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Abstract

Using the formalism of supersymmetric quantum mechanics, we obtain a large number of new
analytically solvable one-dimensional periodic potentials and study their properties. More specif-
ically, the supersymmetric partners of the Lamé potentials ma(a + 1) sn?(x,m) are computed for
integer values a = 1,2,3,.... For all cases (except a = 1), we show that the partner potential is
distinctly different from the original Lamé potential, even though they both have the same energy
band structure. We also derive and discuss the energy band edges of the associated Lamé po-
tentials pm sn?(z, m) + gm cn?(z,m)/dn®(z,m), which constitute a much richer class of periodic
problems. Computation of their supersymmetric partners yields many additional new solvable and

quasi exactly solvable periodic potentials.
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1. Introduction:

The energy spectrum of electrons on a lattice is of central importance in condensed matter physics.
In particular, knowledge of the existence and locations of band edges and band gaps determines many
physical properties. Unfortunately, even in one dimension, there are very few analytically solvable
periodic potential problems in quantum mechanics. The aim of this paper is to extend the small
currently known set of analytically solvable periodic potentials.

For a potential with period L, one is seeking solutions of the Schrédinger equation subject to the

Bloch condition
P(x) = ekl Y(x+ L), (1)

where k denotes the crystal momentum. The spectrum shows energy bands whose edges correspond
to kL = 0,m, that is the wave functions at the band edges satisfy ¢ (x) = +¢(x + L). For periodic
potentials, the band edge energies and wave functions are often called eigenvalues and eigenfunctions,
and we will also use this terminology. The classic text book example which is used to demonstrate
band structure is the Kronig-Penney model
oo
V(z) = Z Vod(x —nL) .
n=—00
It should be noted that the band edges for the Kronig-Penney model can only be computed by solving

a transcendental equation. Another well studied class of periodic potentials is
V(z) =pmsn*(z,m) , p=ala+1) . (2)

Here sn(x,m) is a Jacobi elliptic function of real elliptic modulus parameter m (0 < m < 1) with
period 4K (m). For simplicity, from now onward, we will not explicitly display the modulus parameter
m as an argument of Jacobi elliptic functions [fl]. The elliptic function potentials of eq. (B) have a
period L = 2K (m), and will be referred to as Lamé potentials, since the corresponding Schrédinger
equation is called Lamé’s equation [, {J]. It is well known that for any integer value a = 1,2,3,. .., the
corresponding Lamé potential (f) has a bound bands followed by a continuum band [B, f{]. All band
edge energies and wave functions are analytically known.

At this point it is worth recalling that supersymmetric quantum mechanics (SUSYQM) has proved
useful in discovering many, new, analytically solvable potentials on both the full as well as the half

line [{]]. It is then natural to enquire if one can also use similar techniques to discover new solvable

periodic potentials. In this paper, we demonstrate that this is indeed possible.



Our work is inspired by several recent papers [B, [d, fl, § which discuss various general aspects
of SUSYQM for periodic potentials. In particular, Dunne and Feinberg [ff] defined and developed
the concept of “self-isospectral” periodic potentials in detail. A one dimensional potential V_(z) of
period L is said to be self-isospectral if its supersymmetric partner potential V. (x) is just the original
potential upto a discrete transformation - a translation by any constant amount, a reflection, or both.
A common example is translation by half a period, in which case the condition for self-isospectrality
is

Vi(x)=V_(zx—L/2) . (3)

It is easily checked that if the superpotential W satisfies

W(z) = -W(x—L/2), (4)

then condition () immediately follows. In this sense, any self-isospectral potential is rather uninter-
esting, since application of the SUSYQM formalism [ff] to it just yields a discrete transformation and
basically nothing new. We have recently pointed out [[] that the Lamé potentials given in eq. (f) are
not self-isospectral for a > 2, and hence SUSYQM generates new exactly solvable periodic problems.
This point is further developed in detail in this paper.

We expand our discussion to the band edges and wave functions of a much richer class of periodic
potentials given by

cn?(x)

o) p=ala+1), ¢=bb+1) , (5)

V(z) = pm sn?(z) + qgm

where, like sn(z), the Jacobi elliptic functions cn(z) and dn(z) also have a modulus parameter m
which, for notational convenience, is not explicitly displayed. The potentials of eq. (ff]) are called
associated Lamé potentials, since the corresponding Schrédinger equation is called the associated
Lamé equation [§]. More precisely, we often refer to the associated Lamé potential of eq. () as the
(p, q) potential and note that (p,0) potentials are just the ordinary Lamé potentials. Although some
results for (p,q) potentials are available in scattered form in the mathematical literature, many of
our results are new. In particular, we obtain band edge energies and wave functions for the special
case p = q = ala+1) for a = 1,2,3,.... We study many (p,q) potentials and check whether they
are self-isospectral by constructing and examining the supersymmetric partner potentials. In most
cases, V_(x) is not self-isospectral, and consequently V. (x) is a new, exactly or quasi-exactly solvable

periodic potential.



The associated Lamé potentials given by eq. (§) can also be re-written in the alternative form
V(x) = pm sn’(z) + gm sn®(z + K(m)) (6)
since [fl]
sn(z 4+ K) = cn(x)/dn(z) , cn(z + K) = — V1 —m sn(z)/dn(z) , dn(z + K) = v/1 —m/dn(z) .

It is clear from (f]) that potentials (p, q) and (g, p) have the same energy spectra with wave functions
shifted by K (m). Therefore, it is sufficient to restrict our attention to p > g.

