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EXPLICIT SOLUTIONS FOR A SYSTEM OF FIRST-ORDER
PARTIAL DIFFERENTIAL EQUATIONS

KAYYUNNAPARA THOMAS JOSEPH

Abstract. In this paper we construct explicit weak solutions of a system

of two partial differential equations in the quarter plane {(x, t) : x > 0, t >

0} with initial conditions at t = 0 and a weak form of Dirichlet boundary
conditions at x = 0. This system was first studied by LeFloch [9], where he

constructed explicit formula for the weak solution of pure initial value problem.

1. Introduction

LeFloch [9] constructed an explicit formula for the solution to initial-value prob-
lem

ut + f(u)x = 0,

vt + f ′(u)vx = 0,
(1.1)

with initial conditions (
u(x, 0)
v(x, 0)

)
=

(
u0(x)
v0(x)

)
, (1.2)

in the domain {(x, t) : −∞ < x < ∞, t > 0}, where f(u) is strictly convex. The
first equation is a convex conservation law and the Lax formula [8] gives the en-
tropy weak solution u(x, t) when the initial data u(x, 0) = u0(x) is in the space of
bounded measurable functions. The solution u(x, t) remains in the space bounded
functions and is locally a BV function for t > 0. Then the second equation for
v is a nonconservative scalar equation with bounded and BVloc function f ′(u) as
coefficient and LeFloch [9] gave an explicit formula for the solution v(x, t) satis-
fying initial data v(x, 0) = v0(x), when v0 is Lipschitz continuous. To justify the
nonconservative product which appear in the second equation Volpert product [11]
was used and the second equation was interpreted in the sense of measures.

In this paper we study (1.1) in the quarter plane {(x, t) : x > 0, t > 0}, supple-
mented with an initial condition at t = 0(

u(x, 0)
v(x, 0)

)
=

(
u0(x)
v0(x)

)
(1.3)
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and a weak form of the Dirichlet boundary condition,(
u(0, t)
v(0, t)

)
=

(
ub(t)
vb(t)

)
(1.4)

where u0(x) is bounded measurable and v0(x) are Lipschitz continuous functions
of x and ub(t) and vb(t) are Lipschitz continuous functions of t. Indeed with strong
form of Dirichlet boundary conditions (1.4), there is neither existence nor unique-
ness as the speed of propagation λ = f ′(u) depends on the unknown variable u
and does not have a definite sign at the boundary x = 0. We note that the speed
is completely determined by the first equation. We use the Bardos Leroux and
Nedelec [1] formulation of the boundary condition for the u component which for
our case is equivalent to the following condition (see LeFloch [10]):

either u(0+, t) = u+
b (t)

or f ′(u(0+, t)) ≤ 0 and f(u(0+, t)) ≥ f(u+
b (t)).

(1.5)

Here u+
b (t) = max{ub(t), λ} where λ is the unique point where f ′(u) changes sign.

Because of convexity of f , f(λ) = inf f(u). There are explicit representations of
the entropy weak solution of of the first component u of (1.1) with initial condition
u(x, 0) = u0(x) and the boundary condition (1.5) by Joseph and Gowda [5] and
LeFloch [10]. We use the formula in [5] for u which involve a minimization of
functionals on certain class of paths and generalized characteristics. Once u is
obtained, the equation for v is linear equation with a discontinuous coefficient
f ′(u(x, t)). Now v(0+, t) = vb(t) is prescribed only if the characteristics at (0, t)
has positive speed, ie f ′(u(0+, t)) > 0. So the weak form of boundary conditions
for v component is

if f ′(u(0+, t)) > 0, then v(0+, t) = vb(t). (1.6)

The aim of this paper is to construct explicit formula for (1.1), with initial condition
(1.3) and boundary conditions (1.5) and (1.6). We also indicate some generaliza-
tions to some other systems. The question of uniqueness is under investigation.

