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BOUNDARY LAYERS IN APPROXIMATE SOLUTIONS

K. T. JOSEPH

ABSTRACT. In this paper we study the development of boundary layers in para-
bolic approximate solutions of the initial boundary value problem for linear
strictly hyperbolic systems of equations in one space variable. We also analyse
the boundary layer behaviour.

1. INTRODUCTION

Let D = {(x,t):0 < x < 1,t> 0} and let A(x,t) be a smooth m x m
matrix which has m real distinct eigenvalues, k of them negative and (m —k)
of them positive:

AX,0) S Ay(x,0) <o <A (x,0) <O <A, (X,0) < - <4, (X,1).

Let r ; (x,t) be a right eigenvector and / j(x ,t) aleft eigenvector corresponding
to A;(x,1).

It is well known (see Courant-Hilbert [3]) that a well-posed problem in D
for the strictly hyperbolic system

(1.1) u,+A(x,t)u, =0,
where u € R™, is to prescribe u(x,0) = uy(x), 1,(0,)u(0,1), j=k+1,

...,m,and Ij(l,t)u(l,t), j=1,2,...,k.
The corresponding parabolic problem is

(1.2) u; + A(x,Ou, = eu’_,
(1.3) u’(x,0) = uy(x),
(1.4) u’(0,0) =u,(t),

(1.5) u'(1,0) = u,(1),

where the data are compatible at the corners. Existence, uniqueness and smooth-
ness of u° are known (see A. Friedman [4]).

In §2 we study the limit as ¢ tends to zero in (1.2). Since more boundary
conditions are prescribed for parabolic equations than for hyperbolic equations,
some boundary conditions get lost in the passage ¢ — 0. This loss manifests
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itself in the region of rapid change near x = 0 and near x = 1, called the
boundary layer. Such problems, usually called in the literature singular pertur-
bation problems, have been described by Lyusternik and Viski [6] for linear
ode’s and linear scalar elliptic equations, and by Bardos and Rauch [2] and Bar-
dos, Brezis, Brezis [1] for maximal positive symmetric operators. In [2] Bardos
and Rauch remark that one can prove H® convergence, s < % for parabolic
systems, even in several space variables using the same ideas but with some
extra arguments.

Here we consider the case of one space variable and get results in the max-
imum norm. Our approach is different from Bardos and Rauch; we construct
boundary layer functions near the boundaries and derive careful energy esti-
mates to get uniform convergence. The construction of the boundary layer
function is classical, at least in the scalar elliptic case and ode’s (see Lyusternik
and Visik [6]).

Before taking up the general case, we give two typical and simple examples
illustrating possible loss of boundary conditions.

Example 1. Consider the following problem in x >0, > 0.
u'(x,0)=0, u(0,1)=u,l),
u,(t) is smooth and compatible: u,(0) = 0. When ¢ = 0, the problem is

W+l =0, x,00=0, u°0,0)=u,).

& €
U +u, =eu,,

Set €°(x,1) = u’(x,t) — u’(x,t), then €°(x,¢) solves the following:

€ € 0
et +ex = b‘exx + Euxx s
e (x,00=0, €°(0,7)=0.

Let

0
k= sup |u__(x,t).
x>0 120 ¥

From the maximum principle for parabolic equations we conclude that
le(x,t)| < ekT for0<t<T,
with shows that
ef(x,t) = u'(x,t)—u’(x,t)— 0,
uniformly in x >0, 0<t<T.
Example 2. Now we consider the following problem in x >0, ¢t > 0.
u'(x,0)=0, u(0,1)=u,(r),
u,(t) is smooth and compatible: #,(0) =0. When ¢ = 0, the problem is

u?—ug =0, uo(x,O) =0,

€ £
(*) ul - ux = suxx ’

and no boundary conditions are needed. In fact uo(x ,t) =0, as is seen by the
method of characteristics.
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For (*) we can get a closed form solution; set

e _ e—x/28—t/4evs(

u x,t),

then from () we obtain v, = ev v(x,0) =0, v(0,¢) = ub(t)e'/“e , whose

solution is

xx?

v(x,t) = _\/ii Ol 8, [/xw e dy} (es/“ub(s))ds.

