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Résumé. 2014 On présente une version sur réseau du modèle de de Gennes pour la transition nématique-
smectique A ; son comportement critique est étudié par des simulations suivant la méthode de Monte Carlo.
Ces simulations reproduisent qualitativement certains comportements observés dans les expériences. Le
modèle présente une transition de phase continue dont l’exposant 03B1 pour la chaleur spécifique est proche de
zéro. Les fonctions de corrélation du paramètre d’ordre ont un comportement critique anisotrope à l’approche
de la transition du côté nématique. D’autre part, le comportement des fonctions de corrélation dans la jauge
supraconductrice implique un point critique isotrope aussi bien pour les grandes que pour les petites valeurs de
la constante élastique qui décrit des déformations en éventail. Le comportement observé pour les constantes
élastiques de flexion et de torsion est cohérent avec cette conclusion. La dépendance en jauge des fonctions de
corrélation semble être bien décrite par l’hypothèse de découplage proposée par Lubensky et al.

Abstract. 2014 The critical behaviour of a lattice version of the de Gennes model of the nematic to smectic-A

transition is studied by Monte Carlo simulations. Several features observed in experiments are qualitatively
reproduced in the simulations. The model exhibits a continuous phase transition with the specific heat
exponent 03B1 close to zero. The order-parameter correlation functions show anisotropic critical behaviour as the
transition is approached form the nematic side. On the other hand, the observed behaviour of the correlation
functions in the superconducting gauge strongly indicates an isotropic critical point for both small and large
values of the splay elastic constant. The observed behaviour of the twist and bend elastic constants is consistent
with this conclusion. The gauge-dependence of the correlation functions appears to be well-described by the
decoupling approximation proposed by Lubensky and co-workers.
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1. Introduction.

Since the early 1970’s, the nematic to smectic-A
(NA) transition in liquid crystals has been the

subject of many experimental [1] and theoretical [2]
studies. In spite of these efforts, this transition
remains one of the most intriguing and least under-
stood problems in the field of equilibrium critical
phenomena. Most of the theoretical studies of this
phase transition have been based on a

phenomenological model proposed by de Gennes [3]
in 1972. In this model, the smectic order is described
by a bomplex scaler field 1/1’ and a two-component
real vector field 6n describes small fluctuations of
the nematic director about its equilibrium orien-
tation. The fields Wand 6n are coupled in a way that
makes the free-energy functional invariant under a
small global rotation [4]. The de Gennes free-energy
functional is formally very similar to the Ginzburg-

Landau free-energy functional for superconductors,
with T playing the role of the superconducting
order-parameter field, and 6n playing the role of the
vector potential. This analogy with the superconduct-
ing transition has been used extensively [5-7] in

theoretical studies of the NA transition. There

remain, however, several important differences be-
tween the superconductor and the smectic-A liquid
crystal. These differences include the absence of true
long-range smectic order in three dimensions [8, 9],
the inherently anisotropic nature of the smectic

phase and the presence of the splay elastic term [10]
in the de Gennes free-energy functional. An under-
standing of whether these differences are relevant in
the critical region is necessary before one can draw
any conclusion about the nature of the NA transition

from the superconducting analogy. Recently, there
have been attempts [11-13] to describe the NA

transition in three dimensions as an unbinding of
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dislocation loops. The model of interacting dislo-
cation loops considered in these studies can be
derived [14-15] from the de Gennes free energy. The
dislocation-melting theories are, therefore, com-

pletely equivalent to a description within the
framework of the de Gennes model.

At the present time, there exist no theoretical
consensus about the critical behaviour of the de
Gennes model. Many years ago, Halperin, Lubensky
and Ma [5] used a fluctuation-corrected mean-field
theory and a renormalization-group analysis near
four dimensions to argue that both the superconduct-
ing and the NA transition [6] should be weakly first-
order in nature. Experimentally, however, the NA
transition often appears to be continuous [1]. A
possible explanation of this contradiction between
theory and experiments has been provided by more
recent analytic [16] and numerical [16, 17] studies of
lattice models of superconductivity. These studies
provide compelling evidence indicating that the
three-dimensional type-II superconductor exhibits a
continuous phase transition that belongs to the so-
called « inverted XY » universality class. This univer-
sality class represents second order phase transitions
with critical exponents identical to those in the
three-dimensional XY model, but distinguished by
the fact that the temperature asymmetries of the
specific heat and other singular quantities in the
critical region are inverted [16] relative to the
XY transition. A recent renormalization-group
study [13] of a field-theoretic version of the dislo-
cation loop model of the NA transition indicates that
this transition should also exhibit inverted XY be-

haviour, at least for small values of the splay elastic
constant Kl. However, there exist other theoretical
arguments [11, 12] based on the dislocation melting
mechanisni which predict anisotropic scaling [7] in
the critical region, with the correlation length expo-
nents VII and vl for fluctuations parallel and perpen-
dicular to the direction of smectic ordering having
the ratio 2 : 1. The current theoretical view of the
nature of the phase transition in the de Gennes ,
model has been summarized in the review article of

Lubensky [2]. According to this account, the three-
dimensional model with a finite splay elastic constant
allows two asymptotic possibilities. These are : a) an
isotropic (vI = v 1 ) critical point in the inverted XY
universality class, and b) a critical point described by
anisotropic scaling with VI = 2 v_L. For the isotropic
case, the critical exponents have the same values as
those for the A-transition of liquid helium. There is
as yet no theoretical prediction about the values of
the critical exponents for the anisotropic universality
class.

