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The protozoan parasite Leishmania spp. exists as extracellular promastigotes in its vector whereas it resides and replicates as
amastigotes within the macrophages of its mammalian host. As a survival strategy, Leishmania modulates macrophage functions
directly or indirectly. The direct interference includes prevention of oxidative burst and the effector functions that lead to its
elimination. The indirect effects include the antigen presentation and modulation of T cell functions in such a way that the effector
T cells help the parasite survive by macrophage deactivation. Most of these direct and indirect effects are regulated by host cell
receptor signaling that occurs through cycles of phosphorylation and dephosphorylation in cascades of kinases and phosphatases.
This review highlights how Leishmania selectively manipulates the different signaling pathways to ensure its survival.

1. Introduction

Leishmaniasis, caused by the protozoan parasite of the genus
Leishmania, is an infection that occurs primarily in the
tropical and subtropical regions of the world. Leishmania is a
dimorphic protozoan parasite that resides as an extracellular
flagellate-promastigotes—in its sand fly vector and as an
intracellular aflagellate-amastigotes—in macrophages of its
mammalian host [1]. Leishmaniasis is characterized by the
parasite-induced immunosuppression executed not only by
active subversion but also by immune deviation such that
the resulting immune responses suppress the antileishmanial
immune response further. Because macrophages are not
only the host cells for the parasite but also sentinels of the
immune system, these cells are targeted by the parasite for
immune modulation to ensure their survival. The parasite
interferes with the signaling system of the cell such that the
effector functions triggered by various cell surface receptors
are either actively suppressed or are altered to result in the
immune responses that promote parasite survival. A variety
of mechanisms potentially contributing to mononuclear
phagocyte deactivation during intracellular infection have
been identified [2]. Of considerable interest is the evidence
that intracellular pathogens are able to impair cell signaling

pathways required for host cell activation that may eventuate
in their elimination [2, 3]. Cell signaling is regulated
by two principal classes of enzymes, protein kinases and
phosphoprotein phosphatases [4, 5] (Figure 1).

As the signals are transduced in cascades of kinases
and phosphatases through cycles of phosphorylation and
dephosphorylation, the parasitic interference often targets
these signaling intermediates [6]. Herein, we will analyze the
alterations in the signaling of some receptors in Leishmania-
infected macrophages and will associate those alterations
with the altered responsiveness of the macrophages to the
ligands of those receptors.

2. Leishmania Modulates the Receptor
Responsiveness in Macrophages

2.1. Regulation of CD40 Responsiveness and Mitogen Activated
Protein Kinase Family. The interaction between CD40, a cos-
timulatory molecule expressed on macrophages, B cells, and
dendritic cells [7], and its ligand CD40 ligand (CD154) on T
cells [8] results in Th subset skewing to Th1 type. Consistent
with the proposition that Th1 cells are responsible for protec-
tion against Leishmania major infection, the CD40-deficient
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Figure 1: General principles of signal regulation by kinases and
Phosphatases: the phosphorylation and dephosphorylation of the
protein, the former being catalyzed by a kinase, and the latter by
a phosphatase. Phosphorylation usually causes a conformational
change in the protein.

mice fail to develop a Th1 response and are susceptible to
Leishmania infection [9]. The susceptibility to Leishmania
infection can be prevented by IL-12 administration in these
mice suggesting that CD40–CD154 interaction is required
for the production of IL-12, which polarizes the Th cells
to Th1 type [9–11]. Thus, the host-protective function of
CD40 was attributed to setting a Th1 bias [9, 10, 12].
Beside their role in Th1 immune response, CD40-CD40L
interactions were also shown to stimulate macrophages to
produce a number of cytokines and inflammatory mediators
including nitric oxide (NO), which plays a key role in parasite
killing [13]. As CD40-L binds to CD40, it triggers the signal
through several signaling intermediates [14] to result in
mitogen-activated protein kinase (MAPK) phosphorylation
[15, 16]. The MAP kinases play an important role as signal
kinases and their activity is elicited upon phosphorylation of
threonine and tyrosine residues in a Thr-X-Tyr motif in their
regulatory domain and thereby controls the activation status
of transcription factors [17]. There are three major groups
of MAP kinases in mammalian cells—the extracellular
signal-regulated protein kinases (ERK) [18], the p38MAP
kinases [19], and the c-Jun NH2-terminal kinases (JNK)
[20]. MAPKs phosphorylate selected intracellular proteins,
including transcription factors, which subsequently regulate
gene expression by transcriptional and posttranscriptional
mechanisms [21]. Each of these kinases is regulated by
other upstream kinases [22]. These three families of MAPKs
form three parallel signaling cascades activated by distinct or
sometimes overlapping sets of stimuli. Activated by mitogens
and growth factors, the ERKs mediate signals promoting
cell proliferation, differentiation, and survival. JNK and p38
MAPKs are predominantly activated not only by stress such
as osmotic changes and heat shock but also by inflammatory

cytokines TNF-α and IL-1β and bacterial lipopolysaccharide
(LPS) [23–25].

