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Rice is a vital crop for the entire world population. This crop constitutes the staple food for the
inhabitants of the Asian countries. It is estimated that grain production in rice must be increased by
60% of the present value, to meet the demand which will be there at 2020 A.D. The increased rice
production can play a significant role in upgrading the economic status of countries like India and
China. In this context, it is notable that the grain yield of rice is not harvested in commensuration to its
existing genetic potential in almost all rice- growing ecosystems. One of the major reasons behind this
failure is the sensitivity of this crop to different stress factors in field-conditions. This is especially true
for the abiotic stresses (particularly drought, submergence and salinity). The production of abiotic stress
tolerant rice cultivars thus emerges as a priority issue. The areas of rice molecular biology and
biotechnology have progressed appreciably in the past two decades and a number of different
transgenic rice plants have already been developed. In this article, we assess the current status of
raising rice tolerant to abiotic stresses and identify the research gaps which need to be filled up in this

direction.
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Introduction

The importance of rice as a food crop is second
to none particularly in the context of Asian
countries. A great deal of research has been
carried out in the recent past on the molecular
biology, genomics and biotechnology of rice
crop. Employing recombinant DNA technology,
remarkable progress has been made towards
production of rice plants for increased yield
(such as through production of hybrid rice
varieties), improved nutritional quality (such as
through introduction of provitamin A
synthesizing genes, increased iron content etc.)
and improved resistance to insects, viral,
bacterial and fungal pathogens (see figure 1).
Close to the dawn of 21% century, the
understanding of rice molecular biology stands
at a threshold point as this crop is now
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considered a model cereal crop for molecular
studies (Khush & Toenniesen 1991, Sasaki &
Moore 1997, Khush & Baenziger 1998).

Abiotic stresses (such as sub- and supra-
optimal temperatures, excess salt levels, reduced
water availability leading to drought stress,
excess water resulting in flooding stress and
oxidative stress caused by the combination of
high light intensity with other stresses etc.)
adversely affect almost all major field-grown
crops. Rice crop is particularly sensitive to excess
salts, reduced or excess water supply and sub-
optimal temperature regimes (Widawsky &
O'Toole 1990, Khush & Tonniessen 1991, Khush
& Baenziger 1998). According to Hossain (1996),
drought and submergence stresses affect rice
cultivation more than the biotic stresses. On the
issue of genetically transforming rice with genes
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Figure 1 Various agronomic traits which have been
engineered in rice using transgenic technology. Numbers
under each block represent the corresponding reference
of the work as detailed here (see ‘References’ in the text
for complete details). 1, Christou et al. (1991); 2, Datta
et al. (1992); 3, Li et al. (1992), 4, Fujimoto et al. (1993);
5, Wunn et al. (1996); 6, Ghareyazie et al. (1997); 7, Datta
et al. (1997); 8, Nayak et al. (1997); 9, Wu et al. (1997),
10, Duan et al. (1996); 11, Xu et al. (1996); 12, Irie et al.
(1996); 13, Hosoyama et al. (1995); 14, Xu et al. (1996 a);
15, Hayakawa et al. (1992); 16, Fang et al. (1996); 17,
Huntley & Hall (1996); 18, Uchimiya et al. (1993); 19, Lin
et al. (1995); 20, Song et al. (1996); 21, Wang et al. (1996);
22, Tu et al. (1998); 23, Tada et al. (1996); 24, Xu et al.
(1996 b); 25, Yokoi et al. (1998); 26, Burkhardt et al.
(1997); 27, Goto et al. (1999); 28, Zheng et al. (1995)

which can lead to superior tolerance against
different abiotic stresses, previous studies have
shown that

(i) the response of plants to abiotic stresses is
multigenic in nature,

(i) while some advances in understanding
the nature of stresses and their interactions
is made, the biochemical/ physiological
reactions/ processes associated with
tolerance to abiotic stresses are yet to be
precisely identified (Khanna Chopra &
Sinha 1998), and

(iii) there is a dearth of information on genes
which would have a positive effect in
imparting tolerance to abiotic stressec
(Grover et al. 1993, 1998a, 1999).
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Moreover, it is often a difficult proposition
to analyze the response of plants to different
abiotic stresses in the experimental conditions,
due to complex and variable nature of these
stresses. However, in spite of all these
complexities, remarkable success has been
achieved in raising of transgenics for improved
abiotic stress tolerance in the past six years of
research work (1993-1999). Our group has
discussed various issues related to the
production of stress-tolerant transgenics in a
number of recent publications (Grover et al.
1993, 1998a,b, 1999, Grover 1999, Katiyar-
Agarwal et al. 1999, Minhas & Grover 1999,
Mohanty et al. 2000). In these papers, details on
genes encoding several structural proteins [i.e.
glycerol 3-phosphate acyl transferase, mannitol
1-phosphate dehydrogenase, superoxide dismutase,
betaine aldehyde dehydrogenase, choline
dehydrogenase, o'-pyrolline 5-carboxylate synthase
(p-5-cs), levan sucrase, late embryogenesis abundant
(LEA) protein, trehalose 6-phosphate synthase,
choline oxidase, antifreeze protein and myo-inositol-
o-methyl transferase] and regulatory proteins [ie.
C-repeat (CRT)/drought-responsive element (DRE)
binding factor 1 or CRT/DRE binding factorl
(CBF1), DRE binding protein (DREB1A) and
calcineurin] which have been shown to bring
about superior abiotic stress tolerance in transgenic
hosts as well as the associated limitations are
given (also see Khanna-Chopra & Sinha 1998,
Dhaliwal et al. 1998, Kasuga et al. 1999).