[2V/e(t—s)
Hence
¢ 2 _xj2e—1/4e L
1) = — u,(t e’ d
0= g A

t oo
+/ / e dyas(es/“ub(s))ds} ,
0 Jx/2/E(t—s)

lim sup |u°(x,?)]=0,
=0 §<x<oo
0<1<T

from which it is clear that

for each 6 > 0.

Notice that in the first example u°(x,?) preserves the boundary condition
and in the second example u°(x,?) loses the boundary condition as ¢ — 0.
Now we consider the general case.

2. RESULT FOR LINEAR SYSTEMS

Let u=(u,,...,u,)e€ R™ . We use the following notations:

(u)k =U,

lull = (fy luf* dx)""2.

Let u°(x,?) be the solution of (1.2), (1.3), (1.4) and (1.5), and let uo(x,t)
be the solution of (1.1) with initial and boundary conditions

(1.3)’ ul(x,1) = uy(x),

(1.4) 100,0u°0,0) = L,0,0uy(t), j=k+1,...,m,

(1.5) LLnu’ (1,0 =L, 0uy(0),  j=1,2,...,k
Let B = B(x,t,¢) be a function with the following properties,

(2.1) B(0,t,¢) = u,(t) - u%(0,1),

(2.2) B(1,1,8) = u,(1) —u°(1,1),

(23) B(x,t,6) = T(x,t){ [0 (Z.1) + 0, (Z.1)] 4,x)

+ [qo (xT'lt) +2q, (x—}ltﬂ ¢2(x)}
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where T(x,t) = (r/(x,t),...,r,(x,1)), the matrix whose jth column is the
right eigenvector of A4 corresponding to A ;-

AL
em'o,ny
(2-4)0 po(y 1) = Mo(t) 0 >
0
ell(oxi)y
oM 0.0Y
(2.4), p(y,t)=c () + M () 0
0
100 o100
(0,0 (0,0
e 2 e
+ y M, (1) + ¥ M;(2) ,
(V) 0
0 0
0
0
(2.5) 9@, 1) = No(0) | ety | 5
eam(l 0y
0
0
(25)1 ql(y’t) =d|(t)+N1(t) elkﬂ(l,’)y
(1.0
0 0
0 2 0
+ yN,(1) Gy | TV N,(1) P10y |-
o (1.0y o (1.0y

c,(t) and d,(t) are smooth vectors, and M,(¢) and N,(¢) are smooth matrices
which depend only on ¢ and are constructed in the proof of Lemma 1. ¢,(x)
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and ¢,(x) are C* cut off functions in [0, 1]:

p _{1 in0<x<4/2,
)5 (x) = 0 ind<x<l,
(2.3 5 _{0 inm0<x<1-4,

V=01 in1-s2<x<t.

We prove the following

Theorem.

sup |u(x,t)—u(x,t) - B(x,t,¢)| < ce'’*,
0<x<1
0<t<T

where ¢ depends only on T .

Remark. From the above theorem it follows that u°(x,t) — uo(x ,t) uniformly
in Dy, ;={(x,1:6'<x<1-6,0<¢<T} foreach §' >0, T >0, and
in the limit u°(x,t) preserves the boundary condition at x =0, P+ul(t) and
at x =1, P uy(t).

The proof of this theorem follows from two lemmas. Denote by

T(x,t)=(r/(x,0),...,r,(x,1))
the matrix whose jth column is ri(x,1), the right eigenvalue of 4. Then
A(x,)T(x,t)=T(x,t)D(x,t)
where
D(x,t) = diag(4,(x,1), ... ,4,(x,1))
is the diagonal matrix whose jth diagonal entry is A4 j(x ,t). Set
(2.6) u=Tv, u=Tv+Tv,, u =T v+Tv,
u, =T v+2T v +Tv ,
so that from (1.2) we get v, = L,v, where
Lv=e¢v,  +(eP-D)v, +(R+eQ)v,
P=P(x,t)=2T"'T,,
Q=Q(x,)=T""'T_,
R=R(x,t)=-T 'AT,-T"'T,.