Several studies show that MAPKs are actively repressed
and cannot be activated when Leishmania-infected
macrophages are stimulated with a variety of agonists.
Inhibition of MAPK phosphorylation resulted in less
expression of IL-12 and iNOS2 (inducible nitric oxide
synthetase type 2), the enzyme that catalyzes the production
of NO [26, 27] which has been shown to play crucial role
in the development of immunity to Leishmania [28]. In
naive macrophages, Leishmania donovani promastigotes
failed to activate the phosphorylation of p38 MAPK,
ERK1/2, and JNK, as well as the degradation of IκB-α [29]
affecting the activation of proinflammatory cytokines. The
parasite surface molecule LPG has been implicated in the
inactivation of MAPKs, since phagocytosis of LPG-deficient
L. donovani promastigotes caused MAPK activation, without
the requirement for subsequent macrophage stimulation
[29].

One of the studies showed that ERK and p38 MAPKs
play differential roles in the regulation of LPS-stimulated
inducible NO synthase and IL-12 gene expression [30].
LPS stimulated ERK, JNK, and p38 MAP kinases in J774
macrophages but with different activation kinetics. It was
also demonstrated that p38 plays an essential role in the
induction of inducible NO synthase, and ERK MAP kinases
play only a minor role in promoting NO generation by using
inhibitors selective for ERK (PD98059) and p38 (SB203580).
It was also demonstrated that synthetic Leishmania lipophos-
phoglycans act by stimulating ERK MAP kinase to inhibit
macrophage IL-12 production thus promoting parasite sur-
vival and thus underlining the physiological relevance of
these regulatory signals [30].

In addition, the CD40-induced p38MAPK phospho-
rylation, iNOS2 expression, and antileishmanial function
were impaired in Leishmania-infected macrophages but were
restored by anisomycin, a p38MAPK activator, suggesting a
crucial role of p38MAPK in CD40 signaling. Anisomycin’s
effects were reversed by SB203580, a p38MAPK-specific
inhibitor, emphasizing the role of p38MAPK in CD40-
induced iNOS2-dependent leishmanicidal function. Thus
anisomycin’s ability to restore CD40 signaling and elimi-
nate amastigotes not only highlighted the susceptibility of
amastigotes to killing after p38MAPK activation but also
suggested a potential use of anisomycin as an antileishmanial
drug [31].

While interference with CD40-induced p38MAPK is
consistent with the general suppressive scheme of parasitism,
the observation does not explain the CD40-induced IL-
10 production from macrophages [32] and increased IL-
10 production from Leishmania-infected macrophages [33].
Since IL-10 is a suppressive cytokine, these observations
support the proparasitic role of IL-10 but contradict our
results. This is because Leishmania interference with the
CD40 signaling through MAPK, if it were associated with IL-
10 production as well, would inhibit IL-10 production and
clearly, that was not the case. So, it is possible that there are
other signaling pathways or MAPKs carrying the CD40 signal
and associate with IL-10 production. Indeed, it was observed
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Figure 2: Modulation of CD40 responsiveness in Leishmania-infected macrophages: crosslinking of anti-CD40 antibody activates
p38 MAPK-induced leishmanicidal function via iNOS2 induction. Leishmania infection downregulates CD40-induced p38 MAPK
phosphorylation and uses the capability of this receptor to signal along an ERK1/2-dependent pathway to produce the proparasitic Th2
cytokine IL-10 from macrophages. iNOS2: inducible nitric oxide synthase 2; NO: nitric oxide; PTP: Protein tyrosine phosphatases.

