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Abstract. We present a simple model of transmission across a metallic mesoscopic ring. In one
of its arm an electron interacts with a single magnetic impurity via an exchange coupling. We show
that entanglement between electron and spin impurity states leads to reduction of Aharonov–Bohm
oscillations in the transmission coefficient. The spin-conductance is asymmetric in the flux reversal
as opposed to the two-probe electrical conductance which is symmetric. In the same model, in
contradiction to the naive expectation of a current magnification effect, we observe enhancement as
well as suppression of this effect depending on the system parameters. The limitations of this model
to the general notion of dephasing or decoherence in quantum systems are pointed out.
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1. Introduction

In recent times there is a great deal of interest in mesoscopic systems, sparked by the
advancement of technology. Experimental investigations on these systems have provided
several surprising quantum behavior in total contrast to that anticipated from the classical
theory of metals. One of the prominent mesoscopic effects is that of the Aharonov–Bohm
(AB) oscillations in the transport property of normal metal rings enclosing magnetic flux
[1–6]. Here AB oscillations are revealed [4] in the resistance of a small metal ring as
a function of the magnetic field with a period equal toφ 0 = hc=e, the fundamental flux
quanta. The oscillations in the resistance arise from the interference of electronic waves
traversing the two alternative arms of the ring. The changing magnetic flux alters the
relative phase difference between the probability amplitudes associated with different paths
(upper and lower arms of the loop). The amount of fluxφ 0 required to enforce a 2π
relative phase shifts between two alternative paths. This leads to the constructive and
destructive interferences in the transmission of an electron across the conductor as one
tunes the magnetic flux. At low temperatures the inelastic scattering length is much larger
than the sample dimensions and as a result the transport is completely phase coherent, i.e.,
it is dominated by quantum interference effects. At very high temperatures the inelastic
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scattering length is much smaller than the sample dimensions which leads to the classical
behavior (loss of interference). This process is referred to as dephasing or decoherence as a
result of the randomizing of the interfering particle’s phase. The decoherence mechanism
signals the limits beyond which the system dynamics approaches the classical behavior
and arises due to the coupling of a particle to its environment. This subject of intrinsic
decoherence and dephasing is being pursued actively in the area of mesoscopic physics.

In a double slit setup, interference results from the lack of knowledge of (or indistin-
guishability of) the electron path. Thus, a measurement of which path the electron has
taken, wipes out the interference pattern. It is known that in a ring interferometer the elec-
tron affects the environment and changes its state differently in the two arms of the ring
thereby affecting the interference. This amounts to a measurement of the path of the inter-
fering particle by the environment resulting in loss of interference. Such interferometers
are thus also termed as ‘which-path’ detectors. In an alternate picture, the environment
affects the electron phase differently in the two arms, thus randomizing their relative phase
difference leading to dephasing. The two views were shown to be equivalent [7]. It is
well-known that the electron–environment entanglement can also lead to decoherence [8].
However, unlike other approaches, entanglement leads to decoherence even in the absence
of any energy transfer [7]. Experiments have been carried out which were aimed at mea-
suring these coherence properties and it has been observed, for instance, by placing a
micro-detector near one arm of the AB interferometer which causes decoherence [9]. Thus
motivated, we consider a simple model of dephasing in an Aharonov–Bohm ring with a
spin-half impurity (spin-flipper) in one arm. This example also serves to illustrate the
effect of multiple reflections on ‘which-path’ detection.

