
Applied Mathematics E-Notes, 7(2007), 186-190 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Asymptotic Behaviour Of Solutions Of Matrix

Burgers Equation∗

Kayyunnapara Thomas Joseph†

Received 13 July 2006

Abstract

In this paper, we study the large time behaviour of solutions of initial value
problem for a system of parabolic equations which can be written as Matrix
Burgers equation. This work generalizes a result of Hopf (1950) for the Burgers
equation.

1 Introduction

In this paper we consider a system of parabolic partial differential equations for the
unknown variables u1, u1, u2, ..., uN of the form

(uj)t +
1
2

j∑

i=1

(uiuj−i+1)x =
ε

2
(uj)xx, j = 1, 2, ..., N (1)

in −∞ < x < ∞, t > 0, with initial conditions at time t = 0,

uj(x, 0) = u0j(x), j = 1, 2, ..., N. (2)

Here ε > 0 is the viscosity coefficient. The system (1) is called Matrix Burgers equation
because it can be written as

At +
1
2
(A2)x =

ε

2
Axx. (3)

where A = (Ai,j) is a (N × N ) lower triangular matrix with the i, j-th entry Ai,j takes
values from {u1, u2, ...., uN}:

Ai,j = 0, j > i, Ai+k,i = uk+1, k = 1, 2, ...,N − i, i = 1, 2, ..., N.

The system (1) has a rich mathematical structure and solutions of special cases of this
system were studied previously by many authors in the contexts of vanishing viscosity
and large time behaviours. The singularity in the solutions of (1) as ε goes to zero
increases as N increases.
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When N = 1 the equation (1) is the Burgers equation, ut + (1/2)(u2)x = ε
2uxx.

Hopf [2] used the Hopf-Cole transformation u = −ε(vx/v) to reduce it into the one
dimensional heat equation vt = ε

2vxx and solved the initial value problem for the
Burgers equation explicitly. Letting ε go to 0 in the formula, he derived an explicit
formula for the entropy solution for the inviscid Burgers equation ut + (1/2)(u2)x = 0
with bounded measurable initial data. For ε = 0 in (1), the standard theory of Lax [7]
does not apply when N > 1. Joseph [3] studied the cases N = 2 to construct solution
for the Riemann problem for the system of conservation laws (u1)t + (1/2)(u2

1)x =
0, (u2)t +(u1u2)x = 0, whose solution does not belong to the L∞ class but may contain
δ measures as well. When N = 3, the system (1) is more singular than the cases
N = 1, 2 in the passage to the limit as ε goes to zero and was studied in [4] and
solutions were constructed in the algebra of generalized functions of Colombeau [1].

Hopf [2], analyzed another aspect of solution of (1) for the case N = 1, that is the
asymptotic behaviour of solutions of Burgers equation for large time with ε > 0. This
result was generalized for the case N = 3 in [6]. In this paper we extend Hopf’s work
[2] on the large time behaviour of solutions of the Burgers equation to the solutions of
the system (1) with initial data (2). For notational convenience we drop the explicit
dependence of ε on the solutions.

2 Explicit Solution and Asymptotic Form

An explicit formula for the solution of the initial value problem for (1) and (2) was
obtained by Joseph and Vasudeva Murthy [5], using a generalized form of Hopf-Cole
transformation. To give this explicit formula we need some notations. Let us consider
the polynomial

p(x) = a1x + a2x
2 + · · ·+ aN−1x

N−1

of degree N−1 with real coefficients a1, a2, ..., aN−1. We define Ej and Lj as coefficients
of xj−1 in the power series expansion around x = 0 of the functions exp(p(x)) and
log(1 + p(x)) respectively. More precisely

Ej+1(a1, a2, ..., aj) =
1
j!

dj

dxj
[ep(x)]x=0, j = 0, 1, 2, ... (4)

and are polynomial of a1, a2, ..., aj, aj, of degree j. For example the first four coefficients
are given by E1 = 1, E2(a1) = a1, E3(a1, a2) = a2 + a1

2

2! , E4(a1, a2, a3) = a3 + a2a1 +
a1

3

3! , E5(a1, a2, a3, a4) = a4 + a3a1 + a2a1
2

2! + a2
2

2 + a1
4

4! . Similarly

Lj+1(a1, a2, ..., aj) =
1
j!