Before actually solving the Schrodinger equation for the associated Lamé potential (f]), let us make a
few general comments. Throughout this paper, we have chosen units with 7 = 1, and taken the particle
mass in the Schrédinger equation to be 1/2. Note that in the limit when the elliptic modulus parameter
m = 0, the potential vanishes and one has a rigid rotator problem of period 2K (0) = 7, whose energy
eigenvalues are at £ = 0,1,4,9,... with all the nonzero values being two-fold degenerate. On the
other hand, the limit m — 1 is much trickier since K(m) tends to infinity and the periodic nature
of the potential is obscured. The Schrédinger equation for finding the eigenstates for an arbitrary
periodic potential is called Hill's equation in the mathematics literature [J]. A general property of
Hill’s equation is the oscillation theorem which states that for a potential with period L, the band edge
wave functions arranged in order of increasing energy Fy < F1 < Fy < F3 < Ey < E5 < Fg < ... are
of period L,2L,2L,L,L,2L,2L,.... The corresponding number of wave function nodes in the interval
L are 0,1,1,2,2,3,3,... and the energy band gaps are given by Ay = Ey — By, Ay = Ey — FE3, Az =
FE¢ — E5, .... We shall see that the expected m = 0 limit and the oscillation theorem are very useful
in identifying if all band edge eigenstates have been properly determined or if some have been missed.

The plan of the paper is as follows. In Sec. 2, we briefly review the basic ideas of SUSYQM. A
detailed discussion of Lamé potentials and their supersymmetric partners is given in Sec. 3. Solutions
of the Schrodinger equation for the associated Lamé potentials are presented in Sec. 4. Many key
new results are summarized in Table 3. It is shown that the locus of quasi exactly solvable problems
[0, (] in the (p,q) plane are parabolas about the line p = ¢g. Our solutions are valid for any real
choice of the parameters a,b (recall p = a(a + 1),q = b(b+ 1)). Integer and half-integer values of
a,b , including the very interesting special case a = b =integer, are treated in detail in Sec. 5. In
most cases, the application of SUSYQM gives new solvable periodic potentials, many of which are

illustrated in the figures. Finally, Sec. 6 contains some concluding remarks.



2. Supersymmetric Quantum Mechanics Formalism:

The supersymmetric partner potentials Vi (x) are defined in terms of the superpotential W (x) by
Vi(z) = W(z) £ W'(z). (7)

The corresponding Hamiltonians H1 can be factorized as

H_ =A"A, H, = AA™, (8)
where
A—i—I—W() A+——i—|—W() (9)
dx T - dr T

so that the spectra of Hy are nonnegative. It is also clear that on the full line, both Hi cannot have

zero energy modes since both wéi) given by

@) =expl [ Wiy (10)

cannot be simultaneously normalized.
On the other hand, when the superpotential W (x) is periodic (W (z + L) = W(z)) then the
potentials V_(z) and V4 (z) are isospectral - their spectra match completely, including the zero modes,

and SUSY is unbroken provided
L
| Wiy =o. (11)

It is worth noting that in this case both qb(()i) belong to the Hilbert space. Thus in this case even though
SUSY is unbroken, the Witten index is zero [H]. The condition ([L1]) is trivially satisfied in case W (x)
is an odd function of & and throughout this paper we shall only consider superpotentials W which
are odd function of x. Further, using the known eigenfunctions wﬁl_)(a;) of V_(z) one can immediately
write down the corresponding un-normalized eigenfunctions wﬁf’(x) of Vi (x). In particular, from eq.

(I0) it follows that the ground state of V. (z) is given by

P2y = — 2 12
0 () w((]_)(x) ( )

while the excited states wﬁ')(x) are obtained from wﬁl_)(a;) by using the relation

d

U@ = |+ W) 6@, 2 1) (13)



Thus by starting from an exactly solvable periodic potential V_(z), one gets another isospectral
periodic potential V4 (z). As emphasized previously, if V_(x) is not self-isospectral, then Vi (z) is a

new solvable periodic potential!

3. Lamé Potentials (p,0) and Their Supersymmetric Partners:

The supersymmetric quantum mechanics formalism of the previous section will now be applied to
the Lamé potentials ma(a+ 1) sn?(x, m). Analytic solutions are known for integer values of a [f], and
the supersymmetric partner potentials can be readily computed. We first discuss the results for small

integer values of a, and then present some eigenstate results for arbitrary integer values of a.

A. Lamé potentials with a = 1,2,3 :

a=1: The a = 1 Lamé potential V_ = 2msn?(x) — m is known to be self-isospectral [J] since its
SUSY partner satisfies V. (z) = V_(x — K(m)). Both V(x) and V_(z) have one energy band ranging
from energy 0 to energy 1 —m, with a continuum starting at energy 1 [J]. Note that at m = 0 one has
energy eigenvalues at 0,1 as expected for a rigid rotator and as m — 1, one gets V_(x) — 1 — 2sech?z,
the band width 1 — m vanishes as expected, and one has an energy level at £ = 0.

a=2: For the a = 2 case, the Lamé potential (f]) has 2 bound bands and a continuum band. The
energies and wave functions of the five band edges are well known [, J]. The lowest energy band
ranges from 2 + 2m — 20 to 1 + m, the second energy band ranges from 1 + 4m to 4 + m and the
continuum starts at energy 2+ 2m + 28, where § = v/1 — m + m2. The wave functions of all the band
edges are given in Table 1. Note that in the interval 2K (m) corresponding to the period of the Lamé
potential, the number of nodes increases with energy. In order to use the SUSYQM formalism, we
must shift the Lamé potential by a constant to ensure that the ground state i.e. (the lower edge of

the lowest band) has energy F = 0. As a result, the potential
V_(x) = =2 — 2m + 26 + 6msn’(x) (14)
has its ground state energy at zero with a corresponding un-normalized wave function [P]

w((]_)(a;) =1+m+6—3msn’(z) . (15)

The corresponding superpotential is

d (=)
W=——1 = , 16
dx 0g wO (x) T,Z)é_)(iﬂ) ( )



and hence the partner potential V,, (z) for the potential V_(x) given in eq. ([I4) is

72m2sn?(x)cn?(x)dn?(z)
[1+m+ 0 — 3msn?(z)]?

