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Abstract

Even though the KdV and modified KdV equations are nonlinear, we show that suitable linear combi-

nations of known periodic solutions involving Jacobi elliptic functions yield a large class of additional

solutions. This procedure works by virtue of some remarkable new identities satisfied by the elliptic

functions.
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The Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) equations are known to

possess many remarkable properties. They are examples of completely integrable systems with soliton

solutions which have diverse applications of physical interest. Soliton solutions of the KdV equation

ut − 6uux + uxxx = 0 , (1)

are discussed in many texts [1]. The simplest, periodic, cnoidal travelling wave solution is

u1(x, t) = −2α2dn2(ξ1,m) + βα2 , ξ1 ≡ α(x − b1α
2t) , (2)

where α,m and β are constants, and the “velocity” b1 is given by

b1 = 8 − 4m − 6β . (3)

Here, we use the standard notation dn (ξ,m), sn (ξ,m), cn (ξ,m) to denote Jacobi elliptic functions,

where m is the elliptic modulus parameter (0 ≤ m ≤ 1). Note that the period of solution (2)

is 2K(m)/α, where K(m) is the complete elliptic integral of the first kind [2]. In the limiting case

m = 1, one recovers the familiar result −2α2sech2(α(x−b1α
2t)). The properties of periodic multisoliton

solutions more general than eq. (2) have also been discussed [3].

In this paper, we make suitable linear combinations of solution (2) to obtain a large class of new

periodic solutions of the nonlinear KdV equation. This procedure works by virtue of some remarkable

identities satisfied by the Jacobi elliptic functions, which to the best of our knowledge, do not seem to

be previously known. Our solutions consist of adding terms of the kind given in (2) but centered at p

equally spaced points along the period 2K(m)/α, where p is any integer. The p-point solution is

up(x, t) = −2α2

p
∑

i=1

d2
i + βα2 ; di ≡ dn[ξp +

2(i − 1)K(m)

p
,m] , ξp ≡ α(x − bpα

2t) . (4)

Clearly, p = 1 is the original solution, but for any other p, we have new solutions of period 2K(m)/pα.

For convenience, we also define the quantities si and ci in analogy to the quantity di defined above:

si ≡ sn[ξp +
2(i − 1)K(m)

p
,m] , ci ≡ cn[ξp +

2(i − 1)K(m)

p
,m] . (5)

To see why eq. (4) is a solution of the KdV equation (1), it is best to first consider several small

values of p. For p = 2, substitution of eq. (4) into the left hand side of the KdV equation (1) gives on

simplification:

4mα5{(8 − 4m − b2 − 6β)(s1c1d1 + s2c2d2) + 12(d2
1s2c2d2 + d2

2s1c1d1)}. (6)
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One gets a solution only if the above expression vanishes. For p = 2, the quantities d1 = dn(ξ2,m)

and d2 = dn[ξ2 + K(m),m] are well-known [2] to satisfy d2
1d

2
2 = 1 − m, which on differentiation

gives d2
1s2c2d2 + d2

2s1c1d1 = 0. Therefore, u2(x, t) is a solution of the KdV equation with velocity

b2 = 8 − 4m − 6β, the same velocity as b1.

For p = 3, substitution of eq. (4) into the left hand side of the KdV equation (1) leads to the

expression:

4mα5{(8 − 4m − b3 − 6β)(s1c1d1 + s2c2d2 + s3c3d3)

+ 12[d2
1(s2c2d2 + s3c3d3) + d2

2(s3c3d3 + s1c1d1) + d2
3(s1c1d1 + s2c2d2)]}. (7)

In this case, d1 = dn(ξ3,m), d2 = dn(ξ3 + 2K(m)/3,m), d3 = dn(ξ3 + 4K(m)/3,m). In contrast to

the p = 2 case, there are no well-known relations between Jacobi elliptic functions at the arguments

chosen above. However, we have recently discovered numerous new identities [4] which reduce by 2

(or a larger even number) the degree of cyclic homogeneous polynomials in Jacobi elliptic functions.

The relevant identity for the p = 3 case is

d2
1(s2c2d2 + s3c3d3)+ d2

2(s3c3d3 + s1c1d1)+ d2
3(s1c1d1 + s2c2d2) =

(

2 − 2

Q

)

(s1c1d1 + s2c2d2 + s3c3d3) ,

(8)

where

Q ≡ sn2[2K(m)/3,m] . (9)

Identity (8) can be established analytically using the addition theorems [2] for Jacobi elliptic functions.