For a determination of which one of these two

possibilities is realized in nature, it is necessary to
understand how the universality class of the transi-
tion manifests itself in the critical behaviour of

experimentally measurable quantities. This requires
an understanding of the « gauge-dependence » of
the quantities of interest. The original, physical
variables and dn appearing in the de Gennes
model define the so-called liquid crystal (LC) gauge.
All experimental observations are restricted to this
gauge. Divergent fluctuations in the phase of the
order parameter in this gauge lead to the well-known
destruction [8, 9] of true long-range smectic order in
three dimensions. It is, however, possible to cast the
description in terms of a different set of variables
which are related to 03C8 and dn through a gauge
transformation [2, 6, 7]. In particular, it is poss-
ible [6] to define a new gauge (the so-called super-
conducting (SC) gauge) in which phase fluctuations
are not divergent, so that the low-temperature phase
exhibits true long-range order. Most of the analytic
calculations [6, 7] are performed in this gauge. In
order to determine the critical behaviour of exper-
imentally observable quantities, it is then necessary
to transform back to the physical LC gauge. For
thermodynamic quantities (e.g. internal energy and
specific heat) and gauge-invariant quantities (e.g.
the stiffness constants B and D and the twist and
bend elastic constants K2 and K3), this does not pose
any problem because these quantities exhibit the
same critical behaviour in all gauges. However, the
order-parameter correlations measured in X-ray
scattering experiments are not gauge-invariant.
Lubensky and co-workers [2, 18-20] have used a
« decoupling approximation » to analyse the gauge-
dependence of these correlations. The most

interesting result of their analysis is the prediction
that the exponents v’ and vx, which describe the
growth of the correlation lengths associated with the
physical order-parameter correlation functions may
not be the same as the exponents vi and v 1 which
characterize the universality class of the transition.
Combining the analysis of Lubensky et al. with

anisotropic scaling, one obtains the following predic-
tions [2] for the experimentally observable critical
behaviour for the two universality classes mentioned
earlier.

a) Isotropic : The specific heat in the critical

region should behave as

where t = (r-7c)/7c and the subscript « XY »
refers to the three-dimensional XY model. The

asymmetry between C (T -&#x3E; Ti) and C (T -&#x3E; Fj) is
expected to be opposite to that in the XY model.
The fluctuation enhancements of the bend and twist
elastic constants as T - Tc + are predicted to have the
form
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Here, 03BE and ) ) represent the correlation lengths in
the SC gauge. Both these lengths diverge at the

transition with the same exponent vxy. In the
smectic phase, the stiffness constants Band D are
expected to grow as

The values of the critical exponents of the three-
dimensional XY model are [21] axy = - 0.02 and
vxy == 0.67. The X-ray correlation length exponent
vx is expected to be equal to vxy, whereas

v 1 is predicted to show a crossover from vxy to
vx-Y/2 as T --&#x3E; Tc+.
b) Anisotropic : In this universality class, the SC

gauge correlation lengths )I and 03BEs diverge as

T - Tc with two different exponents, vi and vl,
with VII = 2 v .1. The specific heat exponent a is

given by

The bend elastic constant is expected to diverge as
the transition is approached from the nematic side :

whereas K2 is expected to remain finite at the
transition. The stiffness constant B for layer dilations
is predicted to exhibit a finite jump at T = Tc. The
other stiffness constant D is expected to grow in the
smectic phase as

In the anisotropic case, the decoupling approxi-
mation of Lubensky et al. breaks down [20] in the
nematic phase and there are no reliable predictions
about the behaviour of the X-ray correlation lengths
as T --+ Ti .

Neither of these two sets of theoretical predictions
are in agreement with all the available experimental
data. In spite of a large number of experimental
studies of the NA transition, the situation remains
somewhat confusing because the observed critical

behaviour differs considerably from one system to
another. To take an example, the reported values of
the specific heat exponent a varies from - 0.03 to
0.53. Recently, some progress has been made
towards understanding the origin of this non-univer-
sal behaviour. It has been demonstrated [22, 23] that
the observed value of a increases continuously with
decreasing width of the temperature range over
which the nematic phase exists. The NA transition is
first-order in nature in materials with very narrow
nematic ranges. This implies the existence of a
tricritical point [22, 23] which separates the region of
continuous NA transitions from the region of first-
order transitions. The observed dependence of a on
the width of the nematic range can be qualitatively

understood in terms of cross-over effects arising
from the presence of this tricritical point. In mate-
rials with broad nematic ranges, the observed
values [24, 25] of a are close to the XY value.

However, the asymmetry of the specific heat peak is
found [24, 25] to be rather small, and to have the
same sign as that observed in the A-transition of
helium. Both the correlation lengths 6t and 6’
measured in X-ray scattering experiments [1, 24, 26,
27] appear to exhibit single-power-law divergences
as the transition is approached from the nematic
side, although the cross-over form predicted by
Lubensky et al. [2, 18] for the growth of 03BEX1 also

provides adequate fits to the data in some cases.

Except in materials which are close to the tricritical
point, ’the observed values of vf are 5-20 % higher
than vxy, and those of vXI are 3-15 % smaller than
v xy. None of the existing theories of the NA
transition is able to explain this behaviour. Several
measurements [1, 24, 26-30] of the critical behaviour
of the elastic constants have been reported in the
literature. There seems to be some disagreement
among the different experiments measuring the
critical behaviour of the bend elastic constant

K3. The experiments of Sprunt et al. [28] and Gar-
land et al. [24] indicate that the exponent that charac-
terizes the divergence of K3 is the same as vx. On the
other hand, experiments performed by Gooden
et al. [30] on the same materials suggest that the
exponent for K3 is universal and very close to

vxy, while vt varies from one material to another.
The latter results would be consistent with an

inverted XY transition. The twist elastic constant

K2 also diverges [1, 28, 29] at the transition. This
divergence is clearly inconsistent with a critical point
with VII = 2 v .1.. The reported values [1, 28, 29] of
the exponent for K2 are somewhat smaller than
vxy, although there are indications [29] that the
value of this exponent increases with increasing
width of the nematic range. The critical behaviour of
the stiffness constants B and D in the smectic phase
has not been studied as extensively. The available
data [1, 26, 27, 31-33] indicate an exponent of = 0.3-
0.4 for B and = 0.5 for D. These values are

inconsistent with the predictions of both the inverted
XY and the anisotropic universality classes.
The failure of theories based on the de Gennes

model to account for all the available experimental
results raises questions about the validity of this
model. A recent experimental study by Chan
et al. [34] claims to have provided evidence suggest-
ing that the de Gennes free energy is not adequate
for quantitative predictions about the NA transition.
In this experiment, the temperature dependence of
finite-range order-parameter correlations is
measured from the integrated X-ray intensity. The
authors argue that the de Gennes from of the free

energy implies that the temperature-dependence of
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the singular part of this quantity should be described
by the same exponent as that for the internal energy.
The experimental results do not agree with this

prediction. This discrepancy is interpreted as evi-

dence suggesting that the de Gennes model misses
some essential physics of the NA transition.