that CD40 induced ERK-1/2 activation, inhibition of which
resulted in decreased CD40-induced IL-10 production [21].
In Leishmania-infected macrophages, CD40-induced ERK-
1/2 activation was increased suggesting a reciprocal inter-
action between the p38MAPK and ERK-1/2 activation [34].
Indeed, inhibition of one MAPK activated the other MAPK.
In macrophages, higher strengths of stimulation induced
p38MAPK phosphorylation but weaker strengths resulted
in ERK-1/2 phosphorylation [34]. During Leishmania infec-
tion, the level of CD40-induced ERK1/2 phosphorylation
and IL-10 production increases, whereas p38MAPK acti-
vation and IL-12 production decrease, demonstrating a
reciprocal modulation of the CD40 signaling pathway by the
parasite [34] (Figure 2). IL-10 produced during the infec-
tion inhibits CD40-induced IL-12 production by impairing
p38MAPK activation [34]. Neutralization of CD40-induced
IL-10 enhances the antileishmanial functions of CD40. Thus,
the anti-leishmanial function of CD40 is self-limited by
induction of IL-10. The work of Yang et al. also demonstrated
a critical role for ERK activation in the induction of IL-
10 production by Leishmania and showed that parasite
immune complexes bind to macrophage FcγR and induce
this activation via the macrophage FcγR [35].

Although first observed in Leishmania infection in
macrophages, the same principle of differential CD40 sig-
naling holds true in dendritic cells and in tumor models
[36–38]. In one study it was shown that infection with
L. amazonensis amastigotes inhibited the ability of DCs
to undergo proper maturation in vivo characterized by
significantly low CD40 surface expression and significantly

decreased IL-12p40 production through activation of the
MAP kinase ERK1/2 [39].

While the differential CD40 signaling and its selective
manipulation by Leishmania solved the apparent paradox
of inducing counteractive cytokines by CD40 stimulation,
the question remained to be solved is how a single receptor
induces reciprocal signaling pathways and counteractive
effector functions. We have shown that such differential
signaling depends on the composition of the signalosomes
assembled on the membrane. When CD40 binds TRAF-2,3,5,
it signals primarily through p38MAP kinase whereas binding
to TRAF-6 signals primarily through ERK-1/2. We have
shown that cholesterol influences the assembly of distinct
CD40 signalosomes. Depletion of membrane cholesterol
inhibited the assembly of the p38MAP kinase inducing
CD40 signalosome but enhances the ERK-1/2 activation
[40]. Consistent with these observations, Leishmania is
found to deplete membrane cholesterol and enhance CD40
binding to TRAF-6 [40]. However, how Leishmania interferes
with macrophage cholesterol metabolism remains to be
elucidated.

It was demonstrated that the Leishmania surface
molecule, lipophosphoglycan, stimulates the activation of
ERKs, JNK, and the p38 MAP kinase simultaneously but
with differential kinetics in J774A.1 macrophage cell line. It
was shown that both p38 and ERK MAP kinase activation
appears to be necessary for AP-1 activation by LPG and
it also induced IL-12 production and generation of nitric
oxide demonstrating that L. donovani LPG activates pro-
inflammatory, endotoxin-like response pathway in J774A.1
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macrophages [41]. A recent report [42] pointed to the
importance of the metalloprotease GP63 in regulating several
important signaling proteins, contributing to downstream
changes in global protein tyrosine phosphorylation levels
as well as a specific effect on p38 MAPK activation. p38
was inactivated upon infection in a GP63-and protein
degradation-dependent manner, which likely involves cleav-
age of the upstream adaptor TAB1 [42].

2.2. TLR Responsiveness. Of the growing number of recep-
tors involved in the recognition of pathogen-associated
molecular patterns (PAMPs) [43], TLRs are considered
key players of the innate immune response [44, 45]. This
family of receptors is comprised of thirteen members that
recognize most of the molecular patterns on pathogens.
The recognition of the ligands results in the secretion of
inflammatory mediators such as TNF-α and IL-12 as well as
the induction of iNOS2 expression [45–47], leading to host
protection.

Following the recognition of a PAMP, the adaptor
myeloid differentiation factor 88 (MyD88) is recruited to
the TIR (toll-interleukin 1 receptor) domain of the TLR
[48]. Next, IL-1 receptor-associated-kinase-1 (IRAK-1) is
recruited to the complex and is phosphorylated by IRAK-
4 and by autophosphorylation. IRAK-1 dissociates from
MyD88 to interact with TRAF6 and activates various cas-
cades, ultimately leading to the activation of MAP kinase
pathways, the translocation of NF-κB to the nucleus as well as
the secretion of proinflammatory cytokines [49, 50]. Another
pathway, termed “MyD88-independent”, is implicated in
signaling following engagement of TLR3 and TLR4. This
cascade uses TRIF as an adaptor protein and allows the
translocation of NF-κB to the nucleus and the activation of
MAP kinase pathways with a slower kinetics as well as the
activation of IP-10 and IFN-α/β via the activation of IRF3
[51, 52].