(2.7)

Denote
v,(t) = T7'0,0u,(t), v,()=T "(1,0u,(t), vy(x)=T""(x,0)uy(x).

Define v* = T~ '4*; then for v = v° the problem becomes

2.8) v, =L,

2.9) v°(x,0) = vy(x),
2.10) v¥(0,1) = v,(1),
2.11) v(1,1) = v,(1).
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The problem for u°, in v coordinates, becomes
0

(2. ) v, =Ly’,
(2.9 v°(x,0) = vy(x),
(2.10)' 0°0,0),=(,(1),, J=k+1,...,m,
2.11) @(1,0), = (),, Jj=1,2,....k

We first prove the following
Lemma 1. There exist functions b°(x,t), g(x,t,e) and k(x,&) such that
(2.12) bl = Lb° +eg(x,t,e).
b*(x,t) is of the form
b (x,1) = [po(x /e, 1) + &0, (x/2, )] (x)
+[9,((x = 1)/e, 1) + &g, ((x — 1)/&,1)]1¢,(x),

where p,, p,, &, q, ¢, and ¢, areasin (2.4),, (2.4),, (2.5),, (2.5), and
(2.5); respectively.

b*(0,t) = v°(0, t)—v 0,1,
(2.13) BE(1,0) =v°(1,0) - v°(1,1),

b*(x,0) = ek(x,e).
With ¢ depending only on T,

(2.14) sup |lg(x,t,¢e)|<c,
0<t<T
(2.15) sup |lg,(x,¢,¢)|| <c,
0<ti<T
2.16) lokk(x ) <ce'™,  k=1,2,
lk(x, &)’ < c.

Proof. Expanding the coefficient of the differential operator L, in powers of x
near x =0, we get
P(x,t)=P(0,t) +xP/(x,1),
(2.17) R(x,t) = R(0,t) + xR, (x,1),
A.(x,0) = 4,00,0) + x40, 1) + x°A, (x, 1),
where P,(x,t) and R,(x,t) are smooth matrices, and 4, isa smooth function.

Set

X 1
(2.18) E:y, ax=;ay.

We seek b°(x,t) near x =0 in the form
b*(x, 1) = po(x/e, 1) +ep,(x/e,1) = p(x/e,1).
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In the y variable we get from (2.2), (2.6) and (2.7),

€ €
(L, =00 ,1) = 530,, + 1P, 1) + eyP, (e . I,

(2.19) - %[D(o ,t)+eyD'(0,1) + azyzD,(ay 0)lp,

+ 8Q(3y s t)p + [R(09 t) + Gle(sy ’ t)]p _pl

where
D'(0,1) = diag[d A,(x,¢), ...,8,4,(x,0)] atx=0,

and D (z,t) is a smooth diagonal matrix. Rewriting (2.19), we get
(L,—98,)p= <%Ll +L,+ 8L3) D
where
Lp=p,-D0O,)p,,
(220) Ly =[P(0,2)-yD'(0,)lp, + R(0,0)p - 8,p,
Lyp =yp,(ey,1)p, — "D, (ey . )p, + [Q(ey 1) + YR, (ey , O]p,

(L,—9,)p= (%Ll +L,+ eL3> {po(y,t) +ep, (v, 0)}

2.21 1
(2.21) = nglJo(y )+ Lip,(y,t)+ L,py(y, 1)

+ée[L,p, + Lip,] + 82L3pl ;
we choose p, such that
(2.22) Lpy=0, py(0,1) = (v,(0,0)-v°(0,0)), py(¥,t) >0 asy— oo
Notice that by (2.10) and (2.10)’
(pg(0,1); =0 forj=k+1,...,m.
Since (p,(y,1)) ; has to satisfy (2.22) we have

8, (By(y »1)); = 2,(0,1)8,(py(¥ , 1)),

(y(0,1), = { forj=k+1,....m,
O T (0,(0,0)=v°(0,0);, for j=0,1,... .k

So we take
ey, 1)) = ((v,(0,1) = v°(0,0))e" ™, ...,
(v,0,1) —v°(0,1)),e**" 0, ...,0).