This summary of the available theoretical and

experimental information about the NA transition
clearly shows that the present understanding of this
phase transition is far from complete. In this paper,
we describe the results of a Monte Carlo simulation

of the critical behaviour of a lattice version of the de
Gennes model in three dimensions. Two main

questions were addressed in this numerical study.
These are : 1) does the de Gennes model provide an
adequate description of the NA transition ? and
2) what is the universality class of the phase transi-
tion in the de Gennes model ? The main results are
described below. A summary of these results was

reported earlier in a letter [35].
Concerning the first question, I found that the

,simulations qualitatively reproduce several features
observed in experiments. The model exhibits a

second-order phase transition with the specific heat
exponent a close to zero. The temperature-asym-
metry of the specific heat peak is similar to what is
observed in experiments on materials for which
a - 0. The correlation lengths associated with the
order-parameter correlation function show aniso-

tropic growth in the nematic phase. A peculiar
feature of the experimentally observed X-ray scat-
tering profile is reproduced in the simulation. Short-
range order-parameter correlations show a tem-

perature-dependence similar to that observed in the
experiment of reference [34]. Because of the small-
ness of the size of the samples simulated in this
study, accurate determinations of the values of the
critical exponents were not possible. For this reason,
a quantitative comparison with experimental results
cannot be made at this stage. However, the fact that
the qualitative behaviour observed in the simulations
is remarkably similar to what is seen in experiments
provides strong support to the validity of the de
Gennes model.

In order to determine the universality class of the
transition, I calculated the correlation functions in
the SC gauge. Since all experiments are restricted to
the physical LC gauge, a numerical simulation is the
only way of « experimentally » studying the critical
behaviour in the SC gauge. The results strongly
indicate an isotropic critical point. For both small
and large values of the splay elastic constant

Kl, the ratio of 03BEf/03BEs remains very nearly constant
as the transition is approached from the nematic
side. The observed behaviour of the bend and twist
elastic constants is consistent with this conclusion.
The gauge-dependence of the correlation function is
found to be well-described by the decoupling ap-

proximation proposed by Lubensky et al. These

results imply that at the NA transition, all ther-

modynamic and gauge-invariant quantities should
exhibit inverted XY behaviour, whereas the X-ray
correlation lengths should show a crossover [2, 18]
from isotropic to anisotropic behaviour as T -&#x3E; Tc +
The rest of the paper is organized as follows.

Section 2 contains a definition of the model studied
in this work and a description of the numerical
procedure used in the Monte Carlo simulation. The
results are described in detail in section 3. Section 4
contains a summary of the main results and a few

concluding remarks.

2. Model and simulation procedure.

The model studied in this work is a discretized
version of the three-dimensional de Gennes model.
It is defined on a three-dimensional simple cubic
lattice with periodic boundary conditions. The lattice
sites are labelled by the radius vectors

Here, ii represents an unit vector in the u-direction
and niu , = 1, 2, ..., L, where L is the linear size of
the lattice. The smectic order is described by an
angular (phase) variable, 0 (ri), defined at each site
(- ir  6 (ri)  ’IT). In the continuum de Gennes

model, the smectic order-parameter has an ampli-
tude as well as a phase. In the lattice model,
fluctuations in the amplitude are not allowed. This
constraint corresponds to the extreme type-II
limit [17] in the superconducting analogy. Since

liquid crystals exhibiting a continuous NA transition
are expected to be in the type-II regime, the fixed-
length constraint is justified. Fluctuations in the
director field are represented by real variables,
A.,(ri) and Ay(ri)’ with Az (ri ) = 0. These variables
are defined on the links between adjacent lattice
sites. In terms of these variables, the Hamiltonian of
the model is given by

In equation (8), Au, and Au, represent right and left
lattice derivatives, respectively :
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The z-axis is chosen to lie along the direction of
smectic ordering. Bo and Do are the « bare » stiffness
constants, and Klo, Ko and K3 represent the « bare »
Frank elastic constants [10] for splay, twist and bend
distortions, respectively. The length scale is chosen
such that the wavenumber associated with the smec-
tic order is equal to unity. The total number of sites
on the lattice is N = L 3.

It was shown earlier [14] that the partition functions
of the Villain version of this model maps exactly
onto that of a system of interacting dislocation loops.
Thus, this model describes the same physics as the
dislocation melting theories. This model is also

closely related, via a gauge transformation, to the
lattice superconductor model studied in refer-
ence [16]. A gauge transformation for the lattice
model is defined by the change of variables,
0 --&#x3E; 0 and A -&#x3E; A’, with

where the variables L (ri ) are to be determined from
a gauge condition. In particular, the SC gauge is

defined by the condition

which implies that the variables L (ri ) are determined
from the set of equations

It is easy to check that if K°1 is equal to zero, then a
transformation to the SC gauge reduces the Hamil-
tonian of equation (8) to an anisotropic version of
the lattice superconductor model of reference [16],
which is believed to exhibit an inverted XY transi-
tion. The present work may, therefore, be viewed as
a study of the effects of the splay term on the nature
of the phase transition. I chose the values Bo =
Do = 5.0, K20 = K3° = 1.0 in order to remain close in
parameter space to the simulation described in
reference [16]. The role of the splay term was
investigated by simulating the thermodynamic be-
haviour of the model for two different values (0.5
and 5.0) of K°.
The standard Metropolis algorithm [36] was used

in the Monte Carlo simulations. The model of

equation (8) involves three sets of variables, o (ri)’
Ax(ri) and Ay (ri ). Most of the results reported in
this paper were obtained from simulations in which
these variables were updated one at a time. A Monte