dj

dxj
[log(1 + p(x))]x=0, j = 1, 2, ... (5)

Here again it follows from (5) that Lj+1 is a polynomial of a1, a2, ..., aj of degree j.
For example the first four coefficients are given by L2(a1) = a1, L3(a1, a2) = a2 −
a1

2

2! , L4(a1, a2, a3) = a3 − a1a2 + a1
3

3 , L5(a1, a2, a3, a4) = a4 − a1a3 + a1
2a2 − a2

2

2 − a1
4

4 .
For j = 1, 2, ...N , let us denote

w0j(x) =
∫ x

0

u0j(y)dy, (6)
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E0j(x) = Ej

(
−w02(y)

ε
,
−w03(y)

ε
, ...,

−w0j(y)
ε

)
(7)

where Ej is defined by (4). Define the functions vj , j = 1, 2, ..., N by

vj(x, t) =
1

(2πtε)(1/2)

∫

R1
E0j(y)e−

1
ε [w01(y)+

(x−y)2

2t ]dy. (8)

Since E01(x) = 1, v1(x, t) > 0.
Assume that u0j(x), j = 1, 2, · · ·N be measurable functions on R1 with w0j defined

by (6) satisfy |w0j(x)| = o(|x|2), as |x| → ∞. Then it was proved in [5], that uj defined
by

u1(x, t) = −ε
∂xv1(x, t)
v1(x, t)

(9)

uj(x, t) = −ε∂x

(
Lj

(
v2(x, t)
v1(x, t)

,
v3(x, t)
v1(x, t)

, ...
vj(x, t)
v1(x, t)

))
, j = 2, 3, ..., N (10)

is a classical solution to (1) and (2).
The aim of this paper is to study the asymptotic behaviour of this solution as t

tends to infinity. We introduce the variable ξ = x/
√

tε and a function which appear in
the asymptotic form of the solution, namely

Vj(ξ) = Ej

(
−w02(∞)

ε , ...,
−w0j(∞)

ε

)
e−

w01(∞)
ε

∫ ξ

−∞ e−y2/2dy

+ Ej

(
−w02(−∞)

ε , ...,
−w0j(−∞)

ε

)
e−

w01(−∞)
ε

∫∞
ξ

e−y2/2dy.
(11)

Since E1 = 1, V1(ξ) > 0. The main result of the paper is the following.
THEOREM. Assume that the initial data u0j(x), j = 1, 2, ..., N are integrable, then

the solution uj(x, t), j = 1, 2, ....,N of (1) and (2) given by (9) and (10) has the following
asymptotic behaviour as t tends to infinity:

lim
t→∞

√
t/ε.u1(x, t) = − d

dξ
log(V1(ξ)) (12)

lim
t→∞

√
t/ε.uj(x, t) = − d

dξ

(
Lj

(
V2(ξ)
V1(ξ)

,
V3(ξ)
V1(ξ)

, ...,
Vj(ξ)
V1(ξ)

))
, j = 2, 3, ..., N, (13)

uniformly with respect to the variable ξ = x√
tε

.

PROOF. To prove this theorem, we write the formula (10) for the solution in a
convenient way, namely

uj(x, t) =
j−1∑

k=1

∂kLj

(
v2

v1
, ...,

vj

v1

) (
∂xvk+1

v1
−

vk+1

v1

∂xv1

v1

)
(14)

where ∂kLj denotes derivative of Lj(a1, ..., aj) with respect to the k-th variable ak.
Note that typical terms in these expressions are of the form

vj(x, t) =
1√
2πtε

∫ ∞

−∞
E0j(y)e−

1
ε [w01(y)+

(x−y)2

2t ]dy (15)
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and its partial derivative with respect to x, where E0j(x) and w01(x) has finite limit
as |x| tends to infinity because of the integrability assumption on u0j.

Keeping the variable ξ = x/
√

εt fixed, we make a change of variable z =
√

εtξ−y√
εt

and renaming z as y, we get

vj(x, t) =
1√
2π

∫ ∞

−∞
E0j(

√
εt(ξ − y)e−[

w01(
√

εt(ξ−y)
ε +y2/2]dy. (16)

Now we split the integral in (16) in the following fashion.

