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Various problems concerning probability measures on locally compact groups in-

volve understanding what happens in the limit when a measure, or a sequence of

measures, is operated upon by a sequence of automorphisms of the group. In the case

of Lie groups it turns out that much of the thrust of the questions can be reduced

to studying the behaviour of measures on Euclidean spaces under linear transforma-

tions. Our aim here is to describe some simple properties in this respect and their

applications to various problems; convergence of types, concentration functions, fac-

tor compactness, Levy’s measures are some of the topics to which applications will

be made.

1 Asymptotics of linear automorphisms

Let V1 and V2 be finite-dimensional vector spaces over IR. Let Hom (V1, V2) denote

the space of linear maps of V1 to V2. Let {αi} be a sequence in Hom (V1, V2).

Proposition 1.1 i) There exist a subspace U of V1 and a subsequence {αki
} of {αi}

such that αki
(v) converges for all v ∈ U , and αki

(v) →∞ for all v /∈ U .

ii) There exist a subspace W of V1 and a subsequence {αki
} of {αi} such that

the following conditions hold: a) for every w ∈ W there exists a sequence {vi} in V1

such that vi → w and {αki
(vi)} is convergent, and b) αki

(v) → ∞ for all v ∈ V1,

uniformly for v in any given compact subset of V1\W ; that is, given a compact subset

C of V1\W and a compact subset K of V2 there exists i0 such that αki
(v) /∈ K for

i ≥ i0 and v ∈ C.

Proof: i) Let U be the family of subspaces U ′ of V1 for which there exists a subsequence

{αki
} such that {αki

(v)} is convergent for all v ∈ U ′. The family U is nonempty as
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it contains the zero subspace. By dimension considerations we see that U has a

maximal element, say U . Then there exists a subsequence {αki
} such that {αki

(v)}
converges for all v ∈ U . Now let v /∈ U . We would like to show that αki

(v) → ∞.

Suppose this is not true. Then there exists a subsequence {αli} of {αki
} such that

{αli(v)} converges. Since {αli(u)} also converges for all u ∈ U it follows that {αli(u)}
converges for all u in the subspace spanned by v and U . But this contradicts the

maximality of U in U . Hence αki
(v) →∞ for all v /∈ U .

ii) The proof is similar to that of (i) so we shall be brief about some of the details.

Let W be the family of subspaces W ′ of V1 for which there exists a subsequence

{αki
} such that any w ∈ W ′ is the limit of a sequence {vi} in V1 such that {αki

(vi)}
is convergent. The family is nonempty and has a maximal element, say W . Then

clearly assertion a) holds, since W ∈ W . Now let C be any compact subset of V1\W
and suppose that αki

do not diverge to∞ uniformly on C. This means that there exist

a sequence {vi} in C and a subsequence {li} of {ki} such that {αli(vi)} is bounded in

V2. Passing to subsequences we may assume that {vi} and {αi(vi)} are convergent.

Let v ∈ C ⊂ V1\W be the limit of {vi}. Then the subspace spanned by W and v is

contained in W , contradicting the maximality of W in W . Therefore αki
(v) → ∞

uniformly on compact subsets of V1\W . This proves the proposition. 2

Remark 1.2 In general given a sequence {αi} the subspaces U and W as in the con-

clusion of Proposition 1.1 may not be unique; the conclusion may hold for different

subspaces with respect to different subsequences; however, once a subsequence satis-

fying the condition is chosen, the corresponding subspaces are determined uniquely

by the conditions to be met. Thus given a sequence we can pass to a subsequence

such that for the new sequence both the subspaces U and W as in the conclusion of

Proposition 1.1 are uniquely defined.

Example 1.3 Let V = IRn, considered along with the standard basis which we shall

denote by {e1, . . . , en}. Let αi : V → V , i = 1, 2, . . . be the linear transforma-

tions corresponding (with respect to the basis as above) to the diagonal matrices

diag (λ
(1)
i , . . . , λ

(n)
i ), where {λi} are sequences in IR∗ (nonzero real numbers). Sup-

pose that for each k = 1, . . . , n, {λ(k)
i } either converges (including possibly to 0) or

λ
(k)
i → ∞; if we start with an arbitrary sequence this always holds for some subse-

quence. It can be seen that when this holds, the conclusions as in Proposition 1.1

hold if we choose U and W to be the subspaces spanned by the ek’s such that the

sequence {λ(k)
i } converges; in this case the two subspaces coincide.