Now choose p, such that

(2.24) Lp, =-L,p,, p,0,t)=0, p(y,t)—0 asy— oo,
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ie.

(2.4), 8 (p,); = 4,(0,08,(p)); — (L,py);

(2.4), ();(0,6)=0, (p);—>0 asy— oo.

By variation of the constant formula, the solution of (2.24), and (2.24), is
(2.29) (2,),0.1) = ¢, ()1 — "]

1 y . Vy—v!
1.00,0) /o (e "N Lypy) dy s

cj(t) is to be chosen properly so that (pl)j(y ,t)— 0 as y — 00.

Now
(2.26) Ly, = a()(" ", ..., 0...,0)
+yB@O) M MO o 0)
where
(2.26)" a(t) =[P(0,)D(0,t) + R(0, t)] diag[p,(0, t)] — diag[0,p,(0, 1)],

B(t)=-D"(0,0)[I + D(0, )] diag[p,(0, £)].
Let us use the notation «(t) = (a,.].(t)) and B(t) = (ﬂ,.j(t)). From (22.6),

y ) )
A (e}'J(O,t)(.V y) _ 1)(L2p0)1 dy/

k
y ’ /
4;(0, Ai(0,t /
——/0 (e H0N0=r) _ l) E aij(t)e 0.1y dy

i=1
Y a0.00-y") . 20,0y 1 4.0
+ [0 3 B0y ay
i=1

J J
=1 +1.

We first consider

Rewriting this, we obtain
J 4;(0,0)y & Y =)y
(2.27) I =e" Zaij(t)/o e Y dy
7

u u(’) 0.0
+ea, Z - 1).
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For i#j,

y ’
/ QW g 1 mhy gy
0 Ai—2

Substituting this in (2.27) we get

ay(1) MO0y _ 0.0
(228) E(A(O n-Lo.mc ¢ )
1#!
ko (t) /1(0: 4;(0,0)y
z; d] —1)+a;(t)ye .
i=

Now we consider I, where

k y
j 2;(0,t Ai(0,0)=2;(0,0)y’ 1 ;.1
=M ”Zﬂw)/o D=1V 11 40,
i=1

k y
2(0,0)y’
=3B, [y gy
i=1

Rewriting this we get

. k y .
(2.29) =3 B, / eHOD=HO.0W 1 ot
i=1 0
i
MOV 0L -5 (0 [ e ay.
For i # j,

y ) . ’
/ §'eWOO=HO.0Y 4t
0

Y e®ON=200Y PP ey (0.0=2,0.0)
(40,0 - 4,(0,0) | /o (2,(0,2) = 2,(0,1))

ye(l:(o 1) —4;(0,1)y (e(li(o 1)=4;(0,0)y _ 1)

T RO)-40.0) " 10,0-40,0)"

dy'

Ai(0 ! “I Ai(0 !
/ i /
/0 ye (0.0 dy - —€ 0.0y -

1 /y 40,0y 1
—_— e 1 9 d
70,0 Jo Y

Y a0y 1 40,0y
— e - (e -1).
4,0,1) ,1,.(o,z)2( )
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Substituting these in (2.29), we obtain

(2.30) I = ﬂ“(t

1#1
B (e™” B (e
Z 4;(0,1) Z(x -/1)
k ﬁ k
M D2y ,Z:‘ f
i#]

From (2.28), (2.30) and (2.25) we get, for j=1,2,..

(2.31)
(p)); =¢;(O1 -

(0, l)y]
elj(o 1))

1 a;(?)
R [Z ,(“0 D =1,0.1)

=1

(4O _

Zxoo

1

2
_ )_)_ 4;(0,0)y
7,0,0 | 2 Byjt)e

2i(0,
k »B,'j(t)e 0,0y

+y Z(
P

Bii() 1 a0
[Z(X(O t)—}.(Ot 21(6 t)] ’

"k,

RIS 1)“

k ﬂ,u(t)e’l"(o”)y
Ai(o,z)-zj(o,z))'z J

27,0,
i#] -
k Aiy k Ay
B, (e 8, (e
"L 00 & 0.0 -1,0.07

i=1
i#)

k ﬂ, ()
Z 40,1 . -1,0,0)
I#J

The choice of c¢(1).