Substantial studies demonstrated that different recep-
tors mediate the uptake and phagocytosis of Leishmania
spp. by macrophages, although the initial signaling events
are unknown [53]. As LPG of Leishmania promastigotes
interacts with NK cell-expressed TLR2 [54], it is possible
that the leishmanial LPG may interact with the macrophage
expressed TLR2 and modulates cellular functions to ensure
its survival within the host cell. For example, L. major-
induced IL-1α expression was substantially decreased in
MyD88-deficient mice [55]. Similarly, the genetically resis-
tant C57BL/6 mice became susceptible to Leishmania para-
site in absence of MyD88 due to increased level of IL-4 and
decreased level of IFN-γ and IL-12p40 [56]. Furthermore,
silencing of TLR2, TLR3, IRAK-1, and MyD88 expression
by RNA interference also revealed the involvement of both
TLR2 and TLR3 in the production of NO and TNF-α by
macrophages in response to L. donovani promastigotes [57].
TLR2-mediated responses are dependent on Galβ1, 4Manα-
PO4 containing phosphoglycans, whereas TLR3-mediated
responses are independent of these glycoconjugates. TLR3
also plays a role in the leishmanicidal activity of the IFN-
γ-primed macrophages [57]. It is quite possible that Leish-
mania may modulate MyD88 expression and recruitment to

TLRs resulting in altered TLR responsiveness of the infected
macrophages.

An impaired resistance to L. major was also reported in
TLR4-deficient mice. Compared to wild type controls, the
growth of parasites in the cutaneous lesions was drastically
increased in mice from a resistant background carrying
a homozygous mutation of the tlr 4 gene (TLR4 e/e) as
early as one day after inoculation of L. major. Later in
the infection, an enhanced arginase activity leads to the
production of compounds essential for parasite proliferation
in macrophages and its increase in mutant mice indicat-
ing that TLR4 signaling could enhance the microbicidal
activity of macrophages harboring parasites [58]. Results
from studies comparing TLR4 deficient mice with TLR4
and IL-12β2 double deficient mice suggested an IL-12
independent role of TLR4 in anti-Leishmania immunity
[59]. The IL-12 dependent NK cell IFN-γ response was
severely compromised in TLR9-deficient mice as well. In
studies with L. infantum infection, in mature dendritic
cells- (mDCs-) depleted mice, the IFN-γ response was
abolished due to low IL-12 production that could be
rescued by CpG and IL-12 [60]. L. major is also shown
to modulate TLR9 signaling for activating NK cells [61].
Likewise, L. donovani infection caused suppression of TLR2-
and TLR4-stimulated IL-12p40, with an increase in IL-
10 production in cells of monocyte/macrophage lineage by
suppressing p38MAPK phosphorylation and activating ERK-
1/2 phosphorylation through a contact-dependent mecha-
nism [62]. These studies imply how Leishmania modulates
the TLR responsiveness that might help their survival in
macrophages.