So far, most of the research work on
production of abiotic stress tolerant crops has
been carried out employing tobacco and
Arabidopsis thaliana. 1t is, therefore, in place to
ask how far are we from genetically producing
crops with superior abiotic stress tolerance.
However, it has been a general experience of
plant biotechnologists that different plant species
have varied requirements for the genetic
transformation work. The regulatory sequences
needed to bring about optimal expression of the
given transgene varies between dicotylednous
and monocotylednous species. The tissue culture
responsiveness of the trans-host is another
important parameter which governs the success
in this respect (Bhaskaran & Smith 1990, Birch
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1997, Hansen & Wright 1999). A large number
of studies have shown that different rice
cultivars exhibit different responses to tissue
culture, regeneration and genetic transformation
(Kyozuka et al. 1988, Peterson & Smith 1991,
Rance et al. 1994, Datta et al. 1996). In this
article, we review the existing information on
genetic transformation of rice, discuss in detail
the utility of Agrobacterium tumefaciens
mediated genetic transformation approach for
rice transformation and finally take a stock of
efforts currently being made in the production
of abiotic stress tolerant rice crop (see the
recent paper by Tyagi et al. 1999, Hiei et al.
1999, Kloti & Potrykus 1999 for further details
on crop improvement and genetic research on
transgenic rice). The main objective in writing
this article is to highlight the points of strength
of rice transgenic technology and project the
research gaps which need to be plugged in
future years for raising transgenic rice tolerant
to abiotic stresses.

Genetic Transformation of Rice

Following the successful demonstration in the
early to mid seventies that chimeric DNA
molecules can be constructed in vitro and in
late seventies that T-DNA of A. fumefaciens
can be manipulated to carry “foreign” genes
into the plant cells, a great deal of momentum
was generated in the early eighties to genetically
transform different plants, mostly with antibiotic
resistance or with reporter genes (Galun &
Brieman 1997). Since the monocotyledonous
plants were proven largely unresponsive to
Agrobacterium in the early studies (Raineri
et al. 1990, Chan et al. 1993, Vijaychandra et al.
1995, Park et al. 1996), a range of different
methods of transforming rice cells with foreign
DNA have been attempted. The procedural
details on the different methods of plant
transformation are summarized in a recent paper
by Hansen & Wright (1999). The techniques of
polyethylene glycol (PEG)- and electroporation-
mediated DNA uptake into the protoplasts for
rice transformation proved successful to a
reasonable degree (table 1). However, the
problems associated with handling of isolated
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protoplasts as well as lack of regenerability from
isolated protoplasts in several cases deterred the
large-scale exploitation of these methods (Lee
et al. 1989, Lee et al. 1991, Park et al. 1996).
These problems were circumvented to an extent
with the introduction of microprojectile
bombardment or biolistic method that was
employed to deliver DNA directly into plant
cells by shooting through the plant cell walls and
cell membranes (Sanford et al. 1987). Several
different versions of the microprojectile gun
apparatus have been developed in the subsequent
years, to make this technique less expensive and
more effective (Christou 1997, Arencibia et al.
1998). Rice transformation work received a big
impetus with the optimization of microprojectile
gun mediated method (table 1). In fact, a large
number of rice workers shifted their
transformation approach from electroporation/
PEG to gun-based method in the early nineties.
However, a major breakthrough was made at
around the same time when it was shown that
A. tumefaciens can be exploited for the genetic
transformation of rice cells. Raineri et al. (1990)
achieved Agrobacterium-mediated transformation
of rice cultivar “Nipponbare” and showed the
successful T-DNA transfer by DNA hybridization
analysis. Hiei et al. (1994) showed that with
suitable modifications in the procedure, it is
possible to employ Agrobacterium for genetic
transformation of rice at high frequency. Since
then, A. fumefaciens based method has become
a method of choice with rice biotechnologists
(table 1). Some other methods of genetic
transformation of rice attempted so far include
pollen tube-mediated method (Luo & Wu 1989),
lipofectin-mediated method (Zhu et al. 1994) and
laser-mediated method (Guo et al. 1995).
However, the use of these methods has been to
a limited significance only. /