4;(0,t)y

5 A

i=1 Af(O,t)
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Case j=1,2,...,k.
Since p,(0,0) =0 from equation (2.26)" we have ﬂ,.j(O) =0 and aij(O) =
diag(3,(p(0,0))) . From (2.31), we get

(2.32) (p));(¥,0) =c;(0)[1 - "0

a;;(0) 40,0y _4,(0,0)y
" 7,(0,0) ;,1,.(0,0)1—,1,.(0,0)( - )
i
0
ey el gnn_|

Take cj(t)=1.
Case j=1+1,...,m

In this case in the formulas for I{ and I{ the summation in i is only from
1to k,andfor i=1,2,...,k, i#]J,

(2.33) (pl)j = cj(t)[l _ elj(O,l).V]

1 k a, (£)(eHONY — ghi00)
—_— 7]
2,00, {; (4,(0,0)=2,(0,1)
k ai‘(t) 21(0.0)
2o D
[k

y ﬂ, (t)e i(0,t)y k ﬂr(t)el,-(o,t)y
IRCN) Z(A e 7,00,0) ; T
B
4,0

A;(0,t
B,’j(t)e( )%

k
_M&ﬂz:xmm 2

| i=1 i=1

t) 2,(0,1))?

. () 2,(0,0) k B;;(2)
+(§Ai(o,z)1-/1j(o,t))e -

= 40,1)

Since 4;(0,8)>0, j=k+1,...,m, the ¢~

are bad terms, so we choose
cj(t) such that

1 k a;:(1)
(2.34) —¢;(t) + 20,0 ['Z: 4,0, t)J—)..(O t)

(D)
Zuwojuom]a
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We get from (2.33) and (2.34), for j=k+1,...,m,

k Cl (t)eli(ovl)y
2.
(2.35) (p);r,0) =¢( ; 1(0: ,(O,t))

k
Zl He.0y 1)]

i=1

[« ﬂi.(t)el’( Ly k /3,~~(1)€l'(0")y
) Z]:(Ai(ofz)—,lj(o,z))_Z jli(O,t)
2

i=1
[ & ﬂij(t)ell(oyl)y
/1?(0 t)

k
i=1
where ¢ (1) is given by (2.34). For j=k+1,...,m,
(0) 4i(0,0)y
,1(0 0) - 4,(0,0))

1
_Ek: ij(o’o)(eai(o,O)y_l) .
7.(0,0)
Now let ¢,(x) bea C* function in [0, 1] such that

¢,(x)=1 in0<x<4/2,
$,(x)=0 ind<x< 1.

k
(2.36)  (p));(r,0)=¢;(0) -~ ((; 0) Z(

Set
bi(x,t) = [py(x/e, 1) +&p,(x/e, )], (x).

bf(x ,1) is the boundary layer function near x = 0 with the following important

properties.
(a) (py(y));is a linear combination of MOy M0y
whose coefficients depend smoothly on ¢ and on nothing
else. 0 0
(b) (p,(»)) j is a linear combination of &™®", ye"( " and
(2.37) y2e 00 i = 1,2,...,k, whose coefficients depend

smoothly on ¢ and on nothing else.

(©) Ppo(0,1) =v,(0,1)=0"0,2), p,(0,1) =0,
(d) po(y 0) = 0, p,(y,0) is a linear combination of

1, MO0y Oy 1 2, ... k, whose coeficients

are constants.
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By a similar procedure, expanding the coefficients of L, in powers of (x—1),
near x = 1 we construct a boundary layer function b;(x ,1).
The function b°(x,t) we are seeking is given by

b°(x,t) = b(x,t) + by(x,1).
Define k(x,é€) by
b°(x,0) = e¢,(x/e,0) = ek(x,¢),
and g(x,t,e) by
& &
0,b —L,b =¢eg(x,t,e).

Notice that from (2.37) (a), (b), (c) and (d), for b;(x,?) and similar prop-
erties of b;(x,t), b°(x,t) is exponentially decreasing to 0 as ¢ — 0 in the
interval 6/2 < x < 1 -4/2 and so properties (2.14), (2.15), and (2.16) are
verified there.