Carlo update of a variable consists of the following
three steps. First, a value of the attempted change is
chosen at random from within a certain range. Then,
the energy change, AE, associated with the attempt-
ed update is calculated. If AE  0, the change is

accepted. If AE &#x3E; 0, the change is accepted with a
probability exp (- åE/T). The range of values of
the attempted change was adjusted to keep the
acceptance ratio close at 0.5. The simulations were

performed on the CRAY 1 computer at the Min-
nesota Supercomputer Institute. In order to take

advantage of the vectorizing capability of the

CRAY, I divided the lattice into four sublattices in
such a way that the calculation of AE for the

updating of a variable on a particular sublattice does
not involve any other variable of the same set

belonging to the same sublattice. All the variables of
a particular set belonging to one of the four sublat-
tices could then be updated simultaneously in a

single vectorized step. Simulations were carried out
for samples with L = 6, 8 and 10. Standard methods
were used in the calculation of equilibrium averages.
Typically, 1 000-2 000 Monte Carlo steps per vari-
able were used for equilibration, and 5 000-
10 000 steps per variable were used for calculating
averages. A 10 000-step run for a L = 10 sample
used approximately 200 s of c.p.u. time of the
CRAY 1.
Due to reasons which will be explained in the next

section, correlation functions in the SC gauge were
calculated from simulations in which the constraints

and

were imposed on the allowed values of the variables
Au (ri). These restrictions were implemented by
using an updating procedure similar to the one used
in simulations of Ising models with conserved total
magnetization. In this procedure, the variables

Au (ri) are updated in pairs. Whenever a variable
Au (ri) is changed by an amount 5, the nearest-

neighbour variable A , (ri + fL) is also changed by an
amount (- 6). If the initial configuration satisfies
the constraints (13a) and (13b), then all subsequent
configurations generated by successive applications
of this algorithm also do so. A computer program
implementing this algorithm was vectorized by
breaking the lattice up into L sublattices. Calcula-
tions of correlation functions in the SC gauge were

straightforward, but tedious. The solutions of the set
of equations (12) can be written as
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where the elements of the N x N matrix M depend
only on the type of the lattice. This matrix was

calculated and stored in the memory of the com-

puter. The values of L(ri) corresponding to a

particular configuration of Au (ri) were then calcu-
lated from equation (14). The large amount of

computer time required for this procedure restricted
the calculation of SC gauge correlation functions to

samples with L , 8.

3. Results.

In this section, the results obtained from the numeri-
cal simulations are described iri detail and compared,
when appropriate, with theoretical predictions and
experimental observations. The simulations did not
show any indication of a first-order phase transition.
Results obtained from heating and cooling runs were
identical within statistical uncertainties, indicating
the absence of any hysteresis. I did not find any
significant difference between the critical properties
for the two different values of K° (Kf = 0.5 and 5.0)
considered in this work. For this reason, only the
results for K° = 0.5 are shown in most cases. Unless
otherwise indicated, the results presented below
were obtained from simulations in which no restric-
tion was imposed on the variables.

3.1 SPECIFIC HEAT. - The specific heat C was
calculated from a numerical differentiation of the
internal energy E with respect to the temperature T,
and also form the fluctuations of the internal energy.
The values obtained from these two different pro-
cedures were in agreement within the error bars
(= 5-10 %). The results for samples with L = 6, 8
and 10 are shown in figure 1. The data points shown
were obtained from a numerical calculation of

dE/dT. The specific heat peaks at approximately
the same temperature for the three different values
of L. The height of the peak increases with L, as
expected for a continuous phase transition. Because
of the smallness of sample-size, an accurate determi-
nation of the specific-heat exponent a is not possible.
However, it is possible to show that the observed
behaviour of C is consistent with a being close to
zero. For a system with a = 0, the specific heat in
the critical region is expected [37] to have the form

where t =- (T - Tc)/Tc and A, Band D are con-
stants. Measurements [37] at the A-point of helium
indicate that the value of the asymmetry parameter
D is close to 4 in the three-dimensional XY model.

Thus, the value of D expected for an inverted XY
transition is close to (- 4). A plot of C versus
In (I T - T* / T * ) where T* = 6.15 is the tempera-
ture at the specific heat peak for L =10 and

Fig. 1. - Variation of the specific heat C with temperature
T for K1° = 0.5. The inset shows semilog plots of C for the
L = 10 sample vs. T - T* I IT*, where T * (= 6.15) is

the temperature at the specific heat peak.

K1° = 0.5 is shown in the inset of figure 1. It is clear
that the data points are consistent with the from of
equation (15). The size-dependence of the height of
the specific heat peak is also consistent with the

prediction of finite-size scaling [38] with a == 0.

However, the asymmetry parameter D appears to be
rather small (= 0.25) and its sign is the same as that
expected for the regular XY transition. A qualitat-
ively similar behaviour of the specific heat near the
NA transition has been observed [24, 25] in experi-
ments on materials for which a = 0. Thus, the

inversion of the temperature axis expected for an
isotropic NA transition does not show up either in
the simulation or in experiments. Crossover effects
and/or corrections to scaling arising form the

K° term may account for this discrepancy. A theor-
etical understanding of these effects requires further
study. It should be noted that a value of a close to
zero does not rule out an anisotropic critical point
because the values of the critical exponents for this

universality class are not known theoretically.