By introducing a magnetic impurity atom (to be referred to as the spin-flipper, or flipper,
for short) in one arm of the ring, one can couple the spin of the electron (~σ ) to the spin of
the flipper (~S) via the exchange interaction [7,1]. This leads to scattering of the electron
in which the spin state of the electron and the impurity is changed without any exchange
of energy. Additionally, this scattering leads to the entanglement-induced reduction of the
interference pattern [8]. Let the electron be incident from the left reservoir with its spin
pointing ‘up’ (see figure 1). The spin of the electron passing through the upper arm may
or may not be flipped by the flipper. In the case where the spin is unflipped, one would
expect the usual AB oscillations of the transmission due to interference of the partial waves
passing through the upper and the lower branches of the ring. However, in the case where
the spin is flipped, one would think, guided by naive intuition, that a path detection has
taken place and hence one would be led to conclude that the interference pattern for the
spin-down component would be wiped out. This is true provided we consider only two
forward propagating partial waves. However, there are infinitely many partial waves in
this geometry which should be superposed to get the total transmission. These arise due
to multiple reflections from the junctions and the impurity site. Consider, for example, an
incident spin-up particle moving in the upper arm which is flipped at the impurity site and
gets reflected to finally traverse the lower arm before being transmitted. Naturally, this
partial wave will interfere with the spin-flipped component transmitted along the upper
arm. This results in non-zero transmission for the spin-flipped electron. Thus taking into
account the multiple reflections (more than just two partial waves) the presence of the
magnetic impurity does not lead to ‘which-path’ information. However, we show that the
presence of magnetic impurity does lead to the reduction of AB oscillations.
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Figure 1. Mesoscopic ring with Aharonov–Bohm fluxφ threading through the center
of the ring and a magnetic impurity in one arm of the ring.

Within the same model we also study spin-polarized transport [10]. We have discussed
the symmetry properties of reflection and transmission coefficients of different spin chan-
nels in the presence of a magnetic flux. In particular, the spin-conductance which is related
to the spin-polarized transmission coefficient is shown to be asymmetric in flux reversal.
We also study the current magnification effect [11–13]. In the case of a mesoscopic loop
with unequal arms connected to two electron reservoirs at chemical potentialsµ 1 andµ2
via ideal leads, currentsI1 andI2 flow in the lower and upper arm respectively of the loop
such that the total currentI = I1+ I2 is conserved in accordance with Kirchoff’s law. In
general these two currents differ in magnitude and are individually smaller than the total
currentI . However, in a certain range of Fermi energies the currentI 1 or I2 may become
larger than the total currentI . The property that current in one of the arms is larger than the
transport current is referred to as current magnification effect. To conserve the total current
at the junctions, the current in the other arm becomes negative, i.e., flows against the ap-
plied external field. In such a situation one can interpret that the negative current flowing
in one arm continues to flow as a circulating current in the loop. The magnitude of the neg-
ative current in one of the arms flowing against the direction of the applied current is taken
to be that of the circulating current. When the negative current flows in the upper arm the
direction of circulating current is taken to be anticlockwise (or negative) and when it flows
in the lower arm the direction of circulating current is taken to be clockwise (or positive).
The circulating current here arises in the absence of the magnetic field. Like AB effect,
this effect too is purely quantum mechanical in origin. Even though quantum entanglement
dephases AB oscillations, we find that contrary to the naive expectation of a reduction of
current magnification, it leads to enhancement as well as suppression of the effect. This
fact points out the limitations of a model based on the interaction-induced entanglement of
quantum states to the general understanding of dephasing in quantum systems.

2. Theoretical treatment

We study the problem using the quantum waveguide theory approach [6,11,12,14] and the
spin degree of freedom of the electron is dealt with in ref. [15]. We consider an impurity
consisting of a flipper capable of existing inM different discrete internal spin states and
located at a particular position on the upper arm of the ring (see figure 1). The spin~σ
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of the electron couples to the flipper spin~Svia an exchange interaction�J~σ �~Sδ (x� l3).
The magnetic flux threading the ring is denoted byφ and is related to the vector potential
A= φ=L, L being the ring circumference [14]. During the passage of the electron through
the ring, the total spin angular momentum and itsz-component remain conserved. We
consider the incident electron to be spin-polarized in the up-direction.