(17)

Although the SUSYQM formalism guarantees that the potentials Vi are isospectral, they are not
self-isospectral, since they do not satisfy eq. () [{]. Therefore, Vi () as given by eq. ([7) is a new
periodic potential which is strictly isospectral to the potential ([4) and hence it also has 2 bound
bands and a continuum band. In Fig. 1 we have plotted the potentials Vi (x) corresponding to a = 2
for three different values of the parameter m. The values are m = 0.5,0.8,0.998. The difference in
shape between V_(z) and V(z) is manifest from the figures, especially for large m. Using eqs. ([[J)
and ([L3) and the known eigenstates of V_(z), we can immediately compute all the band-edge Bloch
wave functions for V4 (z). In Table 1 we have given the energy eigenvalues and wave functions for the
isospectral partner potentials Vi(z). At m = 0 one has energy eigenvalues 0, 1,4 as expected for a
rigid rotator. As m — 1, one gets V_(z) — 4 — 6sech?z, the band widths vanish as expected, and one

has two energy levels at £ = 0,3, with a continuum above E = 4.

a=3: For the a = 3 Lamé potential, the ground state wave function is
wé_)(az) = dn(z)[2m + 61 + 1 — bmsn?(z)] |

the corresponding superpotential is [{]

msn(z)en(z) [2m + 8 + 11 — 15msn?(z)]

W= dn(z) [2m + 01 + 1 — Smsn?(x)]

, (18)

and the partner potentials Vi (z) are [f

V_(x) = =2 — 5m 426, + 12m sn’(z) , 6; = V1 —m+4m? (19)

and
2m?sn?(z)en?(z) [2m + 61 + 11 — 15m sn?(z))?
dn?(z) [2m 4 01 + 1 — 5m sn?(x)]?

Clearly, the potential V_(x) is not self-isospectral. In fact, V_(x) and V,(x) are distinctly different

Vi(z) = —V_(z) + (20)

periodic potentials which have the same seven band edges corresponding to three bound bands and a
continuum band [J]. In Fig. 2 we have plotted the potentials V4 () corresponding to a = 3 for several
different values of the parameter m. The values of m are 0.5, 0.8, 0.998. It is clear from the figure that
the potentials V, (x) and V_(x) have different shapes and are far from being self-isospectral. Using

egs. ([J) and ([[J) and the known eigenstates of V_(z), we can immediately compute all the 7 band

7



edges corresponding to the known 3 bound bands and a continuum band [}, f]. For example, the

ground state 1[)8” is given by

(+) — 1 = !
Yo (x) = ¢(—)(x) ~dn(z)[1 +2m + §; — 5m sn?(z)] 2

The wave functions for the remaining six states are similarly written down by using eq. ([[J). These
are shown in Table 2. The band edge energies for the a = 3 Lamé potential (12,0) as a function of the
elliptic modulus parameter m are plotted in Fig. 3. Note that at m = 0 one has energy eigenvalues at
0,1,4,9 as expected for a rigid rotator and as m — 1, one gets V_(z) — 9 — 12sech?z, the band widths

vanish as expected, and one has three energy levels at £ = 0,5,8 with a continuum above E = 9.

B. Results for general integer values of a:

The extension to higher values of a is straightforward. It is possible to make several general
comments about the form of the band edge wave functions for the partner potentials V4 (z). This is
most conveniently done by separately discussing the cases of even and odd values of a.

a= even integer: For a even, say a = 2NN, it is known [ that there are N + 1 solutions of the

form Fy(sn%z), and N solutions each of the three forms

SnT cnr FN_1(SD2:E) , snz dnz FN_l(SD2:E) , cnz dnw FN_1(8H233‘) .

Here F, denotes a polynomial of degree r in its argument. The ground state v, (z) (which is the

lower edge of the lowest band) is of the form Fy(sn?z). It is easily checked using eq. ([[J) that the

corresponding partner potential V, (z) has N solutions each of the four forms

dnx Gy (sn?z) snx Gy(sn?z) cnz Gy(snz)  snz enz dnz Gy_i(snz)
vo(@) T wWol®) T wp(@) ] o (z) ’

while the ground state is given by ¥g (z) = 1/v; (z).

a= odd integer: For a odd, say a = 2N + 1, it is known [[] that the Lamé potentials have N + 1

solutions each of the three forms
snz Fy(sn’z) , cnz Fy(snz) , dnz Fy(sn’z)

and N solutions of the form

snz cnz dnz Fy_i(sn’z).



The ground state v, () is of the form dnz Fy(sn?z). We can then easily deduce that the corresponding

partner potentials V, (x) will have N 4 1 solutions each of the two forms
snz Gyyi(sn?z)  cnz Gyiq(sn’z)
o (2) ’ Yo (2) ’

and N solutions each of the two forms

dnz Gny1(sn?z) snz cnz dnx Gy (snz)

Yo () 7 Yo (2) ’
while as usual, the ground state is given by g (x) = 1/ (z).

In summary, for integral a, Lamé potentials with a > 2 are not self isospectral. They have distinct
supersymmetric partner potentials even though both potentials have the same (2a + 1) band edge

eigenvalues.

4. Associated Lamé Potentials (p,q) and Their Supersymmetric Partners:

In contrast to the Lamé potentials discussed above, there seems to be no systematic treatment of
associated Lamé potentials in the literature. Therefore, we will first devote some time to discuss the
properties of associated Lamé potentials, show that they are quasi exactly solvable and then proceed

to construct and study their isospectral supersymmetric partner potentials.

A. Description of associated Lamé potentials:

As mentioned before, we will refer to the associated Lamé potentials given by eq. ([]) or the
equivalent form eq. (ﬂ) as the (p,q) potential. The special cases p = 0, as well as ¢ = 0, correspond
to ordinary Lamé potentials.

In general, for any value of p and ¢, the associated Lamé potentials have a period 2K (m) since
sn(x 4+ 2K) = —sn(x) , en(z 4+ 2K) = —cn(z) , dn(z + 2K) = dn(x) .

However, for the special case p = ¢, eq. ([) shows that the period is K (m). From a physical viewpoint,
if one thinks of a Lamé potential (p,0) as due to a one-dimensional regular array of atoms with spacing
2K (m), and “strength” p, then the associated Lamé potential (p, ¢) results from two alternating types
of atoms spaced by K (m) with “strengths” p and ¢ respectively. If the two types of atoms are identical
[which makes p = ¢, one expects a potential of period K (m).