Example 1.4 Suppose that {αi} is a sequence for which there exists subspaces U

and W such that for v ∈ V1, {αi(v)} converges if and only if v ∈ U , and v is a limit
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of a sequence {vi} with {αi(vi)} convergent if and only if v ∈ W . Then clearly U

is contained in W . For sequences of diagonal matrices as in Example 1.3 we have

seen that U equals W . However in general the two subspaces need not be the same.

This can be seen from the following example. Let V = IR2, with the standard basis

{e1, e2}. Let ρ ∈ (1,∞) and βi : V → V , i = 1, 2, . . . be the linear transformations

corresponding to the diagonal matrices diag (ρ2i, ρ−2i). Also for each i let θi be the

transformation consisting of rotation of the plane by an angle π/ρi. Let αi = βiθi for

all i. Then a straightforward computation shows that (for any subsequence of {αi})
U is the zero subspace while W is the subspace spanned by e2.

For any locally compact space X we shall henceforth denote by P (X) the space of

all probability measures on X, equipped with the usual weak* topology with respect

to the space of bounded continuous functions on X; thus λi → λ for λi, i = 1, 2, . . . ,

and λ in P (X) if
∫
fd(λi) →

∫
fd(λ) for all bounded continuous functions on X.

Corollary 1.5 Let U and W be the subspaces of V1 for which the conclusion as in

Proposition 1.1 holds. If λ ∈ P (V1) is such that {αi(λ)} converges then suppλ

is contained in U . If {λi} is a sequence in P (V1) such that λi → λ and {αi(λi)}
converges then suppλ is contained in W .

Proof: Suppose that {αi(λ)} converges to a measure µ ∈ P (V2). By passing to

a subsequence and modifying notation we shall assume, as we may, that {αi(v)}
converges for all v ∈ U , and αi(v) → ∞ for all v /∈ U . Let f : V2 → [0, 1] be any

continuous function with compact support. Then∫
V2

fd(αi(λ)) =

∫
U

f ◦ αidλ+

∫
V1\U

f ◦ αidλ ≤ λ(U) +

∫
V1\U

f ◦ αidλ.

Taking limit as i→∞ we get that
∫

V2
fdµ ≤ λ(U). Since this holds for all continuous

functions f with compact support it follows that λ(U) = 1, which proves the first

assertion.

Now let {λi} be a sequence in P (V1) such that λi → λ and {αi(λi)} converges, to

say a measure µ ∈ P (V2). Passing to a subsequence we may assume that αi(v) →∞
uniformly on compact subsets of V1\W . Suppose that λ is not supported on W . Then

there exists a compact subset C of V1\W such that λ(C) > 0. Let δ = λ(C)/2 > 0.

Let K be a compact subset of V2 such that µ(K) > 1 − δ. Let Ω be a compact

neighbourhood of K. Since αi(λi) → µ and µ(K) > 1− δ it follows that αi(λi)(Ω) >

1 − δ for all large i. Let Θ be a compact neighbourhood of C in V1\W . Since

αi(v) →∞ uniformly on compact subsets of V1\W we get that αi(Θ) is disjoint from

Ω for all large i. Hence for all large i, αi(λi)(αi(Θ)) < δ, and so λi(Θ) < δ. Since
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λi → λ this implies that λ(C) ≤ δ, which is a contradiction since δ = λ(C)/2. Hence

λ is supported on W . 2

In the sequel we shall sometimes use the following terminology for subsets and

sequences in locally compact spaces. A subset of a locally compact space X is said

to be bounded if its closure X is compact. A sequence in a locally compact space

X is said to be divergent if it has no convergent subsequence, or equivalently if any

compact subset of X contains only finitely many elements of the sequence. (In the

author’s view these terms are intuitively more appealing than their counterparts, in

the context of the properties discussed here).