Let l2 be the length of the lower arm of the ring and the impurity atom be placed at a
distancel3 from the junction J1,l4 being the remaining segment length of the upper arm.
The various segments of the ring and its leads are labeled as shown in figure 1 and the wave
functions in these segments carry the corresponding subscripts. The wave functions in the
five segments for a left-incident spin-up electron can be written as follows [6,14,15]:

ψ1 = (eikx
+ rue�ikx

)χmα + rde�ikxχm+1β ;

ψ2 = (Aueik1x
+Bue

�ik2x
)χmα +(Adeik1x

+Bde�ik2x
)χm+1β ;

ψ3 = (Cueik1x
+Due�ik2x

)χmα +(Cdeik1x
+Dde�ik2x

)χm+1β ;

ψ4 = (Eueik1x+Fue�ik2x)χmα +(Edeik1x+Fde�ik2x)χm+1β ;

ψ5 = tueikxχmα + tdeikxχm+1β ; (1)

wherek1= k+(eφ=~cL), k2= k�(eφ=~cL), k is the wave vector of incident electron. The
wave function in eq. (1) is a correlated function (entangled state) of the electron and the
impurity spin which takes into account the exchange interaction conserves thez-component
of the total spin [15]. The subscriptsu andd represent ‘up’ and ‘down’ spin states of the
electron with the corresponding spinorsα andβ respectively (i.e.,σ zα = 1

2α , σzβ =� 1
2β )

andχm denotes the wave function of the impurity [15] withSz=m (i.e.,Szχm=mχm). The
reflected (transmitted) waves have amplitudesr u(tu) andrd(td) corresponding to the ‘up’
and ‘down’ spin components respectively.

Equations (1) along with the boundary conditions (continuity and the current conserva-
tion at junctions J1 and J2) were solved to obtain the amplitudest u, td, ru andrd. Since
the analytic expressions are very lengthy, we confine ourselves to graphical interpretation
of the results. We have taken the flipper to be a spin-half object (M = 2) situated in the
upper arm. Now, depending upon the initial state of the flipper we have a possibility of
either spin-flip scattering (σz =

1
2; Sz = �1

2) or no-spin-flip scattering (σz =
1
2; Sz =

1
2),

as demanded by the conservation of the total spin and itsz-component. In the case of no-
spin-flip scattering (σz=

1
2; Sz=

1
2) the problem at hand reduces to that of simple potential

scattering from the impurity. We have set~= 2m= 1 and throughout the value of interac-
tion strengthG (= 2mJ=~2) is given in dimensionless units. The parameters used for the
analysis are mentioned in the figure captions.

3. Results and discussion

To begin with, we first state the observed symmetry properties of the transport coefficients
in the spin-flip scattering case where the electron spin is opposite to the flipper spin. It
is worth noting that due to the presence of spin degree of freedom the problem in hand
although one-dimensional becomes a multi-channel problem. The spin-up reflection coef-
ficient Ru = jruj

2, spin-down reflection coefficientRd = jrdj
2 and the total reflection coef-

ficientR= Ru+Rd as a function of the magnetic flux exhibit the AB oscillations with flux
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periodicity [4] of 2πφ0. All three reflection coefficients are symmetric in the flux reversal
as expected on general grounds [16].

The spin-up transmission coefficientTu = jtuj2 and the spin-down transmission coeffi-
cientTd = jtdj

2 which exhibit AB oscillations are asymmetric under flux reversal. The total
transmission coefficientT = Tu+Td (related to the two-terminal electrical conductance),
however, is symmetric in flux reversal. The transmission coefficient at fluxφ for the case
when the incident particle is spin-up and the impurity is spin-down is equal to the transmis-
sion coefficient for the case when incident particle is spin-down and impurity is spin-up
but the flux direction is reversed. For the spin-polarized transport the total polarization
Tu�Td is related to the spin-conductance [17]. The above symmetry properties imply that
the spin-conductance is asymmetric under the flux reversal. This can be easily noted from
figure 2 where we have plotted the variation of spin polarizationχ = (Tu �Td)=T as a
function of the magnetic fluxφ . This spin polarization can be experimentally measured by
using the well-known spin-valve (magnetic valve or filter) effect [10]. It should be noted
that at zero temperature the total electrical and spin conductances are to be calculated by
summing up with equal weightage the total transmission coefficients for all the four cases,
i.e.,σz=�1

2 andSz=�1
2.