3.2 X-RAY CORRELATION FUNCTIONS. - An in-

triguing feature of the NA transition is the aniso-

tropic critical behaviour of the order-parameter
correlation lengths measured in X-ray scattering
experiments [1, 24, 26, 27]. In the simulations, I
calculated the order-parameter correlation functions,
g (1 ), defined by
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where (... ) represents a thermal (Monte Carlo)
average and I is a lattice vector. The discrete Fourier
transforms of g (1 ) are defined as

with k = 2 L ir (A A A) where m.., 11 = X,with k = 
L xmx + ymy + zmz , where mJL’ ..t 

= jc,

y, z, are integers with - L/2 - m. -- L/2. It is clear
from the definition of the model, equation (8), that
g (k) is the discrete analog of the X-ray scattering
intensity I (k + qo z) where qo is the wave number
associated with the smectic ordering. In order to
determine the X-ray correlation lengths Ct and
) fl in the nematic phase, I used a procedure similar
to the one used in the analysis of X-ray scattering
data. This procedure consists of fitting the scattering
profile to a Lorentzian of the form

where X is the order-parameter susceptibility and
kl = k.2 + ky. Experimentally, it is found [1, 24, 26,
27] that for k is the 11 (z ) direction, this form provides
a good fit to the data. However, for k is the
I (xy ) plane, the scattering intensity falls off faster
than a Lorentzian, and a fourth-order term,
c ( g 1 k 1.)4, has to be included in the denominator of
equation (18) in order to obtain adequate fits to the
data. The coefficient c is found to be weakly
temperature dependent, with values in the range
0.05-0.20. The presence of the (gl)4 factor in the
definition of this fourth-order term implies that the
relative importance of this term increases as

T -&#x3E; Tc+. A satisfactory explanation of this behaviour
is not yet available. It has been suggested [1, 39] that
the k 4 term is a manifestation of the divergent
fluctuations in the phase of the smectic order par-
ameter.

The behaviour of g (k ) calculated in the simula-
tions is very similar to the experimentally observed
behaviour described above. The discrete analog of
equation (18) is

where

and

For k in the z-direction, the data for g (k) are well-
described by equation (19). As shown in figure 2,

Fig. 2. - Plots of the inverse of g (k ), the Fourier

transform of the order-parameter correlation function

(L = 10, 14 = 0.5) vs. I a (k) 12 (see text) for k in the
parallel (a ) direction at T = 6.8 (triangles, left scale) and
T = 6.2 (circles, right scale). The solid lines are best fits to
the Lorentzian form of equation (19).

plot of [g (k ) ]- 1 versus a z (k) 2 can be fitted quite
well by straight lines for all T &#x3E; T*. However, for k
in the xy-plane, plots of [g (k )]- 1 versus 1 a 1. (k) 12
show considerable upward curvature, and it is

necessary to include a fourth-order term, cia 1. (k) 14,
in the denominator of equation (19) for good fits to
the data. Results for two different temperatures are
shown in figure 3. It is apparent that the curvature
(and consequently, the value of c) increases as T
approaches T*. An explanation of this behaviour
will be suggested in section 3.5 below. Here, the
results for 03BE and 03BEx obtained from the fits are

described. The inset of figure 3 shows the observed
temperature-dependence of the ratio 03BEx/03BEx for

L = 10, K1° = 0.5. The results clearly exhibit an

anisotropic growth of the two correlation lengths as
the transition is approached from the nematic side.
Large fluctuations in the value of the susceptibility X
made an accurate determination of the absolute
values of 03BE||x and $ xl impossible, although the values
of (03BElr)2Ix and (03BE1)2/x and therefore, the ratio
03BE||/03BE1 could be determined with fair accuracy form
the fits similar to the ones shown in figure 2 and
figure 3. Because of this reason and the smallness of
sample-size, I was not able to obtain any reliable
estimate of the values of the exponents associated
with the growth of the X-ray correlation lengths.

It is, in principle, possible to extract the values of
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the stiffness constants in the smectic phase form the
data for g (1 ). A harmonic « spin-wave » analysis [2,
9] predicts the following form for g (1 ) in the smectic
phase : where

Fig. 3. - Plots of the inverse of 9 (k) vs. 1 «(k) 12 for
L = 10, K° = 0.5, and k in the perpendicular (xy ) plane at
T = 6.8 (triangles, right scale) and T = 6.2 (circles, left

scale). The solid lines are the best fits to the form of

equation (19) with an 1«(k)14 term included in the

denominator (see text). The inset shows the temperature
dependence of the ratio of the two X-ray correlation
lengths for L = 10, K° = 0.5.

The stiffness constants, B and D, and the elastic
constants, Kl, K2 and K3, appearing in equation (23)
are the renormalized ones defined at long
wavelengths. They are, in general, different form
the « bare » ones denoted by the subscript or

superscript 0. It follows from equation (22) that

In the simulation, the quantities h (k ) were cal-
culated. I tried to fit the k-dependence of h (k) to the
form of equation (23), with KI, K2 and K3 fixed at
their « bare » values. This procedure works quite
well for temperatures less than = 0.9 T*. A typical
set of fits are shown in figure 4. The values of B and
D obtained from such fits are found to be substan-

tially smaller than their « bare » values over the

temperature range studied. Both B and D decrease

Fig. 4. - Plots of h (k ) defined in equation (24) vs.

I a (k) 12 for L = 6, Kfl = 0.5, T = 5.2, and k in the parallel
direction (circles, right scale), and in the perpendicular
plane (triangles, left scale). The solid lines represent the
behaviour expected from equation (23) with B = 3.2,
D = 2.5, Ki=0.5 and K2 = K3 = 1.0.

with increasing temperature, as expeted, with D
always smaller than B. For T &#x3E; 0.9 T*, large critical
fluctuations in 9 (I) make an accurate determination
of h (k ) difficult. Also, the quality of the fit to the
form of equation (23) deteriorates rapidly as

T - T*. Letting K2 and K3 be different form the
« bare » values does not produce any substantial
improvement of the fits. For these reasons, it was
not possible to obtain reliable results on the growth
of B and D in the critical region.