2. A formula for the solution

In this section, using the explicit formula derived in [3, 5] for the scalar convex
conservation laws with initial condition and Bardos Leroux and Nedelec boundary
condition (1.6), we construct a solution for the problem stated in the introduction.
To be more precise, We assume f(u) satisfies the following conditions

f ′′(u) > 0, lim
u→∞

f(u)
u

= ∞, (2.1)

and let f∗(u) be the convex dual of f(u) namely, f∗(u) = maxθ[θu− f(θ)].
For each fixed (x, y, t), x > 0, y ≥ 0, t > 0, C(x, y, t) denotes the following class

of paths β in the quarter plane D = {(z, s) : z ≥ 0, s ≥ 0}. Each path is connected
from the initial point (y, 0) to (x, t) and is of the form z = β(s), where β is a
piecewise linear function of maximum three lines and always linear in the interior
of D. Thus for x > 0 and y > 0, the curves are either a straight line or have exactly
three straight lines with one lying on the boundary x = 0. For y = 0 the curves
are made up of one straight line or two straight lines with one piece lying on the
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boundary x = 0. Associated with the flux f(u) and boundary data ub(t), we define
the functional J(β) on C(x, y, t)

J(β) = −
∫
{s:β(s)=0}

f(uB(s)+)ds +
∫
{s:β(s) 6=0}

f∗
(dβ(s)

ds

)
ds. (2.2)

We call β0 is straight line path connecting (y, 0) and (x, t) which does not touch
the boundary x = 0, {(0, t), t > 0}, then let

A(x, y, t) = J(β0) = tf ∗
(x− y

t

)
. (2.3)

For any β ∈ C∗(x, y, t) = C(x, y, t) − β0, that is made up of three straight lines
connecting (y, 0) to (0, t1) in the interior and (0, t1) to (0, t2) on the boundary and
(0, t2) to (x, t) in the interior, it can be easily seen from (2.2) that

J(β) = J(x, y, t, t1, t2) = −
∫ t2

t1

f(uB(s)+)ds + t1f
∗(

y

−t1
) + (t− t2)f∗

( x

t− t2

)
.

(2.4)
For the curves made up two straight lines with one piece lying on the boundary
x = 0 which connects (0, 0) and (0, t2) and the other connecting (0, t2) to (x, t).

J(β) = J(x, y, t, t1 = 0, t2) = −
∫ t2

0

f(uB(s)+)ds + (t− t2)f∗(
x

t− t2
).

It was proved in [3, 5], that there exists a β∗ ∈ C∗(x, y, t) or correspondingly
t1(x, y, t), t2(x, y, t) so that

B(x, y, t) = J(β∗)

= min{J(β) : β ∈ C∗(x, y, t)}
= min{J(x, y, t, t1, t2) : 0 ≤ t1 < t2 < t}
= J(x, y, t, t1(x, y, t), t2(x, y, t))

(2.5)

is a Lipschitz continuous so that

Q(x, y, t) = min{J(β) : β ∈ C(x, y, t)}
= min{A(x, y, t), B(x, y, t)},

(2.6)

and

U(x, t) = min{Q(x, y, t) + U0(z), 0 ≤ y < ∞} (2.7)

are Lipschitz continuous functions in their variables, where U0(y) =
∫ y

0
u0(z)dz.

Further minimum in (2.7) is attained at some value of y ≥ 0 which depends on
(x, t), we call it y(x, t). If A(x, y(x, t), t) ≤ B(x, y(x, t), t)

U(x, t) = tf∗(
x− y(x, t)

t
) + U0(y), (2.8)

and if A(x, y(x, t), t) > B(x, y(x, t), t)

U(x, t) = J(x, y(x, t), t, t1(x, y(x, t), t), t2(x, y(x, t), t)) + U0(y). (2.9)

Here and hence forth y(x, t) is a minimizer in (2.7) and in the case of (2.9), t2(x, t) =
t2(x, y(x, t), t) and t1(x, t) = t1(x, y(x, t), t).
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Theorem 2.1. For every (x, t) minimum in (2.7) is achieved by some y(x, t),
and U(x, t) is a Lipschitz continuous and for almost every (x, t) there is only one
minimizer y(x, t).

