small oscillations at equilibrium q̄ are given by the eigenvalues of a

symmetric matrix W̃ defined by

W̃jk = − ∂2W (q)

∂qj∂qk

∣∣∣∣
q̄

=
β

sin2 π
h

r∑

l=0

nl(αl)j(αl)k =
β

sin2 π
h

Mjk, (3.19)

in which matrix M is the mass square matrix of the affine Toda molecule associated with

the affine root system Π0 defined in (2.16).

The frequencies (not frequencies squared) of small oscillations at equilibrium of affine

Toda-Sutherland model are given up to the coupling constant β by

1

sin2 π
h

{
m2

1, m
2
2, . . . , m

2
r

}
, (3.20)

in which m2
j are the affine Toda masses. In [17] it is shown that the vector m = (m1, . . . , mr),

if ordered properly, is the Perron-Frobenius eigenvector of the incidence matrix (the Cartan

matrix) of the corresponding root system. Therefore there exists a one-to-one correspondence

between the mass mj and a vertex (or the fundamental weight) of the Dynkin diagram. This

fact will be important in the next subsection for the explicit construction of exact eigenvalues

and eigenfunctions. In Table I we list the affine Toda masses and the Coxeter number h for

the classical untwisted affine Lie algebras, A
(1)
r , B

(1)
r , C

(1)
r , D

(1)
r , see [17]:

Π0 h affine Toda masses

A
(1)
r r + 1 m2

j = 4 sin2( jπ
h

), j = 1, . . . , r,

B
(1)
r 2r m2

j = 8 sin2( jπ
h

), j = 1, . . . , r − 1, m2
r = 2,

C
(1)
r 2r m2

j = 8 sin2( jπ
h

), j = 1, . . . , r,

D
(1)
r 2(r − 1) m2

j = 8 sin2( jπ
h

), j = 1, . . . , r − 2, m2
r−1 = m2

r = 2.

Table I: The Coxeter number h and the affine Toda masses m2
j

for classical untwisted affine Lie algebras.

Those for the exceptional affine Lie algebras E
(1)
r , F

(1)
4 and G

(1)
2 we refer to [17]. (The affine

Toda masses for E8 reported there need a factor 2.) The twisted affine Lie algebras, for

example D
(2)
r+1, E

(2)
6 , D

(3)
4 , etc., which are characterised by the highest short roots, can also

be obtained from untwisted affine Lie algebras by folding [17]. The affine Toda masses for

the twisted affine Lie algebra are closely related to those of the original untwisted affine Lie

algebra.
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3.2 Quantum eigenfunctions

Here we demonstrate that some of the quantum affine Toda-Sutherland (3.3) systems have

a number of exact eigenvalues and eigenfunctions and thus they are partially integrable or

quasi exactly solvable [18, 19]. These are usually a small number of lowest lying excited

states. The occurrence of such exact states is strongly correlated with the appearance of the

integer eigenvalues in the spectrum of the small oscillations near the classical equilibrium, as

shown in the recent general theorems by Loris-Sasaki [21]. Let us express the eigenfunctions

in product forms

ψn(q) = φn(q)ψ0(q), n = 0, 1, . . . , φ0 ≡ 1, (3.21)

in which φn obeys a simplified equation with the similarity transformed Hamiltonian H̃ [9]:

H̃φn = Enφn, (3.22)

H̃ = e−WHQe
W = −1

2
△−

r∑

j=1

∂W

∂qj

∂

∂qj
, △ ≡

r∑

j=1

∂2

∂q2
j

. (3.23)

3.2.1 A
(1)
r

In this case the spectrum of the small oscillations, up to the coupling constant β is easily

read from Table I:

4
{
1, . . . , sin2(jπ/(r + 1))/ sin2(π/(r + 1)), . . . , 1

}
. (3.24)

Reflecting the left-right mirror symmetry j ↔ r + 1 − j of the Dynkin diagram Fig.1, the

spectrum is doubly degenerate except for the possible singlet at the middle point j = (r+1)/2

for odd r.

The doubly degenerate integer eigenvalues 4 correspond to the two end points of the A
(1)
r

Dynkin diagram, Fig.1. They correspond to the fundamental vector and conjugate vector

representations and to the eigenfunctions:

v =

r+1∑

j=1

e2iqj , v̄ =

r+1∑

j=1

e−2iqj . (3.25)

It is easy to verify

H̃v = (4β + 2)v, H̃v̄ = (4β + 2)v̄, −1

2
△v = 2v, −1

2
△v̄ = 2v̄. (3.26)

10



1 1

. . .