3.3 CORRELATION FUNCTIONS FOR DIRECTOR FLUC-
TUATIONS. - As discussed in the Introduction, the
anisotropic behaviour of the X-ray correlation

lengths does not necessarily imply that the NA
transition is described by anisotropic scaling. The
true nature of the critical point is expected to

manifest itself in the behaviour of gauge-invariant
quantities such as the stiffness constants B and D,
and the renormalized Frank elastic constants K2 and
K3. These quantities can be obtained from measure-
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ments of the correlation functions for director fluc-
tuations. The director field correlation functions for
the model of equation (8) are defined as

The critical behaviour of the director fluctuations in
the de Gennes model has been analysed by Jahnig
and Brochard [40]. A simple generalization of their
analysis to the lattice model yields the following
results for long-wavelength director fluctuations in
the nematic phase :

Since twist and bend distortions are expelled from
the smectic-A phase whereas splay distortions are
allowed, the elastic constants K2 and K3 are expected
to show fluctuation enhancements as the transition is

approached from the nematic side, and Kl is ex-

pected to remain unchanged from its bare value,
K°. The enhancements of K2 and K3 can be re-

lated [40] to the correlation lengths Cf and
defined in the introduction :

Since, according to equation (27), 8K3/8K2-
i- )2, measurements of the temperature-depen-
dence of this ratio should, in principle, settle the

question of whether the NA transition is described
by anisotropic scaling or not. In the smectic phase,
equations (26b) and (26c) are modified to the form

The behaviour observed in the simulations is in

good agreement with equations (26) and (28). Plots
of T/Duu (kk) versus la,(k) 12 are well-described
by straight lines for small values of k. At high
temperatures, the straight-line fits to the data pass
through the origin, whereas for T less than - 1.1 T *, 
the intercepts at k = 0 are finite. Typical results are
shown in figure 5. Values of K1, K2, K3 and D were
extracted from such fits. As expected, Kl remains
equal to K° through the transition, and both

K2 and K3 exhibit small but detectable enhancements
in the critical region. The results for 8 Kl, , 8 K2 and
8 K3 are shown in the inset of figure 5. There is no
indication of any increase in the value of SK31SK2
as the transition temperature is approached from
above. This ratio, in fact, decreases as T-&#x3E; T*.

Also, the observed values of this ratio are substan-
tially smaller than those of (g r / g l)z obtained from
X-ray correlation functions (see Sect. 3.2) at all

temperatures. These results are consistent with an

isotropic critical point. However, the evidence for
isotropic behaviour is far from being conclusive. At
temperatures much higher than T*, the values of
8 K2 and 8 K3 are very small and their ratio can not
be determined accurately. For T = T*, on the other
hand, both 6( and 61- are expected to saturate at
values = L/2, irrespective to the nature of the
critical point. Therefore, the observed result,
8 K3/ 8 K2 ~ 1 near T = T*, can not really differen-
tiate between isotropic and anisotropic critical be-
haviour. Furthermore, equations (26) and (27) de-
scribe the behaviour in the long-wavelength hydro-
dynamic (kg  1) limit. Because of the smallness of
sample-size, the applicability of these equations to
the results of the simulation is questionable, es-

pecially at temperatures close to T*. This is perhaps
the reason why the observed values of 8 K2 and
8 K3 at T = T * are somewhat smaller than the values
expected from equation (27) with 6( =..: 6’- == L/2.
For these reasons, it is difficult to draw any firm



966

Fig. 5. - Plots of TIDxx(fvk) (see text) vs. I a.,(k)12 for
L = 10, K1° = 0.5 [triangles : v = x, T = 6.4 ; circles :
v = y, T = 6.4 ; squares : v = y, T = 5.7]. The straight
lines are the best fits. The inset shows the temperature
dependence of the fluctuation enhancements of the Frank
constants in the nematic phase.

conclusion about the nature of the NA critical point
from the results for D JL v. Simulations of much larger
samples would be necessary to clarify this aspect.
The values of D obtained form the data on

director fluctuations agree with those calculated at
low temperatures from X-ray correlation functions
(see Sect. 3.2 above). As expected, D decreases with
increasing temperature and goes to zero at T =

1.1 T*. No sharp feature is noticeable at T = T*.
Because of this finite-size rounding, no attempt was
made to extract a value of the critical exponent that
describes the vanishing of D at the transition.

3.4 SHORT-RANGE ORDER-PARAMETER CORRE-

LATIONS. - As mentioned in the introduction, the
results of a recent experiment [34] on the critical
behaviour of short-range order-parameter correla-
tions have been interpreted as evidence indicating
the inadequacy of the de Gennes model in describing
quantitatively the physics of the NA transition. This
issue was investigated in the simulation by calculating
the nearest-neighbour correlation functions

According to the arguments presented in refer-

ence [34], the temperature-dependence of the singu-
lar part of the quantity

should be described by the same exponent as the
internal energy. I tested this prediction by calculating
the temperature derivative, dgnn/dT, from a numeri-
cal differentiation of the Monte Carlo data for

gnn (T). The results for L = 10, K° = 0.5 are shown
in figure 6 as a plot of dgnn/dT versus

In [ ( T - T * /T * ]. From a comparison of this plot
with the one shown in the inset of figure 1, it appears
that the temperature-dependence of gnn in the critical
region is more singular than that of the internal
energy. This behaviour is qualitatively similar to that

Fig. 6. - Semilog plots of the temperature derivative of
gnn, the nearest-neighbour order-parameter correlation

function (L = 10, Kt = 0.5) vs. I T - T* I IT where
T* (= 6.15) is the temperature at the specific heat peak.

observed in the experiment of Chan et al. [34] who
found that the exponent that characterizes the

dependence of short-range correlations on the re-
duced temperature is smaller that (1- a ). The
results of this simulation, therefore, tend to support
the validity of the de Gennes model, and appear to
disagree with the theoretical arguments of refer-
ence [34]. This disagreement may be related to the
fact that the order-parameter correlation functions
are not gauge-invariant whereas the internal energy
is. It is clear form equation (8) that the gauge-
invariant nearest-neighbour correlation gnn defined
by
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is conjugate to 1/T and therefore, should exhibit the
same singularity as the internal energy at the transi-
tion. The results obtained from the simulation are in

agreement with this expectation. However, the cor-
relation function g n appears to depend more

strongly on the reduced temperature then its gauge-
invariant counterpart. This makes the dependence
of gnn on the reduced temperature look more

singular than that of the internal energy. I have not
succeeded in working out an analytic explanation of
this behaviour. The numerical results, however, do
suggest that it may be premature to interpret the
experimental results of reference [34] as evidence

for the failure of the de Gennes model.