For every points (x, t) satisfying U(x, t) = A(x, y(x, t), t) ≤ B(x, y(x, t), t), define

u(x, t) = (f∗)′(
x− y(x, t)

t
)

v(x, t) = v0(y(x, t)).
(2.10)

and for the points (x, t) where B(x, y(x, t), t) < A(x, y(x, t), t),define

u(x, t) = (f∗)′(
x

t− t2(x, t)
)

v(x, t) = vb(t2(x, t)).
(2.11)

Then the function (u(x, t), v(x, t)) is a weak solution of (1.1), satisfying the initial
condition (1.3) and boundary conditions (1.5) and (1.6)

Proof. First we recall from [3, 5] some properties of minimizers y(x, t) in (2.7)
and corresponding t2(x, t) and t1(x, t) that are required for our analysis. These
minimizers y(x, t) may not be unique for every (x, t). Let y−(x, t) and y+(x, t)
are the smallest and the largest of the minimizers in (2.7), for each t > 0, they
are nondecreasing function of x and hence except for a countable number of points
they are equal. Corresponding t−2 (x, t) and t+2 (x, t) have the following properties.
They are nondecreasing function of x, for each fixed t and except for a countable
number of points x they are equal and nondecreasing function of t, for each fixed
x and except for a countable number of points t they are equal.

Further if A(x, y(x, t), t) < B(x, y(x, t), t), for some x = x0 then this continues
to be so for all x < x0 and if A(x, y(x, t), t) > B(x, y(x, t), t), for some x = x0 then
this continues to be so for all x > x0.

It was proved in [5], that u(x, t) = Q1(x, y(x, t)) = ∂xU(x, t) where Q1(x, y, t) =
∂xQ(x, y, t), is the weak solution of

ut + f(u)x = 0 (2.12)

satisfying the initial condition u(x, 0) = u0(x) and weak form of boundary condition
(1.5). To show that v satisfies the second equation, we follow LeFloch [9] and use
the nonconservative product of Volpert [11] in sense of measures. Since u is a
function of bounded variation, we write

[0,∞)× [0,∞) = Sc ∪ Sj ∪ Sn

where Sc and Sj are points of approximate continuity of u and points of approximate
jump of u and Sn is a set of one dimensional Hausdorff-measure zero. At any point
(x, t) ∈ Sj , u(x − 0, t) and u(x + 0, t) denote the left and right values of u(x, t).
For any continuous function g : R1 → R1, the Volpert product g(u)vx is defined as
a Borel measure in the following manner. Consider the averaged superposition of
g(u) (see Volpert [11])

g(u)(x, t) =

{
g(u(x, t)), if (x, t) ∈ Sc,∫ 1

0
g(1− α)(u(x−, t) + αu(x+, t))dα, if (x, t) ∈ Sj

(2.13)

and the associated measure

[g(u)vx](A) =
∫

A

g(u)(x, t)vx (2.14)
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where A is a Borel measurable subset of Sc and

[g(u)vx]({(x, t)}) = g(u)(x, t)(v(x + 0, t)− v(x− 0, t)) (2.15)

provided (x, t) ∈ Sj . The second equation in (1.1) is understood as

µ = vt + f ′(u)(u)vx = 0 (2.16)

in the sense of measures. Let (x, t) ∈ Sc and u = f∗′(x−y(x,t)
t ), since u satisfies

(2.12), we have

f ′′(u){− (x− y(x, t))
t2

− ∂ty(x, t)
t

+ f ′(u)
(1− ∂xy(x, t))

t
} = 0.