Extrema (defined for this discussion as either local or global maxima and minima) of associated

Lamé potentials are easily found by setting dV (x)/dx = 0. This gives

sn(z) en(z) [p dnt(z) — g(1—m)] =0 .



Extrema occur when (i) sn(z) = 0, that is z = 0, £ 2K(m), +4K(m),...; (ii) cn(xz) = 0, that is
r= 4+ K(m), +£3K(m),...; (iii) dn*(z) = (1 — m)q/p . At the points specified by (i) and (ii), one
always has extrema and V(z) has values pm and gm. In addition, since dn?(x) has a minimum value

(1 —m)? and a maximum value unity [, condition (iii) yields additional extrema provided
(1-m)P*<(1-m)g/p<1 .

For given fixed values of ¢ and m, this condition has a solution provided p lies in the critical range
g1-m)<p=<q/1-m) .

Alternatively, for given fixed values of p and ¢ with p > ¢, condition (iii) has a solution provided m is
greater than the critical value 1 — ¢/p.

The associated Lamé potentials for ¢ = 2,m = 0.5 and several values of p are plotted in Fig. 4(a).
In the critical range of p values 1 < p < 4 , one expects additional extrema, and these are clearly
seen in Fig. 4(a). In general the period is 2K(0.5) = 3.708 , but for p = ¢ = 2, the period K(0.5) is
evident. Note that as p increases, any given extremum changes character. For example, at x = 0, as
p increases, one goes from a maximum to a local minimum to an absolute minimum. In Fig. 4(b) we
have plotted associated Lamé potentials for p = 4,¢ = 2 and several values of m. As expected from
the above discussion, one always sees extrema at the points specified by conditions (i) and (ii), and

additional extrema coming from condition (iii) are evident for m > 1/2.

B. Solutions of the associated Lamé equation - parabolas of solvability:

The associated Lamé equation is just the Schrodinger equation for the potential in eq. ().

2 cn?(x
— % + [pm sn®(z) + qm dnz((x; —ElYp=0 . (22)
On substituting
d(x) = [dn(2)] ™" y(2), (23)

it is easily shown that y(x), satisfies the Hermite elliptic equation [B]

y (z) + Qbm%y'(m) + A= (a+1—=0b)a+bymsn?(z)]y(z) =0, (24)
where
p=ala+1), ¢g=bb+1), E=\+mb*. (25)
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On further substituting
sn(z) =sint, y(z) = 2(t), (26)
one obtains Ince’s equation
(1 —msin?t)z" (t) + (2b — Dymsintcost 2'(t) + [A — (a + 1 — b)(a + bymsin® #]z(t) = 0, (27)

which is a well known QES equation [{J]. In particular, on substituting

cost =u, 2(t)=wu)w(u) = Z uif" , (28)
n=0 :

it is easily shown that R,, satisfies a three-term recursion relation. In particular if a +b+1 = n (
n =1,2,3,...) then one obtains n QES solutions. Actually n QES solutions are also obtained in case
b—a = —n(n=1,2,3,...) but since ¢ is unchanged under b — —b — 1, no really new solutions are
obtained in this case. The QES solutions for n = 1,2, 3,4, 5 are given in Table 3. In particular, for any
given choice of p = a(a + 1), Table 3 lists the eigenstates of the associated Lamé equation for various
values of q.

For ¢ = a(a—1), there is just one eigenstate with energy ma? and wave function ¢ = dn®(x). Since
the wave function has period 2K (m) and is nodeless, this is clearly the ground state wave function of
the (a(a + 1),a(a — 1)) potential for any real choice of the parameter a. The equations p = a(a + 1)
and ¢ = a(a — 1) are the parametric forms of the equation of the parabola (p — ¢)? = 2(p + ¢), which
is plotted in Fig. 5 and labeled P1. For any point on the parabola, one knows the ground state wave
function and energy Ey = ma®. The parabola P1 includes the points (2,0) and (6,2).

For ¢ = (a — 1)(a — 2), we see from Table 3 that two eigenstates with energies 1 + m(a — 1) and
1+ma? are known. Since they have period 4K (m) and just one node in the interval L = 2K (m), they
must correspond to the first and second band edge energies E; and Es of the (a(a+1), (a —1)(a —2))
potential. Eliminating a from the equations p = a(a+1) and ¢ = (a —1)(a — 2) gives the “parabola of
solvability” (p—¢q)? = 8(p+ ¢q) — 12, which is plotted in Fig. 5 and labeled P2. This parabola includes
the points (2,0) and (6,0) which correspond to Lamé potentials. Similarly, the parabolas of solvability
Pn (n=0,1,2,...) corresponding to ¢ = (a —n + 1)(a — n) in Table 3 are plotted. n eigenstates are

known for any point on the parabola of solvability Pn.

C. Supersymmetric partner potentials:
It is easily checked from Table 3 that the solution corresponding to ¢ = a(a — 1) as well as one

of the ¢ = (a — 2)(a — 3) solutions are nodeless and correspond to the ground state. Hence, for these

11



cases, one can obtain the superpotential and hence the partner potential Vi and enquire if V_ is
self-isospectral. For example, consider the case of p = a(a+ 1),q = a(a — 1) in which case W is given

by
Yo(x)  sn(z)en(x)

W =-— =am , 29
o(x) dn(z) (29)
so that the corresponding partner potentials are
cn’(z) 2 2
Vo = (a—1)am—5— +ma(a+ 1)sn”(z) — ma” ,
dn®(z)
cn’(z) 2 2
Vi = a(a+1)m—5—= +m(a— 1)asn*(z) — ma”. (30)
dn®(z)

It is easily seen that these partner potentials satisfy eq. (E), are consequently self-isospectral and
SUSY gives nothing new in this case. It is amusing to note that the superpotential W obtained here
was in fact discussed in ref. [J] (see their eq. (32)).