3.5 CORRELATION FUNCTIONS IN THE SUPERCON-
DUCTING GAUGE. - The correlation functions in

the SC gauge are defined as

where the angular variables 0 (ri) are related to the
original variables 0 (ri ) by the gauge transformation
defined in equations (10)-(12). As discussed in the
Introduction, the critical behaviour of these corre-
lation functions is expected to reflect the true nature
of the NA transition. The numerical procedure used
in the calculation of gs is described section 2. In this

calculation, I came across a problem arising from the
smallness of sample size. It is evident from

equation (10) that A’(k, = 0) is equal to zero,
whereas there is no such restriction on Ax (k ) and
A; (k). This asymmetry between the 11 and -L direc-
tions is not important in the thermodynamic limit.
However, in the small samples studied in the simu-
lation, it makes 9s(l) anisotropic even when Ko = 0.
(For K° = 0, Bo = Do and K2 = K30, the model of
equation (8) reduces, via the gauge transformation
of equations (10)-(12), to the isotropic lattice super-
conductor model of reference [16]. Therefore, in the
thermodynamic limit where the restrictions

A’(kz = 0) = 0 are irrelevant, the correlation func-
tions 9s(l) should be isotropic if K° = 0). In order to
eliminate this spurious finite-size effect, measure-
ments of 9s (I) were made from simulations in which
the constraints given in equations (13a) and (13b)
were imposed on the allowed values of the variables
A, (ri). These constraints, which are equivalent to
setting Ax (kx = 0 ) and Ay (ky = 0 ) equal to zero,
remove the asymmetry between the 11 and I direc-
tions mentioned above and restore the isotropy of
gs (1 ) in the K° = 0 limit. For the L = 8 and

L = 10 samples studied, the imposition of these
constraints produces a 10-15 % increase in the value
of T*, but does not affect the critical behaviour of
gauge-independent quantities in any significant way.
The qualitative behaviour of short-range order-par-
ameter correlations discussed in section 3.4 also

remains unchanged. There is, however, a significant
change in the observed behaviour of the Fourier
transforms of the X-ray correlation functions g (1 ).
The Fourier transforms g(k) calculated from the
restricted simulations closely resemble the Lorent-
zian form of equation (19) for both 11 and ..L direc-
tions. Plots of [g (k)]- 1 versus 1 a.L (k) 2 show much
less curvature. The calculated values of the ratio

03BEr / 03BE1 are somewhat smaller than those obtained

from the unrestricted simulations and the depen-
dence of this ratio on the reduced temperature is
weaker. These changes may be explained in the
following way.

It is clear form equation (8) that the Hamiltonian
of this model is invariant under the transformation

where C1 1 and C2 are arbitrary constants. (Periodic
boundary conditions restrict the values of C 1 and
C2 to 2 rrmIL where m is an integer.) In physical
terms, the transformation (33) corresponds to a

small global rotation of the system, which, by
construction, leaves the Hamiltonian unchanged.
Thus, in addition to the usual ground state, 6 (ri ) =
constant, Ax(ri) = Ay(ri) = 0, there are other

ground states with the same energy described by
0 (ri) = constant + nix C 1 + niy C 2,

During a time evolution governed by the Monte
Carlo dynamics described in section 2, parts of the
system sometimes fluctuate into the vicinity of one
of the ground states with small but non-zero values
of C1 1 and C2 if the temperature is higher than
T* [41]. These fluctuations, while having no effect
on the X-ray correlation function in the z-direction,
do affect the correlations in the xy plane. In par-
ticular, fluctuations in the neighbourhood of a

ground state with C1= 27Tml/L, C2 = 2 7Tm2/L
cause an enhancement of the Fourier component of

g(1) with kx=27Tml/L, ky=27Tm2/L, kz=O.
Because of this enhancement for small values of

k.1.’ the observed g (kj_ ) appears to fall off faster then
a Lorentzian for relatively large values of k.1.. The
imposition of the constraints of equation (13) sup-
presses these fluctuations and consequently, reduces
the values of g (kl ) for small k.1. while leaving the
values of g (kl ) for large k.1. relatively unaffected.
This brings g (k .1.) closer to the Lorentzian form and
also causes the estimate of 03BE1 to increase. Micro-
scopic examination of the configurations generated
in the Monte Carlo evolution bears out this picture.

Spontaneous fluctuating corresponding to uniform
rotations of macroscopic regions of the sample are
extremely unlikely to occur in real experiments.
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Thus, it is possible that the non-Lorentzian behavi-
our of 9 (k.L) observed in experiments is not related
to similar behaviour seen in the simulations. How-

ever, it is interesting to note that effects similar to
those observed in the simulations may be produced
in real systems by a different source, namely the
mosaic spread of the sample. The effect of averaging
over a sample in which the direction of nematic
alignment is not the same everywhere would essen-
tially be the same as that of averaging over a time
evolution during which parts of the system undergo
small uniform rotations. I have checked numerically
(by convoluting a Lorentzian with a Gaussian

mosaicity function) that a small amount of mosaic
spread (=1 ° ) would have substantial effects on the
k-L-dependence of 9 (k) at temperatures close to

T,. The resulting line shape exhibits all the qualita-
tive features seen in the simulation and in ex-

periments. Some of the X-ray scattering results
available in the literature have been corrected [1, 26,
27] for effects of mosaicity. However, the correction
procedures involve ad hoc assumptions (such as a
Gaussian, temperature-independent mosaicity func-
tion) which may not be valid. A detailed exper-
imental investigation of the effects of mosaicity on
the X-ray scattering profile will be interesting and
useful.