As of now, genetic transformation has been
achieved in a score of different rice cultivars
employing the above-mentioned methods (table
1). The following generalizations can be made
from the work presented in table 1:

(i) Selection of transformed cells in rice can
be exercised with several genes including
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Table 1 Selective reports on genetic transformation studies in rice
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Variety/ cultivar Explant Configuration of the Reference
plasmid construct
Using electroporation-method
Transient Tainung 67 protoplasts p35S: cat Ou-Lee et al. 1986
(japonica) pCopia*: cat
protoplasts p2™. nptll,
pl'™*: dhs, Dekeyser et al. 1989
p35S: bar
pNos: nptll
Taipei 309 (japonica) leaf bases p2'™*: nptll Dekeyser et al. 1990
Nipponbare suspension pLhcp*: gus,
(japonica) cells p35S: Apt Tada et al. 1991
Basmati 370, cell p35S: gus Chaudhry et al. 1994
improved suspensions
Sabarmati (indicas)
Basmati 370 mature p35S: gus Chaudhry et al. 1995
(indica) embryo
Radon immature p35S:bar:pAct.gus Rao 1995
(japonica), embryos,
IR54 suspension
(indlica) cells
Stable Yamahoushi (japonica) protoplasts p35S: apft* Toriyama et al. 1988
Taipei 309 (japonica) protoplasts p35S: npt 7 Yang et al. 1988
Taipei 309 (japonica) protoplasts p35S: npt I Zhang et al. 1988
Yamahoushi suspension p35S: Ape, Matsuki et al. 1989
(japonica) cells pO12*: gus
Nipponbare (japonica)  protoplasts p35S: Apt Shimamoto et al. 1989
Taipei 309 (japonica) protoplasts p35S: nptll :: p355: gus Battraw & Hall 1990
Norin-8 protoplasts p35S: gus, Tada et al. 1990
(japonica) p35S: Apt
Nipponbare (japonica)  protoplasts p35S: gus Terada &
Shimamoto 1990
Taipei 309 (japonica) protoplasts p35S: npt I Davey et al. 1991
Nipponbare (japonica) protoplasts pAdh1*: adfl: gus Kyozuka et al. 1991
Taipei 309 (japonica) protoplasts p35S: npt IT:: p35S: widA Battraw & Hall 1992
Taipei 309 (japonica) protoplasts p35S: npt I Lynch et al. 1992
Yamahoushi (japonica) protoplasts pUbi: exont: intront bar Toki et al. 1992
Nipponbare protoplasts pRbcS*: gus, Kyozuka et al. 1993
(japonica) pRbcS*: gus
IR36 mature pNos: npt 7 Xu & Li 1994
(indica) embryo

(Contd.)



Stress Tolerant Transgenic Rice Plants

Table 1 (contd)
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Variety/ cultivar

Explant

Configuration of the
plasmid construct

Reference

Using PEG-mediated DNA uptake method

Transient

Stable

Taipei 309 (japonica)
M202

L.c 5924

Taipei 309 (japonica)
Pi-4, Taipei309 (japonicas)
Chinsurah

Boro I (indica)
Nipponbare,

Taipei 309 (japonicas)
IR54

(indica)

Fang7,

H124 (japonicas)
Taipei309

(japonica)
Nipponbare (japonica)
IR72

(indica)

Nipponbare (japonica)

IR54
(indica)

Taipei 309
(japonica)

Radon,
Nortai
(japonicas)
IR 54
(indica)
Miara
(japonica)

Chinsurah Boro 11,
IR 72, IR 51500
(indicas)

protoplasts

protoplasts

protoplasts
protoplasts
protoplasts
protoplasts

protoplasts
protoplasts
suspension
cultures

protoplasts

protoplasts

protoplasts

protoplasts
protoplasts

protoplasts

protoplasts

protoplasts

protoplasts

protoplasts

pUbi: Juc

p35S: adi*: luc
pAdhl:adhl: /uc

pNos: aphll
p35S: nptll
pAdh: adl gus
p35S: Apt

pNos: /1pt

p355: Apt

p35S: nptll

p35S: gus

p35S: gus: p355: npt I

p35S: dAft*:: pNos: nos,
p35S: hpt:: p2'*: gus
p35S: Apt

p35S: Apt

p35S: bar

p35S: csri-1*

p35S: nptll

p35S: gus

pUbi: gus,

pUbi: Juc

pUbi: bar

p35S: bar
pActl: gus

p35S: nptll
p35S: gus

pUbi: exon’ intront widA,

p35S: Apt p35S. nptll
p35S: bar pLitp*: widA

p35S: tp*

Cornejo et al. 1993

Sadasivam &
Gallie 1994

Uchimiya et al. 1986
Yang et al. 1988
Zhang & Wu 1988
Datta et al. 1990

Hayashimoto et al. 1990

Peng et al. 1990

Leeetal. 1991

Meijer et al. 1991

Zheng et al. 1991
Datta et al. 1992

Li et al. 1992
Peng et al. 1992

Cornejo et al. 1993

Rathore et al. 1993

Peng et al. 1995

Chair et al. 1996

Datta et al. 1999

(Contd.)
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Table 1 (contd)