Let us now consider the SUSY partner potential computed from the ground state for the p =

ala+1),q = (a—2)(a — 3) case. It is given by (see Table 3)

Yo(z) = [m(a —1) — 1 — §; + m(2a — D)sn?(z)](dn(z))* 2 | (31)

where 01 = /1 — m + m?2(a — 1)2. The corresponding superpotential W turns out to be

_ m(a—2)sn(z)en(z) 2m(2a — 1)sn(z)cn(z)dn(z)
W= dn(z) m(1—a) —1—061 +m(2a — 1)sn?(z)] (32)

Hence the corresponding partner potentials are

V_(x) = ma(a + 1)sn*(x) + m(a — 3)(a — 2)2222?) —2—m(a® —2a+2)+ 26, , (33)
Vi(z) = =V_(x) +2W3(x) . (34)

It is easily checked that these potentials are not self-isospectral since they do not satisfy the condition
(B). Thus one has discovered a whole class of new elliptic periodic potentials V (z) as given by eq.
(B4) for which three states are analytically known no matter what a is. In particular, the energy
eigenfunctions for V; of these three states are easily obtained by using the corresponding energy

eigenstates of V_ as given in Table 3 and using egs. ([[2) and ([L).

5. Associated Lamé Potentials with Special Values of p and q:
We shall now discuss associated Lamé potentials (a(a+1),b(b+ 1)), where a and b are either both

positive integers or half-integers. In most cases, we show that although several band edge energies are

12



exactly known from Table 3, one usually does not know all the band edge energies, that is one has a
quasi exactly solvable problem. However, in the special case of p = q(a = b = integer), we show that

all the band edge eigenstates can be obtained and one has an exactly solvable periodic problem.

A. a,b = integer, a # b:

First, let us note that the Lamé potentials (a(a + 1),0) are in this category when a = integer
and b = 0. For example, when a = 3, one has the (12,0) potential. We see from Fig. 5 that two
parabolas of solvability pass through the point (12,0). From Table 3 it follows that 3 band edges of
period 2K (m) are obtained from ¢ = (a — 2)(a — 3) and 4 band edges of period 4K (m) are obtained
from ¢ = (a — 3)(a — 4). Altogether, arranging in order of increasing nodes, one has 7 band edges
with periods 2K,4K,4K,2K,2K,4K,4K with 0,1,1,2,2, 3,3 nodes respectively. There are no missing
states, and as discussed in Sec. 3A, this gives three bound bands and a continuum band.

As a second example with g # 0, consider the (6,2) associated Lamé potential, that is p = 6,¢ = 2.
In this case, taking a = 2, one can get five band edges from Table 3 - one solution of period 2K
is obtained from ¢ = a(a — 1), while the remaining four solutions of period 4K are obtained from
q = (a — 3)(a — 4). The eigenvalues and eigenfunctions are given in Table 4 along with the number
of nodes in one period 2K. It is clear that there are two solutions of period 2K with 2 nodes in the
interval 2K which have to be present but have not been obtained. This is also clear from the m = 0
limit, since the energies from Table 5 are 0,1,1,9,9 and the states at 4,4 are missing. Thus, this is a
QES problem. Fig. 6 illustrates the (6,2) associated Lamé potential and its supersymmetric partner
for three choices of m. The self-isospectral nature of the (6,2) potential is evident from Fig. 6 - it also
follows from eqgs. (B() with a = 2. The band edge energies for the (6,2) associated Lamé potential as
a function of the elliptic modulus parameter m is shown in Fig. 7. The two unobtained band edges of
period 2K will have energies E =4 at m=0and £ =3 at m = 1.

Let us now discuss the general associated Lamé potential (a(a + 1),b(b + 1)). Without any loss
of generality let us assume that a > b. Using Table 3, we obtain (a — b) states of period 2K (4K) for
qg=la—(a—"0)la—(a—0b—-1)] for (a —b) odd (even), and (a + b+ 1) states of period 4K (2K )for
g=la—(a+b+1)][a— (a+0b)] for (a —b) odd (even). It can be established that some states are
missing by looking at the node structure as well as the m = 0 limit. Hence we again have a QES

problem.
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B. a = b = integer:

Let us now discuss the special case of p = ¢ = a(a + 1), a =1,2,... . In this case the associated
Lamé potential (f|) has period K, rather than 2K. It then follows from the oscillation theorem that
with increasing energy, the band edges must have periods K,2K,2K, K, K, ... and in the m = 0 limit
the eigenvalues must go to £ = 0,4, 16, 36, ... with all nonzero eigenvalues being doubly degenerate. It
is easy to check from Table 5 that one case for which we already have exact results is when p = ¢ = 2.
In particular, consider the special case a = 1, for which V_(z) of eq. (BJ) takes the form

V_(x) = 2msn®(z) + 2m;z22((2 —2-m+2yV1l-m. (35)

Using Table 5, we can calculate three energy eigenvalues and eigenfunctions of V_ taking ¢ = 1 in
q = (a —2)(a — 3). These are given in Table 5. Whereas the ground state is of period K, the next
two states in Table 5 indeed have period 2K. Using @ = 1 in egs. (BI) to (B4), we find that the
corresponding SUSY partner potential is

?sn?(x)en(z)

Vi(a)=2—m—2yT—m— > [zéz;nfjm]z (36)
Are the potentials Vi (z) self-isospectral? Using the relations
(e + K (m)/2) = (14+ VT = m)"/? [T(r;gwl )], (37)
ente+ K(m)2) = (1 + V=) 21— s [(LEYI TP onle) - hdale)] g
dn(z + K (m)/2) = (1 — m)"/* {(1 - \/TI?();HY%_L:(%)CH(%)} , (39)

a little algebra reveals that indeed V.. are self-isospectral and satisfy eq. ([J).