We now verify these propertiesin 0 < x <d/2 andin 1-4/2<x<1. We
do our analysis in 0 < x < J/2; the other case is similar.

By (2.32) and (2.36), (k(x,e)); is a linear combination of 1, "/,
(x/e)e*OV/% 5o that

(2.38) /lkxs)l <c, /Ik el st /lk x,8)| s%
We also obtain
1-6
(2.39) / Bfk(x, 0] <e™*,  M>o.
]
The same estimate as in (2.38) holds in the interval [1 —4J, 1], so that we get
lofk(x. o)’ <ce'™*, k=12,
and
2
lk(x,e)l” <ec.

Now verify properties (2.14) and (2.15) of g(x,t,¢). Here again we need
to argue only in 0 < x <6/2. In this interval ¢,(x) = 1, so that, by (2.21)

8,b° — L,b° = e[L,p, + Lyp, + €L,p,]y = x/e.
The terms in g(x,?,¢) and in g,(x,¢,¢) are linear combinations of
1 ( )n Ai(0,t)x /e i=1.2 k
with the coefficient independent of ¢. It is clear that

2
su xat’s and su X,t,€
oSuP, ll&( Mi2g0.61 oS llg,( M 221061

are bounded by c.
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We use a similar argument for the intervals [1-46/2,1] and [6/2,1-6/2],
where the terms in g(x,¢,¢) and g,(x,?,¢) are bounded. Hence

sup |lg(x,t,e)<c, sup |lg(x,t,¢e)<c,
0<t<T 0<I<T

The proof of Lemma 1 is complete.

Define
(2.40) =0 -0’ - b
All the constants depend only on T'.
Lemma 2.
(2.41) Sup 12°(x, 1) < ce'’?,
0<<T
where ¢ depends only on T .
Proof. Clearly, by Lemma 1, (2.13),
(2.42) z(0,8)=0=z(1,1),
(2.43) z(x,0) = ¢ek(x,¢),

(2.44) z,=¢z, +[-D(x,t)+ &Pz, +[R+¢eQ)z —¢h,

where h = h(x,t,e) = g(x,t,€) + vgx + Pvg + Qvo. By using Lemma 1, we
have

(2.45) sup ||h(x,t,e)|<c, sup ||h(x,t,¢)|| <c.
0<t<T 0<I<T

Multiply (2.44) by z and integrate by parts with respect to x. Then using
(2.42) we get

2 2 2
(2.46) 3&0z17 < —ellz, A" +cllzl” +ecllzll ||z, I
2 2
+cllzlI” +ecllz||” + el z|l |A]l-

Using 2ab < sa* + b2/5 we get

d, 2 2, 2

—_— < .

g 1217 < clizll” + el

By Gronwall’s inequality we get
t

(2.47) Iz()I1* < e 1zO)|* +¢” /0 Ikl|(s)e" =" ds.
By Lemma 1, z(x,0) = ¢k,(x) and ||k8(x)||2 < c, so that, from (2.47) we get

sup ||z(0)|° < cé’ [1+ sup ||h||2(s)].
0<t<T 0<I<T

Using (2.45), we get
(2.48) sup ||lz(t)|* < €’
0<t<T
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Next we show ,
sup ||0,z(x,)||" < ce.
0<IST

Differentiating (2.44) for z with respect to ¢, we get
(2.49) (z,),=¢(z),, +(-D+¢eP)(z,), +(-D,+¢eP)z,
+[R+¢Q]z, + (¢Q,+ R))z —eh,(x,1,¢).
Multiply (2.49) by z, and integrate with respectto x. We get for 0<¢< T,

2 2 2
(2.50) 141207 < —ellz, " +cllz,)I” + ecllz |l Iz,
/(D,zx,z dx+e/ (p,z,,z)dx

+llzl* +cliz, 1zl + ellz, Il 1A,]l,
m 1
(2.51) / (D,z,,z)dx =Y /0 (A),(2,),(z,), dx,
i=1