As discussed in the introduction, due to multiple reflections the presence of a spin-
flipper in one arm does not lead to ‘which-path’ information. This would have implied
the complete blocking of spin-down transmission. In contrast, we clearly observe the AB
oscillations for the case ofTd originating from multiple reflections. We now address the
question of partial loss of interference due to the spin-flipper. In figure 3 we have plot-
ted the total transmission coefficientT = Tu+Td for the spin-flip scattering (SFS) case,
andT = Tu (Td = 0) for the no-spin-flip scattering (NSFS) case for different parameters
as indicated in figures 3a–d. As expectedT exhibits AB oscillations which are periodic
in flux with a period 2πφ0 and they are symmetric under flux reversal. It is interesting

−4.00 −2.00 0.00 2.00 4.00
φ/φ0

−1.0

−0.5

0.0

0.5

χ

Figure 2. Spin polarization (χ) as a function of the fluxφ for interaction strength
G= 10:0. The lengths arel2=L= 0:5, l3=L= l4=L= 0:25 andkL= 1:0.
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Figure 3. Amplitude of AB oscillations or interference fringe visibility for the two
cases of SFS and NSFS for different strengths of the exchange interaction. In all four
casesl2=L= 0:5, l3=L= l4=L= 0:25 andkL= 1:0. The values of coupling strengthG
are (a)G= 1:0, (b)G= 5:0, (c)G= 10:0 and (d)G= 15:0.

to note, however, that the interference fringe visibility (or the magnitude of amplitude of
AB oscillations) for the SFS case is always smaller than that for the case of NSFS. This
clearly indicates partial decoherence.

To quantify the decoherence, we calculate the amplitude of AB oscillations by taking the
difference between the maximum and the minimum of the total transmission coefficient as
a function of fluxφ over one period of the oscillation. A plot of the variation of the
amplitude of oscillation of the total transmissionT with the interaction strengthG for
the two cases, no-spin-flip scattering (NSFS:S= 1

2 m= 1
2) and spin-flip scattering (SFS:

S= 1
2 m= �1

2), is shown in figure 4. The signature of loss of interference is that the
amplitude of AB oscillation of the transmission coefficient for the spin-flip case is always
smaller than that for the no-spin-flip case for all non-zero values of coupling strengthG.
In other words, the reduction in the amplitude of AB oscillations is stronger for the spin-
flip scattering case. We have verified the above observation for other parameters in the
problem. Thus the presence of spin-flipper reduces the AB oscillations. This substantiates
our claim of decoherence due to entanglement.

We will now turn our attention to current magnification and associated effect of circulat-
ing currents as defined in the earlier works [11,12]. Figure 5 shows the plot of circulating
current density (Ic) versuskL for the two separate cases of spin-flip scattering and no-spin-
flip scattering. When the impurity spin is ‘up’ the interaction does not allow spin-flip for a
spin-up incident electron and the impurity acts as a static potential scatterer. On the other
hand, when the impurity spin is ‘down’ a spin-flip scattering takes place. We compare the
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Figure 4. Variation of amplitude of AB oscilla-
tions with increasing strengthG of spin-flipper
for the case of asymmetrically placed flipper.
l3=L= 0:15, l4=L= 0:35 andkL= 1:0.

Figure 5. Plot of the circulating current density
Ic versuskL. G= 4:0 and l2=L = 0:6; l3=L =
l4=L = 0:2 for both cases. The solid line is for
the no-spin-flip case while the dashed line is for
the spin-flip case. This figure shows that the
spin-flip process inhibits current magnification.

circulating current densities for these two cases in order to see the role of entanglement
induced by the spin-flipper. The solid curve is for the no-spin-flip case while the dashed
one is for the spin-flip case. The impurity strength (G) for both the cases is 4:0. In both
the cases we takel2=L = 0:6 andl3=L = l4=L = 0:2. The figure shows that, the circulating
current for spin-flip case is significantly less than that of the no-spin-flip case in the range
12< kL < 16. Thus one is led to believe that the flipper acting as a dephasor suppresses
the quantum phenomena of current magnification.