Variety/ cultivar Explant Configuration of the Reference
plasmid construct

Using particle gun-mediated transformation method

Transient Taipei 309 suspensions pAdhl: adhl*: gus, Wang et al. 1988
cells p35S: adhl: cat
cv japonica scutellar pAdh: adhl: gus, Oard et al. 1990
callus p35S: adlb: gus
Stable M101 seedlings pPhy*: cat, Bruce et al. 1989
pUbi: Juc
Gulfmont immature p35S: gus:: p35S: Apt Christou et al. 1991
(javanica), embryos
IR 54, IR 72,
IR 26, IR 36 (indicas)
Taipei 309 suspension PActl: exonl: intronl: bar, Cao et al. 1992
(japonica) cells p35S: bar
Taipei 309, immature pActl: gus, Lietal. 1993
77125 embryos, pNos: Aph,
(japonicas) embryogenic p35S: Aph
Tetep, TN1 calli
(indica)
8706 (ind x jap)
Taipei 309 protoplasts pPin2: gus, Xu et al. 1993
(japonica) PPin2: achi: gus,
p35S: bar
IR72,IR 54 immature p35S: Apt:: p355: gus, Cooley et al. 1995
(indica) embryos p35S: Apt:: pGt3*: gus
Koshihikari, p35S: Apt:: pSSU*: gus,
Gulfmont p35S: Apt:: pSSU™: gus,
(javanica) p35S: Apt:: pSSU*: gus,
p35S: bar:: p355: Apt:: p35S: gus
Gulfmont immature p35S: plyA Clough et al. 1995
(javanica) embryos
Pusa suspension pActl: gus, Jain et al. 1996
Basmati 1 cells pAct 1: Ava*: p35S: bar
(indica) pPin2*: act pir2:: p355: bar
Gulfmont. immature p35S: adhl: bar: p35S: apfAV*: Oard et al. 1996
(javanica) _ embryos p355: amv*: uid
IR 72 (indica)
Koshihikari
TN1 calli pUbi: ubi- hpt, Sivamani et al. 1996
(indica) pUbi: gus
IR24 suspension p35S: widA:: p355:/ipt Zhang et al. 1996
IR64, IR72, cells

IR57311-95-2-3
(Contd.)
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Table 1 (contd)

Variety/ cultivar Explant Configuration of the Reference
plasmid construct
Taipei 309 seed embryos  AMVen/*: p35S: btcriillA, Kumpatla et al. 1997
(japonica) pUbi: bar
Zhonghua8 callus p35S: nptl] :: p35S: rdvs8* Zheng et al. 1997
Zhonghual(
(japonicas)
Vaidehi scutellar p35S: crAA(b): pepct, Alam et al. 1998
(indica) callus p35S: Apt
immature p35S: gus :: p35S: Apt, Capell et al. 1998
embryos p35S: adc*
Taipei 309 embryogenic 14 different constructs carrying ~ Chen et al. .1998
callus, hpt widh, bar, luc, gfpand coding
suspension sequences of RTSV*, RYMY*, RTBV*
cells
IR 72 immature p355: cilA(b):pepct, Datta et al. 1998
IR 64 embryos, pPepc: cAA(b): pepc?
CBII embryogenic pPith: apiAb): pepc?
IR 51500 callus pActl: introrr criAA(b)
IR 68899B p35S: Apt
Vaidehi
(indicas)
IRRI hybrid
Taipei 309
(japonica)
Basmati 370 scutellar p35S: gus: p35S: Apy, Magbool et al. 1998
MY (indicas) callus ay24in pROB
ASD 16 immature pRssl: gna? Rao et al. 1998
M5 embryos pUbi: gna?
M12 (indicas) p35S: gus:: p35S: Apt
Kenfong suspensions (ABRC-ACT1-100IP-HVA22)*: Suet al. 1998
cells uidA:: p35S: bar,
(4ABRC1-ACT1-100P-HVA22)*:
uidA:: p355: bar
ASD 16 immature pRss1*: gna, Sudhakar et al. 1998
M5 embryos pUbi: ubi gna
M12 (indicas)
FX92 (japonica)
IR 72 immature p35S: Apt, Tuet al. 1998
(indica) embryos xa2lin pC822
ITA212 immature p35S: AMV*: ocdaB6*::
p355S: ap/dV, Vain et al. 1998
IDSA6 embryos pUbi: gus
LAC23
WAB56-104
Notohikari scutellar pActl: baz Wakita et al. 1998
(japonica) tissue p35S: ntfad3*

(Contd.)
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Table 1 (contd.)