1 1

Figure 1: A
(1)
r Dynkin diagram with the numbers nj attached. The black spot is the affine

simple root.

The affine simple root corresponds to the adjoint representation. Let us define

φa = φvv̄ + 2β/(1 + 2β), φvv̄ =
∑

j 6=k

e2i(qj−qk). (3.27)

It is easy to show

H̃φa = (8β + 4)φa, (3.28)

in which 8β is simply a sum of 4β for v and another 4β for v̄ in (3.25).

For A
(1)
2 , the system is identical with the A2 Sutherland model. For the special case of

A
(1)
3 , the above spectrum (3.24) is {4, 8, 4}. We find another complex eigenfunction with the

classical eigenvalue 8β

φt =

4∑

j=1

e4iqj − e2i(q1+q2+q3+q4)

4∑

j=1

e−4iqj , H̃φt = (8β + 8)φt. (3.29)

3.2.2 D
(1)
r

The spectrum of the small oscillations, up to the coupling constant β is easily read from

Table I:

8
{
1, . . . , sin2(jπ/2(r − 1))/ sin2(π/2(r − 1)), . . .

}
, and 2/ sin2(π/2(r − 1))[2], (3.30)

in which the two degenerate frequencies at the end correspond to the spinor and anti-spinor

weights at the right end of the D
(1)
r Dynkin diagram in Fig.2.

For r ≥ 5 these eigenvalues are greater than 8, which belongs to the vector weights at the

left end of the Dynkin diagram Fig.2. The set of vector weights is V = {±ej |j = 1, . . . , r}.
Let us introduce the corresponding wavefunctions

φV =
∑

µ∈V

e2iµ·q = 2

r∑

j=1

cos 2qj. (3.31)
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1

2

. . .

2

1

1

Figure 2: D
(1)
r Dynkin diagram with the numbers nj attached. The black spot is the affine

simple root.

However, it is not an eigenfunction

H̃φV = (8β + 2)φV − 8β(cos 2q1 + cos 2qr), −1

2
△φV = 2φV. (3.32)

This would give an eigenfunction in a theory if q1 and qr are constrained to 0; q1 ≡ 0 ≡ qr.

If this restriction is made in the prepotential W of D
(1)
r theory together with 2β → β (and

r → r+2), it gives the prepotential of the D
(2)
r+1 to be discussed shortly in section 3.2.3. The

corresponding eigenfunction is (3.38). The formula (3.32) also ‘explains’ the non-existence

of the corresponding eigenfunction in B
(1)
r theory, which is obtained by restriction qr ≡ 0

(together with r → r + 1).

For the special case of r = 3 the eigenvalues for the spinor and anti-spinor weights are

lower than that of the vector weights. We find several lower lying eigenstates:

D
(1)
3 :

φs1 = sin q1 sin q2 sin q3, H̃φs1 = (4β + 3/2)φs1, (3.33)

φs2 = cos q1 cos q2 cos q3, H̃φs2 = (4β + 3/2)φs2, (3.34)

φss = sin 2q1 sin 2q2 sin 2q3, H̃φss = (8β + 6)φss, (3.35)

φ2 = cos 2q1 cos 2q2 + cos 2q1 cos 2q3 + cos 2q2 cos 2q3 + 2β/(1 + 2β),

H̃φ2 = (8β + 4)φ2. (3.36)

These are closely related to the eigenfunctions of the A
(1)
r , (3.26), (3.27) and (3.29) since

A
(1)
3

∼= D
(1)
3 .

3.2.3 D
(2)
r+1

The extended Dynkin diagram of D
(2)
r+1, Fig.3, can be obtained from that of B

(1)
r+1 by folding

the left ‘fish tail’ containing the affine simple root. Then B
(1)
r+1 is obtained from D

(1)
r+2 by

12



1

. . .

1 1

Figure 3: D
(2)
r+1 Dynkin diagram with the numbers nj attached. The black spot is the affine

simple root.

2 2

. . .

2 2

Figure 4: C
(1)
r Dynkin diagram with the numbers nj attached. The black spot is the affine

simple root.

folding the right ‘fish tail’ corresponding to the spinor and anti-spinor weights. The affine

simple root of D
(2)
r+1 is the ‘lowest short root’ of Br. In this case the spectrum of the small

oscillations, up to the coupling constant β is:

4
{
1, . . . , sin2(jπ/(r + 1))/ sin2(π/(r + 1)), . . .