Are the higher members of the p = ¢ family (i.e. p = ¢ = 6,12,20,...) also self-isospectral? If our
experience with the Lamé case is any guide then we would doubt it. Indeed, we will now show that
the (6,6) associated Lamé potential is not self-isospectral. We get five band edges analytically from
Table 3. In particular, take a = 2 and consider the case of ¢ = (a — 4)(a — 5), for which we know
two eigenstates as given in Table 3. In fact, in this case three more eigenstates can be analytically
obtained but the corresponding eigenvalues and eigenfunctions have not been given in Table 3 since
the energy eigenvalues are solutions of a cubic equation whose exact solution for arbitrary a can not

be written in a compact form. However, for a = 2, we are able to solve the cubic equation and obtain
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the three eigenvalues in a closed simple form. In particular consider an ansatz of the form
y = A + Bsn’z + Dsn'z. (40)

On substituting this ansatz in eq. (P4) it is easy to show that the energy eigenvalue A\(= E—m(a—4)?)

must obey the cubic equation

A3 4 [28m — 20 — 12am) A\? 4 [64 — 304m +160ma+32m? (a —2) (a — 3) ]\ — 64m(2a — 3)(2—2m+ma) = 0.
(41)
The solution of this equation is in general quite lengthy but in the special case of a = 2 this cubic
equation is easily solved yielding three eigenvalues in a compact form. On combining them with the
two levels given in Table 3, we obtain the eigenvalues and eigenfunctions of all the five band edges
for the case p = ¢ = 6. These are given in Table 6. We have also verified that these five eigenstates
in ascending order of energy indeed have periods K,2K,2K, K, K respectively and taht the energy
eigenvalues have expected limits at m = 0. In particular the associated Lamé potential V_(x) is

cn?(x)

V_(x) = 6msn?(z) + 6m n2(2)

— 8 — 2m + 265, (42)

whose ground state energy is zero while the corresponding eigenfunction 1 is

1—(4—m—dg)sn%(x) + (4 — 2m — (58)sn4(a;)}

. 0y = /16— 16 2. (43
dnz(x) s=V mem (43)

o (x) =

Hence the corresponding superpotential is

—2msn(z)en(z)  2sn(x)en(x)
dn(z) dn(z)vyq ()

and the partner potential V, (x) which is isospectral to V_(z) is

W(x) = [(4 —m — &) — 2(4 — 2m — dg)sn’(z) | , (44)

Vi(z) = =V_(x) 4+ 2W?3(z). (45)

It is not difficult to see that the W as given by eq. (fi4) does not satisfy the self-isospectral condition
() and hence unlike the p = ¢ = 2 case, the p = ¢ = 6 potential is not self-isospectral. In Fig. 8,
we have plotted the potentials Vi (z) corresponding to p = ¢ = 6 for several different values of the
parameter m. The figures confirm that the potentials are far from being self-isospectral. Thus we have
obtained a new exactly solvable periodic potential ([£f) which has two bound bands and a continuum

band, with five band edges and the corresponding eigenfunctions being exactly known using Table 6
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and egs. ([2) and ([L3). In Fig. 9, we plot the band edge energies for the (6,6) potential as a function
of the elliptic modulus parameter m.

It is also clear from here that even the higher associated Lamé potentials with p = ¢ = 12,20, ...
which have 7,9,... band edges are also exactly solvable in principle and none of them will be self-
isospectral, so that in each case one obtains a new exactly solvable periodic potential. In particular,
for p = ¢ =n(n+1) there will be (2n + 1) band edges in both V4 (z) whose energy eigenvalues can be
obtained from Table 3 when ¢ has the form [n — 2n|[n — (2n 4 1)]. Out of the (2n 4 1) band edges in

V_(z), (n+1) solutions (including the ground state) have the form F’a(sﬁix) while n solutions have the

snrcnr

form F,_;(sn?z)=Z0L - On the other hand, as far as the (2n + 1) solutions of the partner potential

V. are concerned, there are n states each of the two forms

snzenz Gy (sn?x)  Gpyq(sn’z)
dn?" L zepy (2) T dn® ey (@)

while the ground state (i.e. the lower edge of the lowest band) is given by ¥ (z) = 1/ ().

C. a,b = half-integer:

Let us now specialize to the case when both a,b are half integral with a > b. As an illustration,
let us first consider the case of a = 3/2,b = 1/2 so that p = 15/4,q = 3/4. In this case, the oscillation
theorem requires band edges with periods 2K,4K,4K,2K 2K, .... Using Table 3 and Fig. 5, we see
one gets three eigenstates when ¢ = (a — 2)(a — 3) with a = 3/2, all with period 2K. The ground

9m

state is at Ey = =* while there are two degenerate levels at F3 = Fy = 4 + 7. To understand this

degeneracy better, let us go along the parabola of solvability P2 given by ¢ = (a — 2)(a — 3). The

band gap is given by Ag = | —2+m+2y/1 — m + m?(a — 1)?| and is plotted in Fig. 10. It vanishes at
a = 3/2 (15/4, 3/4) potential, and has the correct values Ay = 2/1 —m +m?2 — 2 +m for a = 2 and
Ay =21 —m+4m?2 — 2+ m for a = 3 which correspond to the (6,0) and (12,0) Lamé potentials.
The vanishing of Ay at a = 3/2 occurs because the eigenfunctions corresponding to F3 and FEj4 cross
over as one goes along the parabola P2.

These arguments are easily generalised in case p = (n+1/2)(n+3/2),q = (k+1/2)(k + 3/2) with
n > k. The energy eigenvalues of (n — k) states can be obtained by using Table 3 in case ¢ is of the
form g = [n+1/2 —(n—k)|[n+ 1/2 — (n — k — 1)] and the corresponding eigenstates have period
2K (4K) depending on whether (n — k) is odd (even). On the other hand, the energy of (n + k + 2)
states is obtained when ¢ is of the form ¢ = [n+1/2 — (n+ k+2)][n +1/2 — (n 4+ k + 1)] and these
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states have the same period 2K (4K) as the n — k states when n — k is odd (even). It turns out that
the n — k solutions are in fact common in both and so we only obtain the energy of the n + k + 2 band
edges and all of them have the same period 2K (4K) depending on if n — k is odd (even) so that it is
only a QES problem and not an exactly solvable problem as one is unable to obtain a single eigenstate
with period 4K (2K) in case n — k is odd (even).