It is also easy to check numerically. Substituting identity (8) into expression (7), shows that u3(x, t)

is a solution of the KdV equation with velocity

b3 = 8 − 4m − 6β + 24

(

1 − 1

Q

)

. (10)

Similarly, the identity analogous to (8) for p = 4 is

4
∑

i=1

d2
i

4
∑

j 6=i

sjcjdj = −2
√

1 − m
4

∑

i=1

sicidi , (11)

and consequently, the expression for the velocity is

b4 = 8 − 4m − 6β − 24
√

1 − m . (12)

For an arbitrary integer p, we have found that the relevant identity is
p

∑

i=1

d2
i

p
∑

j 6=i

sjcjdj = A(p,m)
p

∑

i=1

sicidi , (13)
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where the constant A(p,m) can be evaluated in general by choosing any specific convenient value of

the argument ξ of the Jacobi elliptic functions. The values at m = 0, 1 are particularly simple:

A(p,m = 0) = −1

3
(p − 1)(p − 2) ; A(p,m = 1) = 0 . (14)

The general expression for the velocity of our p-point solution (4) is

bp = 8 − 4m − 6β + 12A(p,m) . (15)

In Figure 1, we plot the velocity bp as a function of the modulus parameter m for various values of

p. In making the plots, we have chosen β = 0. Note that for this choice of β, the velocity is always

positive and corresponds to right moving waves for p ≤ 3, whereas the velocity changes sign for p > 3.

Two types of mKdV equations are discussed in the literature [1] corresponding to the sign chosen

for the nonlinear term. We will consider these two types of mKdV equations separately, in order to

stay with real solutions. The first type of mKdV equation is

vt − 6v2vx + vxxx = 0 . (16)

The best known periodic travelling wave solution is

v1(x, t) = ±
√

mα sn(η1,m) , η1 ≡ α(x − q1α
2t) , (17)

with “velocity” q1 = −(1 + m) and period 4K(m)/α. In the limiting case m = 1, v1(x, t) reduces to

the familiar form ±α tanh(α(x + 2α2t)).

For any odd integer p, we find the following solutions of the mKdV equation (16) by a specific

linear superposition of the basic solution (17):

vp(x, t) = ±
√

mα
p

∑

i=1

s̃i , p = odd , (18)

where we define

s̃i ≡ sn[ηp +
4(i − 1)K(m)

p
,m] ; c̃i ≡ cn[ηp +

4(i − 1)K(m)

p
,m] ;

d̃i ≡ dn[ηp +
4(i − 1)K(m)

p
,m] ; ηp ≡ α(x − qpα

2t) . (19)

In order to verify that vp(x, t) satisfies eq. (16), one needs the identity

m
p

∑

i=1

s̃2
i

p
∑

j 6=i

c̃j d̃j + 2m





p
∑

i<j

s̃is̃j





[ p
∑

k=1

c̃kd̃k

]

= {B(p,m) − C(p,m)}
[ p
∑

k=1

c̃kd̃k

]

, p = odd, (20)
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which can be established from the much simpler identities [4]

m
p

∑

i<j

s̃is̃j = B(p,m) ; m
p

∑

i<j<k

s̃is̃j s̃k = C(p,m)
p

∑

i=1

s̃i , p = odd, (21)

by using the properties of Jacobi elliptic functions. The general expression for the velocity is

qp = −(1 + m) − 6{B(p,m) − C(p,m)} . (22)

Some explicitly computed values of the constants B(p,m) and C(p,m) are:

B(1,m) = 0 ; C(1,m) = 0 ; B(3,m) = −mQ ; C(3,m) = −1/Q .

For any even integer p, the linear superposition of elementary solutions does not work, since identity

(21) is restricted to odd values of p. However, remarkably enough, for this case, we find that products

of elementary solutions do give new solutions! For example, the solutions for p = 2 and p = 4 are:

v2(x, t) = ±αms1s2 ; v4(x, t) = ±αm(1 −
√

1 − m)s1s2s3s4 . (23)

These solutions can be verified using the general identity [4]

p
∑

i<j<k

cidicjdjckdk

sisjsk
= D(p,m)

p
∑

i=1

cidi

si
, p = even . (24)

The expressions for the velocities are

q2 = −2(2 − m) ; q4 = −2(2 − m) − 12
√

1 − m . (25)