}
. (3.37)

The lowest eigenvalue is an integer 4 (times β) which corresponds to the vector weights of

Br, the leftmost white vertex in Fig.3. The set of vector weights is V = {±ej |j = 1, . . . , r}.
Let us introduce the corresponding wavefunctions

φ = φV + 2β/(1 + 2β), φV =
∑

µ∈V

e2iµ·q = 2
r∑

j=1

cos 2qj . (3.38)

It is easy to see

H̃φ = (4β + 2)φ, −1

2
△φV = 2φV. (3.39)

3.2.4 C
(1)
r

The spectrum of the small oscillations, up to the coupling constant β is easily read from

Table I:

8
{
1, . . . , sin2(jπ/(2r))/ sin2(π/(2r)), . . .

}
. (3.40)

The lowest eigenvalue is an integer 8 (times β) which belongs to the vector weight of Cr,

corresponding to the leftmost white vertex of Fig.4. The set of vector weights is V =

{±ej |j = 1, . . . , r}. Let us introduce the corresponding wavefunctions

φV =
∑

µ∈V

e2iµ·q = 2
r∑

j=1

cos 2qj. (3.41)
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2

. . .

2 2

Figure 5: A
(2)
2r Dynkin diagram with the numbers nj attached. The black spot is the affine

simple root.

It is easy to see

H̃φV = (8β + 2)φ, −1

2
△φV = 2φV. (3.42)

As is well known C
(1)
r is obtained from A

(1)
2r−1 by folding. The above eigenfunction originates

from (3.25).

3.2.5 A
(2)
2r

This is also called a BCr root system, which is obtained by adding the affine root of C
(1)
r

to the set of simple roots of Br. The spectrum of the small oscillations, up to the coupling

constant β is:

8
{
1, . . . , sin2(jπ/(2r + 1))/ sin2(π/(2r + 1)), . . .

}
. (3.43)

The lowest eigenvalue is an integer 8 (times β) which corresponds to the vector weight of

Br, V = {±ej |j = 1, . . . , r}. Let us introduce the corresponding wavefunctions

φ = φV + 4β/(1 + 4β), φV =
∑

µ∈V

e2iµ·q = 2

r∑

j=1

cos 2qj . (3.44)

It is easy to see

H̃φ = (8β + 2)φ, −1

2
△φV = 2φV. (3.45)

As in the D
(2)
r+1 case (3.38), the eigenfunction (3.44) has a constant part. This is related to

the fact that the vector representation of Br contains a zero weight. In contrast the vector

representation of Cr does not contain a zero weight and the corresponding eigenfunction

(3.41) does not have a constant part. This also explains that the eigenfunctions corresponding

to the vector and conjugate vector representations (3.26) do not have a constant part, whereas

that corresponding to the adjoint representation (3.27) has a constant part. The adjoint

representation has a rank number of zero weights.

3.2.6 Exceptional affine Lie algebras

For E
(1)
6 , E

(1)
7 , E

(1)
8 and F

(1)
4 none of the frequencies of (3.20) are integers. The G

(1)
2 case,

which is obtained fromD
(1)
4 by three-fold folding, has two integer eigenvalues {8, 24} inherited
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from D
(1)
4 . As shown in 3.2.2, we found no exact eigenfunctions for D

(1)
r and D

(1)
4 . Therefore

we do not expect any exact eigenfunctions for the exceptional affine Toda-Sutherland systems

and we have got none.

3.3 Comments on non-affine Toda-Sutherland systems

In the Toda molecule (Toda field theory) interactions, the affine simple root α0 plays an

essential role for the existence of an equilibrium. However, with 1/ sin2 q type interactions,

an equilibrium is achieved without the affine simple root α0. This opens a way to consider

(non-affine) Toda-Sutherland systems characterised by a prepotential

W (q) = β
∑

α∈Π

log | sin(α · q)| = β

r∑

j=1

log | sin(αj · q)|. (3.46)

Note that it does not contain the affine simple root α0 nor the Dynkin-Kac labels {nj}. Since

the highest root is not contained in the prepotential, the configuration space now is

PWN = {q ∈ Rr| 0 < α · q < π, α ∈ Π}. (3.47)

Finding the equilibrium position q̄ of the classical potential is easy. It is again propor-

tional to the Weyl vector ̺ (2.9)

q̄ =
π

2
̺, αj · q̄ =

π

2
, cot[αj · q̄] = 0 ⇒ ∂W (q)

∂qj

∣∣∣∣
q̄

= 0, j = 1, . . . , r. (3.48)