I found that the Fourier transforms, gs (k ), of the
SC gauge correlation functions, gS (1 ), calculated in
the restricted ensemble can be fitted quite well by
the Lorentzian form of equation (19), with e and
Cx L replaced by the SC gauge correlation lengths
6jr and 6 s. Results for K1° = 0.5 and T = 7.4 are
shown in figure 7. Values of )( and es’ were obtained
from such fits. The inset of figure 7 shows that the
observed temperature dependence of the ratio

6(161 as the transition is approached from the
nematic side. Both 03BEf and ) ) change by factors of
= 3 (from =1.5 to = 4.5) over the temperature
range shown, whereas their ratio remains constant to
within 5 % for both values of K°. From this obser-
vation, I conclude that this phase transition is
described by an isotropic fixed point. This con-

clusion, in turn, implies [2] that the phase transition
in the de Gennes model belongs in the inverted XY
universality class.

I also tested the validity of the decoupling approxi-
mation used by Lubensky and co-workers [2, 18-20]
to relate the behaviour of the X-ray correlation
functions to that of the correlation functions in the
SC gauge. This approximation consists of two parts.
For the lattice model considered here, the first part
of the approximation corresponds to assuming that
in the critical region in the nematic phase (and also
in the entire smectic phase), the X-ray correlation
function 9 (I) can be factorized as

Fig. 7. - Plots of the inverse of gs (k ), the Fourier

transform of the SC gauge correlation function (L = 8,
14 = 0.5, T = 7.4) vs. a (k ) 2 for the parallel (triangles)
and perpendicular (circles) directions. The inset shows the
temperature dependence of the ratio of the two SC gauge
correlation lengths for 14 = 0.5 (squares) and 14 =
5.0 (open circles). T*, the temperature at the specific heat
peak, is 7.1 and 7.9 for K° = 0.5 and 5.0, respectively. The
results shown here and in figures 8 and 9 were obtained
from the restricted simulations described in the text.

for large values of 1, where

The variables L (ri ) appearing in equation (35) are
the same as those in equations (10)-(12), which
define the transformation from the LC to the SC

gauge. The second part of the decoupling approxi-
mation involves the assumption that the leading
large-l behaviour of G(I) is correctly described by
the lowest nonvanishing (second) cumulant. This

assumption implies the following form for G (1 ) in
the nematic phase :

where

The correlation functions G (1 ) were calculated di-
, rectly from the simulations in the restricted en-
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semble. The validity of the factorization part
(Eq. (35)) of the decoupling approximation was
tested by examining the 1-dependence of the ratio

The results showed consistency with equation (35) at
temperatures close to T* in the nematic phase. The
observed l-dependence of R (1 ) at T = 7.2 (L = 8,
K1° = 0.5) is shown in figure 8 for 1 in both 11 and 1
directions. It appears that R (1 ) approaches a constant
value for large values of I in either direction. The
asymptotic value of R(1) was found to depend
weakly on the direction of 1 and on the temperature.
The validity of the second part (Eqs. (36) and (37))

Fig. 8. - The ratio R (1) defined in equation (38) vs. I for
L = 8, K° = 0.5, T = 7.2, and 1 in the parallel (triangles)
and perpendicular (circles) directions.

Fig. 9. - Plots of the quantity U(k) defined in equa-
tion (39) vs. [I ax(k)12 + I ay(k)12] for L = 8, K1° = 0.5,
T = 7.2, and two different values of kz (circles : kz = 0 ;
triangles : kZ = w/4). The solid lines represent the beha-
viour expected from equation (37) with Kl = 0.5 and

K3 = 1.25.

of the decoupling approximation was examined by
calculating the quantities

which, according to equation (36), should be equal
to S (k ) given in equation (37). The data were found
to be consistent with this expectation. The results for
U(k) at T = 7.2 (L = 8, K1 = 0.5) are shown in

figure 9. The solid lines, which represent the k-

dependence expected form equation (37) with K, =
0.5 and K3 = 1.25, clearly provide a good description
of the data. Thus, the observed gauge-dependence
of the correlation functions appears to be well-

described by the decoupling approximation for T
close to T* in the nematic phase. I also found good
agreement with the decoupling approximation at all
temperatures lower than T*.

4. Concluding remarks.

To summarize, two main conclusions may be derived
form the present work. First, the fact that several
features observed in experiments are qualitatively
reproduced in the simulation provides strong support
to the validity of the de Gennes model. Second,
calculations of correlation functions in the SC gauge
indicate that (a) the phase transition in the de
Gennes model belongs in the inverted XY universali-
ty class for small as well as large values of the splay
elastic constant, and (b) the gauge-dependence of
the correlation functions is well-described by the
decoupling approximation in the critical region.
These results imply that in the NA transition, all

gauge-invariant quantities should exhibit inverted
XY behaviour, and the X-ray correlation lengths
should show a crossover form isotropic to anisotropic
critical behaviour as the transition is approached
from the nematic side.
The fact that some of the experimental results do

not agree with these predictions remains somewhat
puzzling. The apparent non-universality of the criti-
cal behaviour observed in experiments suggests the
presence of crossover effects. One source of cros-
sover effects (namely, the presence of a nearby
tricritical point) in materials with narrow nematic
ranges has already been identified. Other crossover
phenomena (mean-field to critical, regular XY to
inverted XY’ and correction-to-scaling effects arising
form the presence of a large splay elastic term may
be important in understanding the experimentally
observed critical behaviour in some systems. Quan-
titative calculations of these effects would be very
useful in clarifying the situation. On the exper-
imental side, the true nature of the NA transition is
most likely to be observed in materials with a broad
nematic range and small values of the splay elastic
constant and the layer spacing. Efforts toward
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synthesizing materials with these properties would
be most welcome. A careful experimental study of
the effects of mosaicity on the X-ray scattering
profile may provide important insight into the puzzl-
ing behaviour of the X-ray correlation lengths.
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