2.3. IFN-γ Receptor Responsiveness. It is widely accepted
that IFN-γ plays a critical role in controlling Leishmania
infection by inducing macrophage leishmanicidal activity
as well as by favoring Th1 development [63, 64]. The
biological functions of IFN-γ are mediated via IFN-γR-
(IFN-γ receptor-) mediated pathway involving receptor-
associated kinases JAK1/JAK2 and STAT-1 [65, 66]. IFN-
γ binding to the receptor activates JAK1/JAK2 kinases and
phosphorylates STAT-1, which translocates to the nucleus
and enhances transcription of IFN-γ-induced genes to
increase macrophage microbicidal activity (Figure 3). IFN-
γR is comprised of IFN-γRα and IFN-γRβ chains. While
IFN-γRα chain plays a critical role in ligand binding, IFN-
γRβ is required for IFN-γ signal transduction [67]. The
critical role of IFN-γR in development of IFN-γ-mediated
host immunity is evident in studies showing that IFN-
γR−/− mice are highly susceptible to pathogens such as
Mycobacterium avium [68], Listeria monocytogenes [69],
Candida albicans [70], and Plasmodium berghei [71]. It has
been shown that IFN-γR−/− mice are highly susceptible to
high as well as low dose L. major infection indicating that
IFN-γR is essential for control of cutaneous leishmaniasis
[72]. L. donovani has also been shown to attenuate IFN-
γR expression in human monocytes [73]. Some of the
important macrophage functions suppressed by Leishmania
which are IFN-γ inducible are NO production, MHC class II
expression. One of the major results of Leishmania infection
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is the inhibition of the JAK2/STAT1 signaling cascade.
Infected macrophages show defective phosphorylation of
JAK1, JAK2, and STAT1 on IFN-γ stimulation [73, 74].
This inactivation depends on the activation of phosphoty-
rosine phosphatases (PTPs), in particular the PTP, SHP-1.
One study has shown that inactivation of JAK2/STAT1 is
caused by the negative regulation of the IFN-γ receptor
in infected cells [75]. However, this was not observed
following L. amazonensis amastigote infection, where IFN-
γ-dependent regulation of MHC class I was not affected by
infection, indicating that the primary signaling lesion lays
downstream of the IFN-γ receptor [76]. Certain bacterial and
viral pathogens have been shown to evade host immunity by
downregulating IFN-γRα expression on effector cells [77–
79]. Similarly, both L. major and L. mexicana suppressed
IFN-γRα and IFN-γRβ expression, reduced levels of total
Jak1 and Jak2, and downregulated IFN-γ-induced Jak1,
Jak2, and STAT1 activation, with the effects more profound
with L. mexicana infection than L. major. In addition L.
mexicana preferentially enhanced tyrosine phosphorylation
of dominant negative STAT1β, which may be one of the
several survival mechanisms used by this parasite to evade
the host defense mechanisms [80]. Recently it was shown that
infection of DCs with L. amazonensis parasites resulted in
multiple alterations in innate signaling pathways, including
a protease- and proteosome-dependent decreased phospho-
rylation of STAT1, 2, 3 and ERK1/2, and markedly reduced
expression of interferon regulatory factor-1 (IRF-1) and IRF-
8. Furthermore, it was shown that alterations in intracellular
signaling and suppression of IL-12 production were caused
by direct effects of amastigotes rather than by the induction
of endogenous IL-10 [81].

2.4. IL-10 Receptor Responsiveness. IL-10 is a homodimer
with 160aa and belongs to class II α-helical cytokine.
IL-10 is produced by many cell types including T cells,
monocytes, and macrophages. IL-10 interacts with its
tetrameric receptor complex consisting of two IL-10R1 and
two IL-10R2 polypeptide chains [82]. IL-10 is a potent
immunosuppressant of macrophage functions, suppresses
the production of proinflammatory cytokines by activated
monocytes/macrophages, and enhances B lymphocyte pro-
liferation and antibody secretion. IL-10 decreases expression
of MHC classes I and II affecting antigen presentation
[83] and reduces the transcription and translation of
proinflammatory cytokines TNFα, IL-12, and IL-18 from
macrophages [84]. IL-10 also suppresses the induction of
iNOS2 that catalyzes the production of NO, the leishmani-
cidal free radical [85–87]. IL-10 affects T cells mostly in an
indirect manner, by its effects on antigen presenting cells
[88].

IL-10 is a critical cytokine in determining the host
susceptibility to Leishmania infection. In murine models
of cutaneous [89] and visceral [90] leishmaniasis, IL-10
contributes to disease progression. IL-10-deficient or anti-
IL-10 receptor antibody-treated mice are relatively resistant
to Leishmania infection [91], while the administration of
exogenous IL-10 [92] or the induction of endogenous IL-
10 exacerbates the disease [93]. It has been reported that
the susceptibility of BALB/c mice to L. major infection
is dependent on IL-10 as IL-4R alpha−/− BALB/c mice,
despite the absence of IL-4/IL-13 signaling remains highly
susceptible to L. major infection [94]. Similarly, the IL-10
levels in patients with L. donovani infection directly correlate
with the disease severity [95].
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It was demonstrated that macrophage IL-10 is turned-
on by Leishmania amastigotes itself and the virulence
factor responsible for this induction was found to be
host IgG [33]. The host IgG present on the surface of
Leishmania amastigotes interacts with FcγR on the surface
of macrophage to trigger signaling events that leads to the
induction of IL-10; however, unopsonised amastigotes fail
to do so. IL-10 produced by infected macrophages prevents
macrophage activation and thus inhibits production of
proinflammatory cytokine IL-12 and TNFα. FcγR KO (mice
lacking all FcγRs) mice similar to IL-10 KO mice are
resistant to L. mexicana infection and also control parasites
as a result of strong IFNγ response [96]. Ligation of FcγR
on macrophages with IgG on the parasite surface induces
IL-10, which in turn suppresses IFNγ response and NO
production in L. mexicana infection. Further it was also
shown that FcγR III is crucial for macrophage to produce
IL-10 and disease progression in L. mexicana infection
[97].