Variety/ cultivar Explant Configuration of the Reference
plasmid construct
IR 64 suspensions p35S: Apt Zhang et al. 1998
IR 72 cells xa2lin pC 822
Minghui 63
BG90-2
(indicas)
Chinsurah Boro II, immature p35S: tp* Datta et al. 1999
IR72, embryos
IR 51500
(indicas)
Using Agrobacterium-mediated transformation method
Transient 8 indicas, leaf, root p35S: gus/ intron* Li et al. 1992
7 japonicas, seed pMas/355*: gus,
6 African pMas/355* gus/intron
rices
IR 64 shoot p35S: gus: nos* Liu et al. 1992
(indica), segments p35S: gus. ocs*
Lemont p35S: gus/intror ocs*
Stable Nipponbare, mature pMas/355: gus Raineri et al. 1990
Fujisaka 5 embryos
(japonicas)
Tainung 62 immature pNos: nptlk: paaAmy8*: widA Chan et al. 1993
(japonica) embryos
Tsukinohikari, shoot segments,  pNos: npt/E: p355: Hiei et al. 1994
Asanohikari, root segments, Intron: gus: p35S: Apt
Koshihikari root derived
(japonicas) calli,
scutella derived
calli,
cell suspensions,
immature
embryos
Co43 coleoptile, virE-lacZ* Vijayachandra et al.
(indica) scutellum, virB-lacZ* 1995
scutellar callus  extra copies of
leaf blade, virG,C,D,E*
leaf base,
root
Nortai, immature pMas/35S: gus. intron, Aldemita &
Radon embryos pNos: npt/E: p35S: intron: Hodges 1996
(japonicas) gus: p35S: Apt
Taipei309 scutellar pNos: nptlE: p355: intron: Dong et al. 1996
(japonica), calli gus: p35S: hpt
Gulfmont,
Jefferson,
(javanica)
Maybelle shoot p35S: bar Park et al. 1996
(japonica) meristems pActl: acAl: bar:: pNos: nptl]

(Contd)
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Table 1 (contd.)

Variety/ cuitivar Explant Configuration of the Reference
plasmid construct

B370 scutellar pNos: nptiF: p35S: intron: gus:  Rashid et al. 1996

(indica) calli p35S: Apt

Binnatoa scutellar pNos: nptlk: p355: intron: gus::  Rasul et al. 1997

(indica) calli p35S: Apt

Nipponbare, seed pNos: nptlf: p35S: intron: Toki 1997

Kitaake callus gus:: p355: Apt pNos: hpt:

(japonicas) pUbi: bar

Taipei 309 scutellar p35S: Apt: nos*, Wang et al. 1997

(japonica) callus p35S: Apt tm1™,

p35S: Apt-cat*-hpt,
p35S: Apt-haem*-hpt

pUbi: ubr. Apt
Nipponbare scutellar pNos: nptlF: p35S: sodCc2*, Sakamoto et al.
(japonica) callus codA:: p355: Apt pNos: npdl: 1998

p35S: sodCc2*% TP: codA:: p35S:

hpt
Yamahoushi (japonica) Km™: pUbi: gpat*: Hyg" Yokoi et al. 1998
Kitaake, seed pNos: npdAl: pepc: p35S: hpt Ku et al. 1999