Due to the linear independence of the simple roots, this equilibrium is unique in the con-

figuration space (3.47). The frequencies of small oscillations near the equilibrium are the

eigenvalues of the matrix

W̃jk = − ∂2W (q)

∂qj∂qk

∣∣∣∣
q̄

= β

r∑

l=1

(αl)j(αl)k = βM̃jk, (3.49)

M̃ =

r∑

j=1

αj ⊗ αj . (3.50)

For the simply laced root systems (A, D, E) the spectrum of M̃ is the same as the spectrum

of the Cartan matrix Cjk = 2αj · αk/α
2
k, j, k ∈ Π. There is a universal formula for the

spectrum of M̃ for the A, D, E series:

Spec(M̃) = {4 sin2(e1/2h), . . . , 4 sin2(er/2h)}, e1, . . . , er : exponents. (3.51)

The exponents of simply laced root systems are:

15



∆ h exponents, e1,. . . , er ∆ h exponents, e1,. . . , er

Ar r + 1 1, 2, 3, . . . , r E6 12 1, 4, 5, 7, 8, 11

Dr 2r 1, 3, 5,. . . , 2r − 1; r − 1 E7 18 1, 5, 7, 9, 11, 13, 17

E8 30 1, 7, 11, 13, 17, 19, 23, 29

Table II: The exponents ej for simply laced root systems.

For the B series and G2 we have

Br : Spec(M̃) = {4 sin2(2j − 1/2(2r + 1))|j = 1, . . . , r}, (3.52)

G2 : Spec(M̃) = {(4 −
√

13)/3, (4 +
√

13)/3}, (3.53)

and analytical formulas are not known for the entire spectrum of M̃ in Cr and F4.

Although some of the eigenfrequencies of the small oscillations near the classical equilib-

rium (3.51), (3.52) are integers, they are definitely not the lowest lying ones. According to

the quantum-classical correspondence [21], we do not expect to find the exact eigenfunctions

for the lowest lying states, which have non-integer eigenvalues. Thus it is highly unlikely that

the eigenfunctions for the higher excited states, being orthogonal to all the lower lying ones,

could be obtained exactly, even for the ones belonging to integer classical eigenvalues. In fact

we have not been able to find any exact eigenfunctions for the (non-affine) Toda-Sutherland

systems (3.46).

4 Affine Toda-Calogero systems

Like the affine Toda-Sutherland system, the affine Toda-Calogero system can be defined

for any affine root system Π0 (2.6). However, in many respects the affine Toda-Calogero

systems have less remarkable properties than the affine Toda-Sutherland systems discussed

in the preceding section. The equilibrium position q̄ does not have a simple characterisation.

Except for the systems based on the A(1) series, the small oscillations near the equilibrium do

not have integer (times the coupling constant) eigenvalues other than 2, which is universal

for all the potentials with quadratic plus inverse quadratic dependence on the coordinate q

[23].

The prepotential of the affine Toda-Calogero system is obtained from that of affine Toda-

Sutherland system (3.1) by changing sinαj · q → αj · q and adding a harmonic confining
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potential with (angular) frequency ω > 0:

W (q) = β

r∑

j=0

nj log |αj · q| −
ω

2
q2. (4.1)

Because of the singularity of the potential we restrict the configuration space to the principal

Weyl chamber for simplicity:

PW = {q ∈ Rr| α · q > 0, α ∈ Π}. (4.2)

(Due the non-invariance under the Weyl group, theories with different configuration spaces

are physically different. For example, they have different (non-equivalent) equilibrium posi-

tions.) The classical and quantum Hamiltonians are given in terms of the prepotential W

by the same formulas (3.2) and (3.3). The classical equilibrium position q̄ is determined by

∂W (q̄)

∂qk
= 0, k = 1, . . . , r ⇐⇒ β

r∑

j=0

njαj

αj · q̄
= ωq̄. (4.3)

In contrast to the Calogero systems in which q̄ corresponds to the zeros of classical polynomi-

als, i.e. the Hermite and the Laguerre polynomials for the classical root systems [22, 16], the

present case does not have such simple characterisation. The frequencies of small oscillations

near the equilibrium are given by the eigenvalues of the matrix

W̃ = Matrix

(
−∂

2W (q̄)

∂qj∂qk

)
.