MAPK ERK1/2 has been shown to be involved in
induction of IL-10 from macrophages [35]. IgG opsonised
amastigotes interact with FcγR on macrophages to induce
ERK1/2 activation. The hyperactivation of ERK1/2 results in
histone H3 phosphorylation of IL-10 promoter making the
promoter accessible to transcription factor, and the result is
secretion of high levels of inhibitory cytokine IL-10. However
lesion-derived amastigotes alone are not sufficient to induce
IL-10; despite their activity to rapidly activate ERK1/2,
some inflammatory signal is required for induction of IL-
10. This inflammatory stimulus can be small fragments of
hyaluronan called as LMW-HA which is a major component
of extracellular matrix. Also leishmanial lesions are generally
superinfected with bacteria which can provide inflammatory
signal through TLR2 or 4. Role of ERK1/2 MAPK in
inducing IL-10 has also been demonstrated in CD40-CD40L
interaction; lower dose of anti-CD40 stimulation induces
more ERK1/2 MAPK phosphorylation and IL-10 secretion
in L. major infection while inhibition of ERK1/2 reduces
CD40 induced IL-10 secretion and disease progression
[34].

The IL-10/IL-10R interaction engages the phosphory-
lation and activation of receptor-associated janus tyro-
sine kinases, JAK1 and Tyk2, which in turn phospho-
rylate transcription factor STAT3. It then homodimer-
izes and translocates to the nucleus where it binds with
high affinity to STAT-binding elements (SBEs) in the
promoters of various IL-10-responsive genes [98]. STAT3
plays a dominant mediator of majority of IL-10 func-
tions [99]. Overexpression of dominant negative STAT3
suppresses the IL-10 promoter activity while wild type
STAT3 leads to enhancement of this activity [100]. The
anti-inflammatory functions of IL-10 are STAT3 depen-
dent as in STAT3 deficient murine macrophages IL-10 is
unable to suppress LPS-induced TNF-α and IL-6 produc-
tion [101, 102]. In human macrophages, IL-10 rapidly
induces SOCS3 protein expression and this expression
requires STAT3 as STAT3 dominant negative human
macrophages failed to induce IL-10-mediated SOCS3 expres-
sion [103].