Nipponbare (japonicas)  callus

* pCopia encodes promoter of copia long terminal repeat from Drosophila pl’ and p2’ encode promoters of transcripts of
octopine T-DNA; dAfrcodes for methotrexate resistance; pLhcp encodes promoter of rice light harvesting chlorophyll 4/5binding
protein of photosystem II; ap/ codes for geneticin resistance; pO12 encodes promoter of ORF 12 gene (roK) of Ri plasmid;
pAdhl encodes promoter of maize alcohol dehydrogenase; pRbcS codes for small subunit of ribulose bisphosphate carboxylase,
two constructs were employed — one had a promoter from rice and the other from tomato; ad/Al gene encodes alcohol
dehydrogenase protein; apHl gene encodes for kanamycin resistance; p2’ encodes 1°,2° mannopine synthase locus of
Agrobacterium; csr1-1 gene represents a mutant acetolactate synthase gene for herbicide resistance; pLtp represents rice lipid
transfer protein gene promoter; #p gene for thaumatin-like protein is responsible for enhanced resistance to Rhizoctonia solani
(sheath blight pathogen); ad/ gene encodes alcohol dehydrogenase protein; p/Ay gene encodes for oat phytochrome protein; pGt3
denotes rice glutenin promoter; SSU denotes small sub-unit of RUBISCO protein; pir2 gene codes for potato protease inhibitor
2 protein; ap/V gene codes for hygromycin resistance; amv stands for alfalfa mosaic virus leader sequence; enh denotes enhancer
element; rdvs8 is the eighth largest segment of the rice dwarf virus; oc®daB6 stands for mutated Oryza cystatin gene; pRssl
represents promoter from rice sucrose synthase gene; gna codes for snowdrop lectin from Galanthus nivalis agglutenin against
rice brown plant hopper; adc encodes arginine decarboxylase protein; (ABRC-Act1-100IP/100P-HVA22) represents ABA-
responsive promoter complex consisting of G-box from barley (Hordeum vuigare) HVA22 gene; pepc represents the PEP
Carboxylase intron; x227 codes for light-resistance; pPith represents tissue specific promoter from green tissue; g7p stands for
green fluorescent protein; RTSV, RYMY, RTBV stand for rice tungro spherical, rice yellow mottle and rice tungro bacilliform
viruses respectively; n#fad3 codes for -3 fatty acid desaturase gene from tobacco; #pencodes thaumatin-like protein responsible
for enhanced resistance to Rhizoctonia solani (sheath blight pathogen); Mas/35S represents chimeric promoter of mannopine and
a truncated CaMV 35S; ocs encodes octopine synthase terminator; gus/intron gus gene stands for gus gene containing plant
intron; aAmy8 represents 5° upstream fragment of a. amy/ase gene;virE-lacZ, virb-lacZ and Extra copies of vir G,C,D,E were
present in constructs to study induction of vir genes; nos” is the terminator sequence of Agrobacterium tumefaciens nopaline
synthase; tm1’is the transcription termination sequence of an Agrobacterium tumefaciens T-DNA borne tumour morphology
large gene; catrepresents castor bean catalase-1 gene intron; A2em represents a Farasponia andersonifhaemoglobin gene intron;
sodCcZrepresents the first intron of rice superoxide dismutase gene; codA encodes choline oxidase gene that converts choline to
glycine betaine for osmoprotection; TP stands for the transit peptide sequence of small subunit of ribulose bisphosphate
carboxylase; Km'and Hyg" represent genes for kanamycin and hygromycin resistance, respectively; gpat codes for glycerol-3-
phosphate acyltransferase gene from Arabidopsis that confers unsaturation of fatty acids and chilling tolerance; pepcstands for
the maize C,-phosphoenol pyruvate carboxylase gene with all its exons, introns promoter and terminator.
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those providing resistance against
kanamycin, hygromycin, bialophos,
glufosinate, phosphinothricin etc.

(ii) Reporter genes tested and proved useful
for rice transformation work include
B-glucuronidase, chloramphenicol acetyl
transferase, luciferase etc.

(iii) Transgene expression in rice transformation
work has been tested using a range of
different promoters including cauliflower
mosaic virus 35S promoter (CaMV 355),
alcohol dehydrogenasel promoter, actinl
promoter, copia long terminal repeat
promoter of Drosophila, rice light
harvesting chlorophyll a/b binding
protein of photosystem II (LHCP II)
promoter, nopaline synthase promoter and
ubiquitinl promoter. While the CaMV 35S
promoter has been extensively employed
in rice transformation work (table 1),
recent studies have shown that this
promoter has a recombination hotspot
which can lead to illegitimate
recombination (Kohli et al. 1999). The
actinl and ubiquitinl promoters have in
particularly proven useful for the high-
level constitutive expression of the
transgene in rice.

As mentioned above, the optimization of A.
tumefaciens based approach for genetic
transformation of rice in early to mid nineties is
regarded as a turning point in rice biotechnology
research. This technique is now greatly favoured
over the other methods described in table 1 since
it gives a high frequency of transformation, number
of copies of trans-gene integrated into the genome
are fewer with this method and this procedure is
most cost-effective (Sonti & Sarma 1995, Rashid et
al. 1996, Wang et al. 1997, Datta et al. 1999). A
general protocol to achieve rice transformation
through this approach involves the following steps:

(i) raising of embryogenic calli from
mature seed embryos,

(ii) co-cultivation of embryogenic calli with
the competent A. fumefaciens cells
harbouring the gene of interest,
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(iii) selection of the transformed calli from
the non-transformed calli by repeated
subcultures on hygromycin (which is
often used as a selection agent)
containing media,

(iv) regeneration of shoots from the
putatively-transformed calli and
induction of rooting,

(v) transfer of tissue culture-grown
seedlings from test tubes to pots
through proper hardening treatments,

(vi) optimization of conditions for raising
the transformed plants to maturity up
to seed setting and

(vii) analysis of putatively transformed
plants by polymerase chain reaction (for
checking integration of the “foreign”
gene) and by Southern blotting (for
checking the integration as well as
for finding copy number of the
“foreign” gene in transformed tissues).

Selected steps involved in this procedure are
shown in figure 2 (legend for more details on
protocols). The seed to seed cycle in this exercise
takes 6-7 months in usual practice (figure.3 for
details on the durations of the different steps
involved in this procedure in one of the
experiments conducted in the laboratory of the
authors on Taipei 309 rice cultivar
transformation) which indicates that it is possible
to obtain T, seedlings for genetic analysis within
a period of nearly one year. The above
arguments hold true for both japonica and
indica rice cultivars and the time frame is
comparable in both the cases.