We would like to point out some of the pecularities of the spectrum in these cases. For example,
in case (p,q) = (35/4,3/4),(63/4,3/4),(99/4,3/4)... then one finds that 3,4,5,... QES energy levels
of period 4K,2K,4K, ... respectively are analytically known of which the one at the highest energy
is doubly degenerate. As an illustration, in Table 7 we have given the 4 QES energy eigenstates all
of period 2K for the (63/4,3/4) potential. The interesting point about this case is that the partner
potentials Vi (z) are not self-isospectral and hence one has discovered a new QES potential where 4
band edges of period 2K and the corresponding eigenfunctions are explicitly known. Of these, the one
at F = 16 + 7 is doubly degenerate, again due to crossover of energy levels. Using the ground state
wave function, the superpotential is computed to be

3m sn(z)en(z) 24msn(z)cn(x)dn(z)
2 dn(z)  [12msn%(z) — 2 —5m — VA — dm + 25m?] (46)

Using egs. ([3) and ([[J) the eigenstates of the SUSY partner potential V. are then determined.

W =

6. Comments and Conclusions:

In this paper, we have discussed solutions of the type given in Table 3, which correspond to the
parabolas of solvability shown in Fig. 5. Lamé potentials (p,0) with p = a(a+ 1) and integer a, always
have two parabolas of solvability passing through - one parabola gives all states of period 2K and the
other gives all states of period 4K. This provides a deeper understanding of why such Lamé potentials
are fully solvable [[[J]. Similarly, we have obtained eigenstates for a large class of associated Lamé
potentials (p,q). Further, using the formalism of supersymmetric quantum mechanics, we have been
able to discover many new exactly solvable and quasi exactly solvable periodic potentials involving
Jacobi elliptic functions. This is a very substantial improvement over the currently known small

number of exactly solvable periodic problems.
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Table Captions

Table 1: The eigenvalues and eigenfunctions for the 5 band edges corresponding to the a = 2
Lamé potential V_ which gives (p,q) = (6,0) and its SUSY partner V.. Here B = 1+ m + ¢ and
8 = V1 —m+ m2. The potentials V. have period L = 2K (m) and their analytic forms are given by
egs. ([4) and ([[7) respectively. The periods of various eigenfunctions and the number of nodes in the

interval L are tabulated.

Table 2: The eigenvalues and eigenfunctions for the 7 band edges corresponding to the a = 3 Lamé
potential V_ which gives (p,q) = (12,0) and its SUSY partner V. Here §; = V1 —m + 4m2; &y =
V4 —m+m2; 03 = V4 —Tm +4m?2. The potentials Vi have period L = 2K (m) and their analytic
forms are given by egs. ([[9) and (20Q) respectively. The periods of various eigenfunctions and the

number of nodes in the interval L are tabulated.

Table 3: Eigenvalues and eigenfunctions for various associated Lamé potentials (p,q) with p =

a(a+1)and ¢ = (a —n+1)(a —n) for n = 1,2,3,.... The periods of various eigenfunctions and the

number of nodes in the interval 2K (m) are tabulated. Here 4 = \/1—m+m?(a—1)2 ; §5 =

VA—Tm+2ma+m2(a—2)2 ; d¢=+/4—m—2ma+m2(a—1)2% ; 67=+/9—9Im+m2(a—2)2.

Table 4: The five eigenvalues and eigenfunctions for the self-isospectral associated Lamé potential

corresponding to @ = 2,b = 1 which gives (p,q) = (6,2). The potential is V_(z) = 6msn?(z) +

cn?(z)
2 dn?(z)

— 4m, and has period 2K (m). The number of nodes in the interval 2K (m) is tabulated.

Table 5: The three eigenvalues and eigenfunctions for the associated Lamé potential corresponding
to a = b =1 which gives (p,q) = (2,2). The potential has period K(m) and the number of nodes in

the interval K (m) is tabulated.

Table 6: The five eigenvalues and eigenfunctions for the associated Lamé potential corresponding

to a = b = 2 which gives (p,q) = (6,6). Here dg = v/16 — 16m +m? . The number of nodes in one
period K (m) of the potential is tabulated.

Table 7: Energy eigenvalues and eigenfunctions for the associated Lamé potential corresponding
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to a = 7/2,b = 1/2 which gives (p,q) = (63/4,3/4). Here dg = V4 —4dm +25m2 ; V_(z) =

3,,02() o 251m

53 msn?(x) + Sm S + &9. The last column gives the number of eigenfunction nodes in one
4 477" dn?(x)

period 2K (m) of the potential.

Figure Captions

Fig. 1: The (6,0) Lamé potential V_(z) corresponding to a = 2 [thick line] as given by eq. ([[4)
and its supersymmetric partner potential V() [thin line] as given by eq. ([[7) for three choices of m

(a) 0.5 (b) 0.8 (c) 0.998.

Fig. 2: The (12,0) Lamé potential V_(x) corresponding to a = 3 [thick line] as given by eq. ()
and its supersymmetric partner potential V (x) [thin line] as given by eq. (BQ) for three choices of m

(a) 0.5 (b) 0.8 (c) 0.998.

Fig. 3: Band edge energies for the (12,0) Lamé potential corresponding to a = 3 as a function of

the elliptic modulus parameter m. This figure is drawn using the eigenvalues given in Table 2.

Fig. 4: (a) Plots of the (p, q) associated Lamé potentials for ¢ = 2,m = 0.5 and several values of

p. (b) Plots of the (p, q) associated Lamé potentials for p = 4, ¢ = 2 and several values of m.

Fig. 5: Parabolas of solvability. This figure illustrates all associated Lamé potentials (p, q) which
are quasi solvable. Each parabola corresponds to a choice of ¢ in Table 3. Parabola Pn is for
g=(a—n+1)(a—n)forn=1,23,.., and one knows n eigenstates for any point on it from Table

3.