3. Alterations of Host Cell Kinases and
Phosphatases by Leishmania

3.1. Protein Kinase C. PKC, serine-threonine kinases with
several isoforms are involved in a wide variety of immune
cell functions and are classified as classical, novel, and
atypical PKC depending on their structure and cofactor
requirement [104]. A number of studies have implicated PKC
in the control of host defense against intracellular infections.
Indeed, Leishmania infection inhibits PKC activation and
subsequent intracellular signaling. PKC-dependent oxidative
burst activity and protein phosphorylation were found to be
markedly attenuated in Leishmania-infected human mono-
cytes [105]. Promastigote LPG has been shown to inhibit
PKC activation and PKC-dependent phosphorylation of both
the PKC-specific VRKRTRLLR substrate peptide and MAR-
CKS (Myristoylated alanine-rich C kinase substrate) [106].
Another PKC substrate protein, MRP (MARCKS-related
protein), levels were also found to be decreased in infection
with all species or strains of Leishmania parasite, including
lipophosphoglycan-deficient L. major L119 [107]. LPG-
mediated inhibition of PKC activation may be due to the abil-
ity of LPG to interfere with binding of regulators, including
Ca2+ and diacyl glycerol; in addition LPG can also block PKC
membrane insertion [108]. LPG also inhibits phagosomal
maturation, by inhibiting PKC-α dependent depolymeriza-
tion of periphagosomal F-actin [109, 110]. Further infection
with L. major inhibited PKC-dependent c-fos and TNFα gene
expression [111]. L. donovani infection selectively inhib-
ited Ca2+-dependent PKC activity but Ca2+-independent
PKC activity was enhanced. Leishmania infection reduced
the Ca2+-dependent PKC isoform-PKCβ-expression whereas
expression of PKC zeta, a Ca2+-independent PKC isoform,
was enhanced [112]. This decrease in Ca2+-dependent
PKC activity can be due to IL-10 produced by L. dono-
vani infection as pretreatment with anti-IL-10 neutraliz-
ing antibody significantly restored Ca2+-dependent PKC
activity [113]. Infection of macrophages with L. donovani
enhanced the level of intracellular ceramide largely due
to its de novo synthesis and the enhanced ceramide was
found to be responsible for the downregulation of classical
PKC activity, upregulation of Ca2+-independent atypical
PKC-zeta expression, and activity of calcium independent
PKC [114]. Also C-C chemokines particularly macrophage
inflammatory protein- (MIP-) 1 alpha and macrophage
chemoattractant protein- (MCP-) 1 were found to restrict
the parasitic burden via the regulation of impaired PKC
signaling and induction of free-radical generation in murine
leishmaniasis. These chemokines restored Ca2+-dependent
PKC activity and inhibited Ca2+-independent atypical PKC
activity in L. donovani-infected macrophages under both in
vivo and in vitro conditions [115]. de Almeida-Amaral et
al. reported the presence of protein kinase C-like (PKC-
like) protein in L. amazonensis and found that this PKC-
like protein is activated by phorbol ester (PMA) and has
both calcium dependent and independent PKC-like activity.
Further they studied the role of this PKC-like protein in
modulation of promastigotes (Na++ K+)ATPase activity and
found that activation of Ca2+-dependent PKC-like protein
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increased (Na++ K+)ATPase activity while activation of Ca2+-
independent PKC-like protein has inhibitory effect [116].
Recently a study by the same group reported presence of
ecto-PKC in different Leishmania species. They found higher
PKC activity in infective stationary stage of Leishmania
promastigotes and that this PKC-like plays a critical role
in attachment and internalization steps involved in the
parasite invasion process [117]. Some of the Leishmania-PKC
interactions are summarized in Figure 4.

3.2. Other Kinases. PI3K signaling activated by Leishmania
infection is a negative signaling pathway which helps in
progression of disease. It has been shown that PI3K signaling
negatively regulates IL-12 production and inhibition of PI3K
signaling by specific inhibitor or its downstream kinase Akt
reverses the IL-12 blockade in macrophages [118]. PI3K−/−

DCs show enhanced IL-12 production and PI3K−/− mice
elicit an enhanced Th1 response upon L. major infection
[119].

4. Modulation of Phosphatases

Leishmania can also activate various molecules that inhibit
intracellular signaling cascades (Figure 5) thereby evading
host immune machinery to inhibit immune responses.

4.1. SHP-1 Protein Tyrosine Phosphatase. An important neg-
ative regulatory molecule of numerous signaling pathways,
such as those related to the actions of interferons [120, 121],
erythropoietin [122, 123], and many others, is SHP-1 (Src

homology 2 domain containing tyrosine phosphatase) which
is expressed principally in haematopoietic cells but also in
smooth muscle [124] and epithelial cells [125]. Many of the
interactions of SHP-1 with its substrates involve the binding
of either one or both of its tandem SH2 domains to tyrosine
phosphorylated, immunoreceptor tyrosine-based inhibitory
motifs (ITIMs). These specialized motifs are known to be
present in many signaling molecules [126, 127]. Multiple
types of ITIMs exist and display-specific abilities to recruit
and activate SH2 containing PTPs.

SHP-1 is responsible for the negative regulation of
many signaling pathways in all hematopoietic cell types,
by acting in a variety of fashions. For instance, SHP-1
can bind to receptors and dephosphorylate them directly;
it can also associate with a receptor and dephosphorylate
other members of the receptor binding complex. The
PTP can also interact with other cytosolic proteins and
tyrosine dephosphorylates them or their associated proteins
[126]. Macrophages infected with Leishmania in vitro have
elevated SHP-1 activity as well as total PTP activity, resulting
in widespread dephosphorylation of high-molecular-weight
proteins [74]. Furthermore, infection causes colocalization
of SHP-1 and JAK2 and prevents tyrosine phosphorylation
of JAK2 in response to IFN-γ [74]. Dephosphorylation of
JAK1/2, TYK2, and STAT1α, -2, -3, -5 α/β, and -6 has already
been documented [121–123, 128, 129]. Forget et al. showed
that activation of the host PTP SHP-1 is responsible for the
dephosphorylation and inactivation of ERK1/2, as SHP-1-
deficient macrophages showed normal JAK2 and ERK1/2
activity following infection with L. donovani, and responded
to IFNγ by increased NO production [130].
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Figure 5: MAPK phosphorylation in Leishmania-infected macrophages: Leishmania infection of macrophages represses the most important
MAPK family members: ERK1/2, p38, and JNK. MAPK inactivation is accompanied by inhibition of transcription factors Elk-1, c-fos, IRF-1,
AP-1, and NF-κB and IFN-γ-dependent NO generation.