1 1
(2.52) -/()(Ai),(zi)(zi),dx= /0 (4),(z),(z;), dx
1
= - [10)z)), 2 ax
1 1
= - [ @tzdz, - [ G20z, dx

izl izl + 11zl 1|z, -
We get from (2.51) and (2.52)
/ (D,z,.,z)dx < clllzll |z,Il + 2]l l|z,, I]-
Since ||z|| < ce, by (2.48), this is
(2.53) < clellz,ll + el z,, II]
1 t
/0 (p,z,,z)dx = /0 (z, ,p'z,) dx.
Integrating by parts, we get this is
t
- /0 (z,(0'z,),) dx

< clizlltllz,, I + Nz, M1)-
Since ||z|| < ce by (2.48) this is

<cefllz.ll +1z,11]
2 2
(2.54) < Lllz, I* + ce® + cellz, |
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where we used 2ab < a*/6 + 6b> . Using (2.50), (2.53) and (2.54), we obtain

Lz < —ellzx]* +cliz I + ecllz |l |1z,
(2.55) +clellz |l + ellz, ]+ iz, )7 +ce’ + ez,
+ellzI* + ellz,l Izl + &l z, ]l 11,
Using (2.55) and ||z|| < ce, we get
Lz )” < —ellz,* +cliz, I
+ce+ e |l +elllz, .
Using (2.45), we get
$l1z,1* < clliz I + ).
Using Gronwall’s inequality we get
(2.56) Iz, (O < clllz,O)]| +e].
Using the partial differential equation (2.44) we can express z,(x,0) as
z,(x,0) = L,z(x,1t)|,_, — €h(x,0,¢).
Since z(x,0) = ¢ek(x,¢), by (2.43)
(2.57)  z,(x,0) = &8 k(x, &) + e[-D(x,0) + &p(x,0)]8 k(x , &)
+ e[R(x,0) +eQ(x,0)lk(x,e) — eh(x,0,¢).
By Lemma 1, (2.16) we have

o k(x,e)’ <e' ™,  k=1,2,

lke(x,&)l|” < c.
We get from (2.57)
llz,(x, 0] < ce,
so that from (2.56) we get
(2.58) sup ||z,(x)|I> < ce.
0<t<T

Next we show

2
sup ||z, ()|I” < ce.
0<ti<T

Multiply (2.44) by z and integrate with respect to x and integrate by parts.
We get

2 2 2
elz ™ < Nzllllz Nl +clizll” + ecliz[l |z, ]l + ell 2]l
2
+ec|zll” +ellzl [12]].

Using previous estimates (2.48) for ||z||2 , (2.58) for ||z,|| and (2.45) for |||,
we get

a||zx||2 < cs3/2 +cet + cs2||2X|| +cet +ce +ce.
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Using ce’||z, || < &%[c* + ||z, ]|*] we get for small &,
(e—)llz, I < ce™,

from which we get ||zx||2 < ce'? so that
(2.59) sup ||z, (0)]° < ce'%.
0<I<T

Since z(0,t)=0,
26,0 = [ 2,004y,

By Schwarz’s inequality, |z(x,?)| <[z, [|(¢) < ce'’* | ie.
sup |z(x,?)| < ce'’*.
0<x<1
0<i<T
This completes the proof of Lemma 2.
Now we shall prove the theorem.

Proof of theorem. Let u°(x,t) be the solution of (1.2), (1.3), (1.4) and (1.5)
and u%(x, 1) be the solution of (1.1), (1.3)", (1.4)" and (1.5). Since u = Tv
by (2.6), we get

w(x,t) = T(x, 00", u(x,0)=Tx,0v’x,1).

Denote B(x,t,e) = T(x,t)b’(x,t), where b°(x,t) is given by Lemma 1.
Consider

u¥(x,t) —u’(x,t) — B(x,t,¢)

= T(x, O (x, ) +v°0x,8) = b (x,0)] = T(x,0)z°

by (2.40). Then by Lemma 2, (2.41), we get
sup [u(x,t) —u’(x,t)— B(x,t,¢)| < ce'*.

0<x<1

0<t<T
The proof of the theorem is complete.
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