We have evaluated q̄ and W̃ numerically for various affine root systems. We will discuss the

systems based on the A(1) series in the section 4.1. In all the other cases the only integer

(times ω) eigenvalues of W̃ is 2, which exists in all the cases based on any root system. In

fact it is more universal and exists for all the potentials with quadratic (q2) plus inverse

quadratic dependence on the coordinate q [23, 9] without any root or weight structure. This

eigenvalue 2 gives rise to exact quantum eigenfunctions φn(q) which is proportional to the

Laguerre polynomial [23, 9] in q2:

H̃φn(q) = 2ωnφn(q), φn(q) ∝ L(E0/ω−1)
n (ωq2), n = 1, 2, . . . , (4.4)

in which E0 = (βh+ r/2)ω is the ground state energy and h is the Coxeter number (2.12).

Let us emphasise that these quantum eigenfunctions are also universal in the above sense.

Here the similarity transformed Hamiltonian H̃ and the eigenfunctions {φn(q)} are de-

fined in terms of the ground state wavefunction ψ0 = eW in the same formulas as before

(3.21)–(3.23).
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4.1 A
(1)
r

This theory and its possible generalisation have been discussed rather extensively by Khare

and collaborators [13, 14, 15] with explicit forms of quantum eigenfunctions. These multi-

particle dynamics have nearest and next-to-nearest interactions with rational 1/q2 plus q2

potentials. Here we discuss the relationship between the exact eigenfunctions and their clas-

sical counterparts [21]. The A
(1)
2 affine Toda-Calogero system is identical with A2 Calogero

system. The spectrum of W̃ for A
(1)
r , r ≥ 3 has a form

Spec(W̃ ) = ω{1, 2, 3, ∗, . . .}, (4.5)

in which ∗, . . . denote non-integers greater than 3.

The interpretation of these three integer eigenvalues is quite clear. The lowest one cor-

responds to the elementary excitation of the center of mass coordinates Q = q1 + . . .+ qr+1

and the quantum eigenfunction belonging to the eigenvalue nω is essentially the Hermite

polynomial of degree n in Q. The eigenfunctions corresponding to the eigenvalue 2 are the

Laguerre polynomials (4.4) mentioned above. Let us introduce the elementary symmetric

polynomial of degree k in q1, . . . , qr+1 [21]:

r+1∏

j=1

(x+ qj) =

r+1∑

k=0

Skx
r+1−k, S0 = 1, S1 = q1 + · · · + qr+1 ≡ Q. (4.6)

Since Sk is annihilated by the Laplacian, △Sk = 0, one finds easily the exact quantum

eigenfunction φ3 corresponding to the integer eigenvalue 3 in (4.5):

H̃S3 = 3ωS3 + β(r − 1)Q, H̃φ3 = 3ωφ3, φ3 = S3 +
β(r − 1)

2ω
Q. (4.7)

5 Summary and comments

The affine Toda-Sutherland system is introduced for any affine root system as a cross between

the affine Toda molecule and the Sutherland system. That is, the potential is trigonometric,

1/ sin2 q, and the multi-particle interactions are governed by the affine simple roots only,

in contrast to the entire set of roots in the Sutherland system. It has remarkable univer-

sal features. The classical equilibrium point is π̺/h (̺: Weyl vector, h: Coxeter number)

and the frequencies of small oscillations near the equilibrium are proportional to the corre-

sponding affine Toda masses. In most cases based on classical affine Lie algebras, some low
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lying frequencies are integers (times a coupling constant). They give rise to exact quantum

eigenvalues and eigenfunctions. The ground state eigenfunctions are always given explicitly.

Thus the affine Toda-Sutherland systems provide examples of a new type of quasi exactly

solvable multi-particle dynamics.

Affine Toda-Calogero systems with rational (1/q2 plus q2) potentials are found to be less

remarkable than their trigonometric counterparts. They possess an infinite number of exact

eigenvalues and eigenfunctions which are well known. We have shown that the affine Toda-

Calogero systems based on A(1) series have three lowest frequencies ω, 2ω and 3ω of small

oscillations near the classical equilibrium. They all correspond to exact quantum eigenvalues

and eigenfunctions.

It would be interesting to understand these ‘partially integrable’ affine Toda-Sutherland-

Calogero systems from various points of view: relationship with the random matrix models,

analysis from the regular and chaotic dynamics, etc.

In [13, 14, 15] many interesting multi-particle dynamics, rational and trigonometric,

related to the root systems of Br, Cr, BCr and Dr were introduced. They resemble to our

affine Toda-Sutherland and affine Toda-Calogero systems but they cannot be characterised

in terms of affine simple roots. Unified understanding of these systems is wanted.
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