In viable motheaten mice, whose SHP-1 phosphatase
activity is deficient, increased nuclear translocation of the
transcription factor NF-κB has been reported [131, 132],
which seems to provoke an exacerbated inflammatory
response. Macrophages derived from SHP-1−/− mice show
elevated iNOS induction and NO generation and are more
efficient at killing Leishmania [133]. This is reflected in
vivo by increased NO generation and reduced parasite
load in both SHP-1-deficient mice and mice treated with
chemical PTP inhibitors like peroxovanadium [133–135].
Some studies have demonstrated that the inhibition of IFN-
γ-dependent phosphorylation cascades following infection is
due to activation of host cell tyrosine phosphatases [74, 134].
This was associated with a phenotype of cell deactivation in
which MAP kinase signaling, c-FOS, and iNOS expression
were each defective. Importantly, inhibition of phosphotyro-
sine phosphatase activity with sodium orthovanadate before
infection prevented development of the deactivated pheno-
type [136]. Studies aimed at understanding the mechanism
responsible for the change in activation state of SHP-1 led to
the identification of Leishmania EF-1α as a modulator of host
SHP-1 and also suggesting it to be a novel virulence factor
contributing to macrophage deactivation [137].

Recently one study revealed that upon Leishmania infec-
tion, SHP-1 is able to rapidly bind to and inactivate a critical
kinase (IRAK-1) in TLR signaling pathway. This regulatory
binding was shown to be mediated by an evolutionarily
conserved motif identified in the kinase. This motif was
also present in other kinases involved in Toll signaling
and therefore could represent a regulatory mechanism of
relevance to many kinases. This work reports a unique
mechanism by which Leishmania can avoid harmful TLR
signaling [138].

4.2. Other Phosphatases. Ceramide is also capable of acti-
vating protein phosphatases such as protein phosphatase
1 (PP1) and PP2A [139–141]. It is through these protein
phosphatases that ceramide inhibits kinases such as the
classical as well as novel PKC isoforms and Akt [138–142].
It was observed that endogenous ceramide generated during
leishmanial infection led to the dephosphorylation of protein
kinase B (Akt) in infected cells. Ceramide induced the PKCζ-
Akt interaction along with the serine/threonine phosphatase
PP2A [143].

However a phosphosphotyrosine phosphatase PTEN
(phosphatase and tensin homologue deleted on chromosome
ten) is reported to play a protective role against L. major
infection as the mice lacking PTEN are more suscepti-
ble to the infection than the WT mice. PTEN deficient
macrophages have reduced ability to kill parasites in response
to IFN-γ treatment, showing decreased TNF-α production,
iNOS expression, and NO secretion but more IL-10 secretion
than WT cells. Thus the study shows that phosphatase PTEN
is required for efficient clearance of intracellular parasite in
macrophages [144].

5. Conclusion

There are multiple ways by which intracellular pathogens like
Leishmania make use of host cell’s machinery in order to
survive and replicate. One such mechanism is the distortion
of host macrophage’s own signaling pathways to selectively
repress or enhance the expression of various cytokines
and microbicidal molecules and antigen presentation. The
interplay between various signaling molecules is complex. As
signaling pathways can be pharmacologically manipulated, a
better knowledge of their role and the mechanisms whereby
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they regulate host immune cell functions and pathogen
growth should permit the development of new therapies to
control infectious agents.
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[109] Å. Holm, K. Tejle, K.-E. Magnusson, A. Descoteaux, and
B. Rasmusson, “Leishmania donovani lipophosphoglycan
causes periphagosomal actin accumulation: correlation with
impaired translocation of PKCα and defective phagosoem
maturation,” Cellular Microbiology, vol. 3, no. 7, pp. 439–447,
2001.
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