It is well-known [1] that if v(x, t) is a solution of the mKdV equation (16), then the Miura transform

u(x, t) = v2 ± vx is a solution of the KdV equation (1). Therefore, using solutions (18) and (23), we

can obtain even more solutions of the KdV equation via the Miura transform. The simplest solution

(p = 1) coming from eq. (18) is

u(x, t) = α2[msn2(η,m) ±
√

mcn(η,m)dn(η,m)] , (26)

with velocity −(1 + m), corresponding to a left moving wave. In view of the identities (21), it is clear

that for odd integer p, appropriate linear superposition of the simplest solution (26) also solves the

KdV equation with the same velocity qp given in eq. (22). Similarly, the solution resulting from a

Miura transform of v2(x, t) in eq. (23) is

u(x, t) = α2[m2s2
1s

2
2 ± m(s1c2d2 + s2c1d1)] . (27)
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However, this is not a new solution since it simplifies to give either α2(2ms2
1 − m) or α2(2ms2

2 − m),

both of which are KdV solutions (2) with β = 2 − m.

Finally, we consider the second type of mKdV equation

vt + 6v2vx + vxxx = 0 . (28)

Here again, we have found several new solutions via linear superposition:

vp(x, t) = ±α
p

∑

i=1

di , qp = 2 − m + 6(E(p,m) − F (p,m)) , (p = 1, 2, 3, ...), (29)

vp(x, t) = ±
√

mα
p

∑

i=1

c̃i , qp = 2m − 1 + 6(G(p,m) − H(p,m)) , p = odd, (30)

vp(x, t) = ±α
p−1
∑

i odd

(di − di+1) , qp = 2 − m − 6(I(p,m) − J(p,m) + L(p,m)) , p = even, (31)

where the constants E(p,m), F (p,m), etc. are defined by the identities [4]

p
∑

i<j

didj = E(p,m) ;
p

∑

i<j<k

didjdk = F (p,m)
p

∑

i

di ;

m
p

∑

i<j

c̃ic̃j = G(p,m) ; m
p

∑

i<j<k

c̃ic̃j c̃k = H(p,m)
p

∑

i

c̃i ;

p
∑

i<j

didj = I(p,m) , (i + j) odd ;
p

∑

i<j

didj = J(p,m) , (i + j) even ;

p
∑

i<j<k

i+j+k=odd

didjdk −
p

∑

i<j<k

i+j+k=even

didjdk = L(p,m)
p−1
∑

i odd

(di − di+1) . (32)

Some explicit simple values at m = 0 are:

E(p, 0) = p(p − 1)/2 , F (p, 0) = (p − 1)(p − 2)/6 , G(p, 0) = 0 , H(p, 0) = (p2 − 1)/6 ,

I(p, 0) = p2/4 , J(p, 0) = p(p − 2)/4 , L(p, 0) = (p − 1)(p − 2)/6 . (33)

At m = 1 all constants E,F,G,H, I, J, L vanish for any p. Also, the constants for arbitrary m but

specified small values of p are:

E(2,m) = I(2,m) =
√

1 − m , F (2,m) = J(2,m) = L(2,m) = 0 ,

E(3,m) = 1 − mQ + 2
√

1 − mQ , F (3,m) = (1 − Q)/Q ,

G(3,m) = −m(1 − m)Q/(1 − mQ) , H(3,m) = (1 − mQ)/Q ,

E(4,m) = 2r(1 + r + r2) , F (4,m) = L(4,m) = r2 ,

I(4,m) = 2r(1 + r2) , J(4,m) = 2r2 , r ≡ (1 − m)1/4 . (34)
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Our method of judicious linear superposition for finding new solutions also works for many other

nonlinear equations. Indeed, we have verified that it works for the nonlinear Schrödinger and KP

equations as well as the λφ4 model. These results will be reported in a forthcoming publication [5].

The solutions we have obtained for the KdV equation all correspond to one gap periodic potentials.

This process can be generalized to obtain periodic potentials with a finite number of band gaps [6, 7].

One of us (A.K) thanks the Department of Physics at the University of Illinois at Chicago for

hospitality. We acknowledge grant support from the U.S. Department of Energy.
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Figure Caption

Figure 1: Velocity bp of the periodic KdV travelling wave solution up(x, t) [eq. (4)] as a function of

the modulus parameter m for p = 1, 2, 3, 4.
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