This can be written as

f ′′(u){−1
t
[(

(x− y(x, t))
t

− f ′(u))]− 1
t
[∂ty(x, t) + f ′(u)∂xy(x, t)]} = 0. (2.17)

Using f ′′(u) > 0 and f ′(u) and (f∗′)(u) are inverses of each other, it follows from
(2.17) that

∂ty(x, t) + f ′(u)∂xy(x, t) = 0. (2.18)

Now

∂tv(x, t) + f ′(u)∂xv(x, t) = (
dv0

dx
)(y(x, t){∂ty(x, t) + f ′(u)∂xy(x, t)}

and from (2.18), we get

∂tv(x, t) + f ′(u)∂xv(x, t) = 0. (2.19)

Similarly if (x, t) ∈ Sc and u(x, t) = f∗′( x
t−t2(x,y(x,t),t) ), we can show that

∂t(t2(x, y(x, t), t)) + f ′(u(x, t))∂x(t2(x, y(x, t), t) = 0

and hence
∂tv(x, t) + f ′(u)∂xv(x, t) = 0, (2.20)

So from (2.19) and (2.20), for any Borel subset A of Sc

µ(A) = 0. (2.21)

Now we consider a point (s(t), t) ∈ Sj , then

ds(t)
dt

=
f(u(s(t)+, t))− f(u(s(t)−, t))

u(s(t)+, t)− u(s(t)−, t)

is the speed of propagation of the discontinuity at this point.

µ{(s(t), t)}

= −ds(t)
dt

(v(s(t)+, t)− v(s(t)−, t))

+
∫ 1

0

f ′(u(s(t)−, t) + α(u(s(t)+, t)− u(s(t)−, t))dα(v(s(t)+, t)− v(s(t)−, t))

= [−ds(t)
dt

+
f(u(s(t)+, t))− f(u(s(t)−, t))

u(s(t)+, t)− u(s(t)−, t)
](v(s(t)+, t)− v(s(t)−, t))

= 0.

(2.22)
Form (2.21) and (2.22), (2.16) follows.
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To show that the solution satisfies the initial conditions, first we observe that
given ε > 0 there exists δ > 0 such that for all x ≥ ε, t ≤ δ,

u(x, t) = (f∗)′(
x− y(x, t)

t
)

where y(x, t) minimizes miny≥0[U0(y) + tf∗(x−y
t )] see [5]. So u and v are given

by the formula (2.10). Then Lax’s argument [8], gives limt→0 u(x, t) = u0(x) a.e.
x ≥ ε. Since ε > 0 is arbitrary,

lim
t→0

u(x, t) = u0(x), a.e. x.

Since f ′ and f∗′ are inverses of each other y(x, t)−x = −tf ′(u(x, t)), then it follows
that y(x, t) → x as t → 0 a.e x. Since v0 is continuous we get

lim
t→0

v(x, t) = lim
t→0

v0(y(x, t)) = v0(x), a.e. x.

Now we show the solution satisfies the boundary condition (1.5) and (1.6). That
the u component satisfies the boundary condition (1.5) is proved in [5]. Further if
f ′(u(0+, t)) > 0 then f ′(u(x, t)) > 0 for 0 < x ≤ ε for some sufficiently small ε and
u and v are given by (2.11). Now

u(x, t) = (f∗)′(
x

t− t2(x, t
).

so that t− t2(x, t) = x/f ′(u(x, t)), and it follows that limx→0 t2(x, t) = t, since we
assumed that limx→0 f ′(u(x, t)) = f(u(0+, t)) > 0. So we have

lim
x→0

v(x, t) = lim
x→0

vb(t2(x, t)) = vb(t).

as vb is continuous. This proves v satisfies the boundary condition (1.6). The proof
of the theorem is complete. �

3. Extensions to some other cases

Generalized Lax equation. The initial value problem for the system

ut + (log(aeu + be−u))x = 0

vt +
aeu − be−u

aeu + be−u
vx = 0

(3.1)

was studied and explicit solution was constructed by Joseph and Gowda [7] using
a difference scheme of Lax [8]. This system of equations is of the form (1.1),with

f(u) = log(aeu + be−u) (3.2)

For the case f(u) satisfying (2.1), f∗ is defined everywhere. The flux f(u) given by
(3.2) is convex but does not satisfies (2.1) and f∗ is not defined everywhere. Indeed
f∗ is defined only on (−1, 1) and is given by

f∗(u) =
1
2

log
(
(1 + u)1+u(1− u)1−u

)
− 1

2
log

(
4a1+ub1−u

)
(3.3)

and its derivative is

f∗′(u) =
1
2

log(
b

a

1 + u

1− u
). (3.4)