Transgenic Rice for Abiotic Stresses

The noteworthy progress made in rice molecular
biology and genetic engineering on production
of several different kinds of transgenic rice
plants as evidenced from figure 1 and table 1,
points out that the stage is all set for the
production of transgenic rice plants. The present
scenario of research on production of abiotic
stress tolerant rice can be summed up in the
following two directions:
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Mature seeds (Petriplates)
58d

Scutellum  (Petriplates)
Callus  (Petriplates)

15d - 1 month
Callus proliferation

lFresh subcuiture 5-6 d prior to infection
Infection with Agrobacterium

2-3 d of co-cultivation
NH 30 (callus proliferation and selection medium) (Petripiates)

3 subcultures of 2 weeks each
PRH 30 (pre-regeneration medium) (Petriplates)
7-8d
RH 30 (regeneration medium-shoot-let formation) (Petriplates)

2 weeks
12 MI (Fe-full; liquid medium) with NAA (rooting medium) (Flasks)

2-4 weeks
12 MI (Fe-full; liquid medium) with NAA (Test tubes)

7d
1/2 M§ (devoid of sucrose; Fe full; liquid) (Test tubes)

5-7d
Yoshida’s solution (Test tubes, pots)

80d
Seed setting

Figure 3 Summary sheet showing different stages of
raising genetically transformed rice plants (cultivar Taipei
309). The approximate duration of each stage is indicated.

(a) raising rice transgenics employing genes
which have already been characterized
and shown to work in other systems
(such as tobacco and Arabidopsis) and

(b) isolation and characterization of novel
genes from rice for augmenting the
present level of abiotic stress tolerance
(in rice but this may hold true for other
crops also once it is proven for rice).

The critical inputs for pursuing the first

direction as mentioned above involve subcloning
the requisite gene(s) in vectors which work
optimally with rice transformation, analysis of
the progenies for appropriate expression levels
and finally, testing the transformed plants for
stress tolerance at biochemical/ physiological
levels. This work appears straight-forward
horizontal expansion of scientific pursuits with
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clear technological gains. The following results
have been obtained using this approach so far:

(i) Xu et al. (1996b) have raised transgenic
rice plants (cultivar “Nipponbare”) which
over-express /1ival gene (encoding LEA
protein). R, generation transgenic rice
plants showed significantly increased
tolerance to water deficit and salinity.
Transgenic rice plants maintained higher
growth rates than non-transformed
control plants under stress conditions.
The increased tolerance was also
reflected by delayed development of
damage symptoms caused by stress and
by improved recovery upon the removal
of stress conditions.

(ii) Sakamoto et al. (1998) have produced
transgenic rice (cultivar “Nipponbare”)
over-expressing codA gene (encoding
choline oxidase), in chloroplasts as well
as in cytoplasm. Treatment with 0.15 M
NaCl inhibited the growth of both wild
type and transgenic plants in this work.
However, the transgenic plants began to
grow again at the normal rate after a
significantly less time than the wild type
plants after cessation of the salt
treatment. Inactivation of photosynthesis,
used as a measure of cellular damage,
indicated that chloroplast-COD plants
were more tolerant than cytoplasm-COD
plants to photoinhibition under salt stress
and low temperature stress.

(iii) Chen;g & Wu (1998) have produced
transgenic rice plants (cultivar
“Kenfeng”) over-expressing cord”
(encoding cold-regulated protein of 47
kDa) gene. To analyze the response of
cor47- transgenic plants to drought
stress, water was withheld from the
trays for 5 days. The stressed plants
were then supplied with water for 2
days to allow the plants to recover. The
preliminary data from this experiment
showed that R, generation coré”
transgenic plants are more tolerant to
water deficiency than control plants.

(iv) Zhu et al. (1998) have raised transgenic
rice plants over-expressing o'-pyrolline
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5-carboxylate synthase (p-5-cs) gene. In
this case also, the assessment of the
stress response of the transgenic and
control plants was made on growth basis
The 2™ generation R1 transgenic plants
showed increased biomass than the
control plants in this experiment.

It is to be noted here that transgenic plants
resulting from the above experiments have not
so far been subjected to vigorous testing for
parameters which actually define the water
relations of the cells. Rather, the approach has
been simply to test for stress protection in
terms of growth etc. during the stress period
or during recovery phase following stress
treatment. It is important that this issue is
taken in view in future research with the
available transgenic plants. Furthermore, the
production of transgenic rice plants expressing
other genes (those mentioned in the beginning
of this article) must hopefully be now a matter
of time.