Fig. 6: The (6,2) associated Lamé potential V_(x) [thick line] and its supersymmetric partner
potential Vi (x) [thin line] for three choices of m (a) 0.5 (b) 0.9 (c) 0.998.

Fig. 7: Band edge energies for the associated Lamé potential (6,2) as a function of the elliptic

modulus parameter m. This figure corresponds to Table 4.
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Fig. 8 The (6,6) associated Lamé potential V_(z) [thick line] as given by eq. () and its

supersymmetric partner potential V. (z) [thin line] as given by eq. (fJ) for three choices of m (a) 0.5
(b) 0.9 (c) 0.998.

Fig. 9: Band edge energies for the associated Lamé potential (6,6) as a function of the elliptic
modulus parameter m. This figure corresponds to Table 6.
Fig. 10: Energy gap Ay =

| E4— E3| as one moves along the parabola of solvability P2 corresponding
to g = (a —2)(a—3) and p

a(a+1).
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Table 1: Energy Eigenstates for V. Corresponding to a = 2

E (=) [B — 3m sn?(x)]yp™) Period Nodes

0 m+ 1+ — 3msn?(z) 1 2K 0
20—1—m cn(z)dn(x) sn(x)[6m — (m + 1)B +msn?(x)(2B — 3 —3m)] 4K 1
20 —1+2m sn(z)dn(z) en(z)[B 4+ msn?(z)(3 — 2B)] 4K 1
20+2—m sn(z)en(z) dn(z)[B + sn?(z)(3m — 2B)] 2K 2

4 m+1— 3 — 3msn?(z) sn(x)en(z)dn(z) 2K 2

Table 2: Energy Eigenstates for V, Corresponding to a =3

E (=) Yy ) Period Nodes
0 dn(z)[1 + 2m + &, — 5msn?(z)] 1 2K 0
3—3m+206 —20 cn(x)[2+m+ Jy — 5msn?(z)) 10m(1 —m + 6o — 6;)sn(z)en?(z)dn?(z) 4K 1
=) e
3425 — 203 sn(x)[2 + 2m + 63 — 5msn? ()] 10m(1 4 &5 — 61 )en(z)sn?(z)dn? () 4K 1
—(1— 2msn2(x))%
2 —m+ 20 sn(z)en(x)dn(x) dn3(z)[1 + 2m + 61 + (m — 2 — 26 )sn?(z)] 2K 2
401 dn(z)[1 4 2m — 6, — 5msn?(z)] sn(z)en(z)dn3(z) 2K 2
3—3m+20 +20 cn(x)2+m — Jy — 5msn?(z)] 10m(1 —m — o — &;)sn(z)en?(z)dn?(z) 4K 3
sn(x)yg Y-
—(1=m) ey
3+ 261 + 203 sn(z)[2 + 2m — 83 — 5msn?(x)] 10m(1 — &3 — 61 )en(z)sn?(z)dn? () 4K 3
—(1— 2msn2(x))%
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Table 3: Some Eigenstates for Various Associated Lamé Potentials

q E dn=%(x)y Period Nodes
ala—1) ma® 1 2K 0
(a—1)(a—2) 1+ m(a—1)> o) 4K 1
(a—1)(a—2) 1+ ma? e 4K 1
(a—2)(a—3) 2+ m(a®—2a+2)+ 26, [’”(2“‘1)5“2&)2;;)*”‘"1“*54} 2K 2,0
(a—2)(a—3) 44+ m(a—1)2 % 2K 2
(a—3)(a—4) 5+ m(a®—4da+5)+ 25 C“(”[m@“‘1>Sgi§@;2+2m‘m“i5ﬂ 4K 3,1
(a—3)(a—4) 5+ m(a®—2a+2)+ 25 Sn(”[m(2“‘”S;jgf;)‘“m‘maﬂd 4K 3,1
(a—4)(a—5) 10+ m(a? —4a+5) + 267 S“(x)cn(“‘)[’”(2“‘Q;Q?g)‘?’”m‘m“ﬂ?] 2K 4,2
Table 4: Energy Eigenstates for the (6,2) Potential
E (=) Period Nodes
0 dn?(x) 2K 0
5—3m—2v4—3m S [3msn? () — 2 — A — 3m] AK 1
5—2m—2V/I—bm+m? S [3msn(z) —2—m—VI-bsm+m? 4K 1
5—2m+2VI—bm+m? S [3msn(z) —2—m+VI-bsmtm? 4K 3
5—3m+2y1—3m S [3msn?(z) — 2+ /A — 3m) AK 3

Table 5: Energy Eigenstates for the (2,2) Potential

E dn(z)y) Period Nodes
0 do?(z) +vVI—m K 0
41T —m dn’(z) —v1—m 2K 1
2—-m+2y/1—-m sn(x)cn(x) 2K 1




Table 6: Energy Eigenstates for the (6,6) Potential

E dn?(z)y) Period Nodes
0 1= (d—m- 58> (2)+ (4 —2m—dgnt(x) K 0
—4 4 2m + 203 — 2sn?(x) + msn (ac) 2K 1
2—m —6y/1—m+ 25 sn(z)en(z)[1 — (1 — /1 — m)sn?(z)] 2K 1
2o mA O/ Tom 42 sn(@)en(@)l - (1+vI=msn’(z)] K 2
463 1—(4—m+ds)sn?(z) + (4 —2m +dg)snt(z) K 2

Table 7: Energy Eigenstates for the (63/4,3/4) Potential

E dn'/?(z)y() Period Nodes
0 [12msn?(z) — 2 — 5m — dyldn?(z) 2K 0
2 —m+ & sn(z)en(z)dn?(z) 2K 2
259 [12msn?(z) — 2 — 5m + doldn?(z) 2K 2
14 — Tm + &g sn(z)en(x)[1 — 2sn?(z)) 2K 4
14 — 7m + &g [1 — 8sn?(x)cn?(z)] 2K 4
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