Explicit formula of the theorem (2.1) can be obtained for (3.1) on the domain
D = {(x, t), x > 0, t > 0} with initial condition (1.3) and boundary conditions (1.5)
and (1.6) with minor modifications. Here we define C(x, y, t), the set of curves β
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as in section 2, but with a restriction on its slope |dβ(s)
ds | < 1. Using the same

notations as in theorem, and using the explicit form of f∗′(u) given by (3.4), we
have the following result.

Theorem 3.1. For every (x, t), x > 0, t > 0, let (u, v) be defined as follows: When
A(x, y(x, t), t) ≤ B(x, y(x, t), t), by

u(x, t) =
1
2

log[
b

a

t + x− y(x, t)
t− x + y(x, t)

], v(x, t) = v0(y(x, t));

when A(x, y(x, t), t) > B(x, y(x, t), t), by

u(x, t) =
1
2

log[
b

a

t + x + t2(x, t)
t− x + t2(x, t)

], v(x, t) = vb(t2(x, t)).

Then (u, v) solves (3.1), satisfies the initial conditions (1.3) and the boundary con-
ditions (1.5) and (1.6).

Generalized Hopf equation. Solution for the initial-value problem for the non-
conservative system for uj , j = 1, 2, . . . , n

(uj)t + (
n∑

k=1

ckuk)(uj)x = 0, j = 1, 2, . . . , n (3.5)

was constructed by Joseph [4, 6] by a vanishing viscosity method and a general-
ization of Hopf-Cole transformation. Here we assume that at least one k, ck 6= 0.
When n = 1, c1 = 1, (3.5) is the inviscid Burgers equation or the Hopf equation
and Hopf [2] derived a formula for the entropy weak solution for the initial value
problem and boundary case was treated in [3]. In the present discussion we consider
(3.5) in D = {(x, t) : x > 0, t > 0} with initial condition

uj(x, 0) = u0j(x), x > 0, j = 1, 2, . . . , n (3.6)

and boundary conditions

uj(0, t) = ubj(t), t > 0 j = 1, 2, . . . , n. (3.7)

Here again a weak form of the boundary condition is required as characteristic
speed of the system, σ =

∑n
k=1 ckuk need not be positive at the boundary x = 0.

First we note from (3.5) that uj satisfies

(uj)t + σ(uj)x = 0, j = 1, 2, . . . , n (3.8)

where σ satisfies

σt + (
σ2

2
)x = 0. (3.9)

Now (3.9) together with (3.8) is exactly the form of equation we have studied in
section 1, with f(u) = u2/2. Let σ is the entropy weak solution of (3.9) with the
initial condition

σ(x, 0) = σ0(x) (3.10)
and weak form of boundary condition

either σ(0+, t) = σ+
b (t)

or σ(0+, t) ≤ 0 and
u(0+, t)

2
≥

u+
b (t)
2

,
(3.11)

with σ0(x) =
∑n

k=1 cku0k(x) and σb(t) =
∑n

k=1 ckubk(t) constructed in [3, 5].
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The analysis of section 1 then shows that with the formulation of boundary
condition

if σ(0+, t) > 0, then uj(0+, t) = ubj(t). (3.12)

for uj , Theorem (1.1) applies to the present case with f(u) = u2

2 . With the same
notations as Theorem 1.1, we obtain the following theorem.

Theorem 3.2. For x > 0, t > 0, let uj be defined as follows:
For points (x, t) where U(x, t) = A(x, y(x, t), t) ≤ B(x, y(x, t), t), define

uj(x, t) = u0j(y(x, t)),

and for the points (x, t) where B(x, y(x, t), t) < A(x, y(x, t), t), define

uj(x, t) = ubj(t2(x, t)).

Then uj(x, t), j = 1, 2, . . . , n is a solution to (3.5) with initial condition (3.6) and
boundary condition (3.12).
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