√
(2π)vj(x, t) =

∫ ξ−δ

−∞ E0j(
√

εt(ξ − y))e−[ 1
ε w01(

√
εt(ξ−y)+y2/2]dy

+
∫ ∞

ξ+δ
E0j(

√
εt(ξ − y))e−[ 1ε w01(

√
εt(ξ−y)+y2/2]dy

+
∫ ξ+δ

ξ−δ
E0j(

√
εt(ξ − y))e−[ 1ε w01(

√
εt(ξ−y)+y2/2]dy.

(17)

Now we fix δ > 0 and study each of these integrals as t tends to infinity, we get

lim
t→∞

∫ ξ−δ

−∞
E0j(

√
εt(ξ − y)e−[ 1

ε w0j(
√

εt(ξ−y)+y2/2]dy = e−
w0j(∞)

ε Ej(∞)
∫ ξ−δ

−∞
e−y2/2dy,

lim
t→∞

∫ ∞

ξ+δ

E0j(
√

εt(ξ − y)e−[ 1ε w0j (
√

εt(ξ−y)+y2/2]dy = e−
w0j (−∞)

ε Ej(−∞)
∫ ∞

ξ+δ

e−y2/2dy,

lim sup
t→∞

|
∫ ξ+δ

ξ−δ

E0j(
√

εt(ξ − y)e−
1
ε [w0j (

√
εt(ξ−y)+y2/2]dy| = O(δ),

uniformly with respect to ξ. Now first let t tends to infinity and then δ tends to 0, in
(17) we get

lim
t→∞

√
2π.vj(x, t) = e

−w01(∞)
ε E0j(∞)

∫ ξ

−∞
e−y2/2dy+e

−w01(−∞)
ε E0j(−∞)

∫ ∞

ξ

e−y2/2dy.

(18)
This limit is valid uniformly for ξ ∈ R1 and for the x-derivative we have

lim
t→∞

√
2πεt.∂xvj(x, t) =

(
E0j(∞)e

−w01(∞)
ε − E0j(−∞)e

−w01 (−∞)
ε

)
e−ξ2/2. (19)

In this analysis, we have used the fact that u0j, j = 1, 2, ...,N are integrable and hence
w0j(−∞), w0j(∞), E0j(−∞), E0j(∞) exists. Indeed

w0j(−∞) =
∫ −∞

0

u0j(y)dy, w0j(∞) =
∫ ∞

0

u0j(y)dy (20)

E01 = 1, and for j = 2, 3, ..., N

E0j(−∞) = Ej

(
−w02(−∞)

ε , ...,
−w0j(−∞)

ε

)

E0j(∞) = Ej

(
−w02(∞)

ε
, ...,

−w0j(∞)
ε

) (21)
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Since V1(ξ) > 0 from (11),(18),(19),(20) and (21) we get, for j = 1, 2, ...,N

lim
t→∞

vj(x, t)
v1(x, t)

=
Vj(ξ)
V1(ξ)

, (22)

lim
t→∞

√
ε.t

∂xvj(x, t)
v1(x, t)

=
Vj(ξ)′

V1(ξ)
, (23)

uniformly with respect to ξ. Here Vj(ξ)′ means derivative of V1(ξ) with respect to ξ.
From (9), (14), (22) and (23), we get

lim
t→∞

√
t/εu1(x, t) = −V1(ξ)′

V1(ξ)
,

limt→∞
√

t/ε.uj(x, t) =
∑j−1

k=1(∂kLj)
(

V2(ξ)
V1(ξ)

,
V3(ξ)
V1(ξ)

, ...,
Vj(ξ)
V1(ξ)

)(
V ′

k+1(ξ)

V1(ξ)
− Vk+1(ξ)

V1(ξ)
.
V ′

1 (ξ)
V1(ξ)

)

= − d
dξ

(
Lj

(
V2(ξ)
V1(ξ)

, V3(ξ)
V1(ξ)

, ...,
Vj (ξ)
V1(ξ)

))

The proof of the theorem is complete.
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