The second direction involving isolation,
cloning and characterization of novel abiotic
stress tolerant genes represents a virgin area of
research. The opportunities in this venture are
enormous as only a handful of genes with a
clear role in abiotic stress tolerance have been
analyzed so far (Grover et al. 1999). In recent
years, it has been shown that regulatory genes
governing synthesis of trans-acting factor
proteins and stress- signalling molecules may
prove extremely useful in bringing about
tolerance to abiotic stresses (Grover et al. 1999).
The methods for isolation and cloning of such
genes (through differential screening of gene
libraries, differential display of cDNAs, analysis
of expressed sequence tags, genome sequencing
project) and unveiling functionality of such
clones through different methods (such as
through transgenic approach) have been
optimized for rice to a great deal. The detailed
molecular analysis undertaken on rice plant
may facilitate the work on isolation of novel
genes from this plant species more than from
other crops.
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Directions for Future Research

In order to achieve the goal of producing high-
level abiotic stress tolerant rice plants,
production of abiotic stress tolerant rice must
be taken as a programmed activity in our view.
This venture must involve efforts from breeding,
molecular biology, tissue culture and physiology
and biochemistry disciplines. The action plan of
this programme needs to address to the
following points:

(i) The molecular biology activity in such a
programme should provide inputs in
making suitable plasmid constructs with
the known genes. The exercise of vector
designing must be based on the
information available on regulatory
sequences available through different
sources (McElroy et al. 1995, Su et al.
1998, Vain et al. 1999). The selection of
promoter sequence for driving expression
of the transgene is a critical input (Chen
et al. 1998). It has recently been shown
that the most suitable strategy to express
stress- related transgenes is through
driving its expression by a promoter
which is stress-responsive, rather than
depending on constitutively-expressed
promoters (Grover et al. 1999, Kasuga
et al. 1999).

The pyramiding of selective genes by
devising suitable cloning strategies and
vector systems is another important area
of research in this context (Grover et al.
1999). The selection of single genes to be
employed for pyramiding must be based
on inputs from physiological/
biochemical components of the
programme.

Intensive basic research aiming at
identification, isolation and cloning of
newer stress-responsive genes is the need
of the hour in work on stress molecular
biology. This task involves establishment
of routine protocols for construction of
gene libraries, screening methods,
differential display of mRNAs, and
analyses of stress proteins. The newly-
identified stress- induced gene clones
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would need to be characterized with
respect to both their structural and
functional properties. The functional
properties are best characterized by
banking on reverse genetics approach or
through complementation of mutants, if
available. The specialized groups with
experience in microbiological techniques
are needed for the complementation
work.

(ii) The component of tissue culture laboratory

in this programme should involve in
optimizing rice transformation
procedures on turn-key basis. The choice
of the rice cultivar to be transformed so
far has been driven by the availability of
the method for transformation. This
approach relies on the fact that once the
transgene has been put in rice, it should
be possible to horizontally transfer it to
the destined rice cultivar by
backcrossing. The approach has another
angle also. It is possible that the gene
introduced in “transformation-friendly”
rice cultivar may not show expression
and physiological effects comparable to
the one which is the destined cultivar
grown locally in a particular stress- prone
ecosystem but is relatively recalcitrant
to transformation procedures. It is
therefore important that the gene to be
introduced must get the proper host.
The cultivars which need to be the
recipients of the trans-genes in different
ecosystems must be identified with
appropriate help from physiologists and
biochemists.

(iii) The physiology/ biochemistry component

in this activity should involve in sharing
the responsibility of providing/ and
testing various reactions/ processes for
their role in stress tolerance using suitable
plant material provided by breeders.
This group should also develop
methodologies for checking stress
tolerance with appropriate tissue
amounts, in a large- scale field
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experiment. It is possible that this activity
might need specific tanks/ chambers for
subjecting plant to stress in a field
experiment. This is perhaps the most
basic requirement for the work in
consideration.

Apart from these, development of proper
infrastructure for work on rice transgenics is an
important input. The rice plantlets regenerated
in tissue culture must be taken to field-
conditions as soon as they grow up to the
requisite growth stage in the growth chamber/
room. Since rice is a seasonal crop with specific
temperature, humidity and photoperiodic
requirements, the chances of pre-mature death
of the seedlings in culture conditions has proven
a deterrant in many experiments on this theme.
There is a need that proper infra-structure is
developed for raising rice transgenics which
may allow production of fertile transgenic rice
plants round the year. The future attempts
must also address to the inheritence of the
transgenes in succeeding generations as well as
well to the issues concerning stability or the
silencing of the introduced transgenes (Grover
et al. 1999).

Finally, it is important to appreciate that
research on abiotic stresses has so far been
supported through public sector governmental
and other donor agencies. This was needed
because this area of research has always looked
like an open- ended endeavor. With the current
developments in view, the private seed
industries would find themselves in a good
position to reap the golden harvests through
production of stress tolerant crops. The
additional support for R & D in this venture
from private agencies may make goal of
achieving higher grain yield in rice very much a
reality in near future.
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