However, this naive expectation turns out to be incorrect. This is substantiated in figure 6
which shows circulating current densities for the spin-flip and no-spin-flip cases in the
range 16< kL< 19 for the same lengths as mentioned above. From this figure we see that
in this range of Fermi energies the amplitude of the circulating current is actually enhanced
in spite of the spin-flip scattering.

Thus the flipper can not only suppress the current magnification effect butcan also
enhance it in some other range of Fermi energies. So far we have discussed how the flipper
affects current magnification effect. The flipper also induces some new features. In figure 7
we have plotted circulating current density (I c) versuskL for l3=L= l4=L= 0:25 andl2=L=
0:5 in the range 5:6< kL < 6:6 which shows an additional peak in the circulating current
density arising at a point corresponding to a minimum of spin-up transmission (which is
the same as the maximum of the spin-down transmission). This is indicative of the spin-
flip process. This effect is unique for the flipper having no counterpart in case of a simple
impurity, i.e., in this region (5:6 < kL < 6:2) no-flip scattering case does not show any
circulating current. This can be ascribed to the additional phase shifts caused by spin-flip
scattering along with multiple reflections. In the range 6:2< kL< 6:6 spin-flip scattering
suppresses the current magnification.
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Further, we see another interesting feature, namely the phenomenon of current reversal.
This is depicted in figure 8 where we plot the circulating current density (I c) versuskL for
l3=L= l4=L= 0:3125 andl2=L= 0:375 in the wave vector range 10< kL< 15 in which we
see that the spin-flip circulating current reverses its direction as compared to the no-spin-
flip case, i.e., an anti-clockwise circulating current for the no-spin-flip case is converted
into a clockwise one in the spin-flip case.
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Figure 6. Plot of the circulating current density
Ic versuskL. G= 4:0 and l2=L = 0:6; l3=L =
l4=L = 0:2 for both cases. The solid line is
for the no-spin-flip case while the dashed line
is for the spin-flip case. This figure in contrast
to figure 2 shows that the spin-flip process en-
hances current magnification.

Figure 7. Plot of the circulating current density
Ic versuskL. G= 4:0 and l2=L = 0:5; l3=L =
l4=L = 0:25 for both cases. The solid line is
for the no-spin-flip case while the dashed line
is for the spin-flip case. The dash-dotted line is
for 2Td while the dotted line is for 2Tu wherein

Tu = j tu j2 andTd = j td j2.

10.0 11.0 12.0 13.0 14.0 15.0
kL

−0.2

−0.1

0.0

0.1

0.2

0.3

Ic

Figure 8. Plot of the circulating current densityIc versuskL. G= 4:0 and l2=L =
0:375; l3=L = l4=L = 0:3125 for both cases. The solid line is for the no-spin-flip case
while the dashed line is for the spin-flip case.
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In conclusion we have shown that the presence of the spin-flipper which reduces the AB
oscillations (partial decoherence), need not reduce the amplitude of the current magnifica-
tion. In fact, in a certain range of Fermi energies the flipper enhances the current magni-
fication. We believe that the suppression of some quantum features and non-suppression
of some other quantum effects is a characteristic feature of entanglement, an environment
consisting of finite degrees of freedom and the absence of inelastic scattering. We expect
the same to happen in other models based only on the notion of entanglement. Only the
presence of inelastic scattering (or coupling of a system to an environment with infinite
degrees of freedom), leading to irreversible loss of phase memory, can dephase AB oscil-
lations and reduce current magnification simultaneously. Our analysis on the same model
shows that two-probe spin-conductance is asymmetric in flux reversal as opposed to the
two-probe electrical conductance which is symmetric. Further a spin-flipper with higher
number of internal states and that of flippers in both arms of the ring are under investiga-
tion. We hope that our results will stimulate further interest and understanding of dephasing
and decoherence arising from different models based on quantum entanglement.
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