Let V1 and V2 be two finite-dimensional vector spaces over IR, as before. Then

Hom (V1, V2) is also a finite-dimensional vector space over IR; we shall consider it

equipped with the topology as a real vector space.

Proposition 1.6 If every v ∈ V1 can be expressed as a limit of a sequence {vi} such

that {αi(vi)} converges, then {αi} is bounded in Hom (V1, V2).

Proof: Suppose that for every v ∈ V1 there exists a sequence {vi} such that vi → v and

{αi(vi)} converges. Let {v(1), v(2), . . . , v(d)} be a basis of V1, where d is the dimension.

Let {v(j)
i }, j = 1, . . . , d, be sequences such that v

(j)
i → v(j) and {αi(v

(j)
i )} converges,

for each j. Let θi : V1 → V1 be the linear transformations defined by the conditions

θi(v
(j)) = v

(j)
i for all i = 1, 2, . . . , and j = 1, 2, . . . , d. Then αi◦θi ∈ Hom (V1, V2) for all

i. Also {αi◦θi(v
(j))} converges for all j = 1, 2, . . . , d, and therefore {αi◦θi} is bounded

in Hom (V1, V2). On the other hand {θi} converges to the identity transformation in

GL(V1). Therefore it follows that {αi} is bounded (one may consider for instance the

norms of the transformations to see this). This proves the proposition. 2

Corollary 1.7 Let λ ∈ P (V1) be such that suppλ spans V1. If there exists a sequence

{λi} in P (V1) such that λi → λ and {αi(λi)} converges then {αi} is bounded in

Hom (V1, V2).

Proof: Suppose {αi} is not bounded. Passing to a subsequence we may assume that

it is divergent (namely has no convergent subsequence). Let {αki
} be a subsequence

of {αi} and W be a subspace of V1 such that the conclusion as in Proposition 1.1

holds. Since λki
→ λ and {αki

(λki
)} converges, by Corollary 1.5 suppλ is contained

in W . Since by hypothesis suppλ is spans V1 it follows that W = V1. Proposition 1.6

therefore implies that {αki
} is bounded in Hom (V1, V2). But this is a contradiction

since {αi} was arranged to be divergent. This shows that {αi} is bounded, thus

proving the corollary. 2
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Example 1.8 Let V1 = V2 = IR. Let {θi} be a sequence of positive numbers such

that θi → ∞, and for each i let αi ∈ Hom (V1, V2) be defined by αi(t) = θit for all

t ∈ IR. Then {αi} is not bounded in Hom (V1, V2). However consider the measures λi,

i = 1, 2, . . . , defined by λi(E) = θi`(E ∩ [0, θ−1
i ]) for all Borel subset E of IR, where `

is the Lebesgue measure on IR. Then λi → δ0, the point mass at 0, while each αi(λi)

is the restriction of ` to [0, 1]. This shows that the condition in the corollary that

suppλ spans V1 can not be dropped.

Proposition 1.9 Let V1 and V2 be finite-dimensional algebras over IR, and {αi} be

a sequence of algebra homomorphisms of V1 into V2. Let U and W be subspaces of

V1 such that the conclusion as in Proposition 1.1 holds (with respect to some subse-

quences). Then U and W are subalgebras of V1.

Proof: We shall show that W is a subalgebra. A similar argument shows that U is

also a subalgebra. Let v, v′ ∈ W be given. Then there exist sequences {vi} and {v′i}
such that vi → v, v′i → v′, and {αi(vi)} and {αi(v

′
i)} are convergent. Then viv

′
i → vv′

and {αi(viv
′
i)} = {αi(vi)αi(v

′
i)} is convergent. Therefore vv′ ∈ W . This shows that

W is a subalgebra of V1. 2

Corollary 1.10 Let V1 and V2 be finite-dimensional algebras and let {αi} be a se-

quence of algebra homomorphisms of V1 into V2. Let λ ∈ P (V1) be such that suppλ is

not contained in any proper subalgebra of V1. If there exists a sequence {λi} in P (V1)

such that λi → λ and {αi(λi)} is convergent then {αi} is bounded in Hom (V1, V2).

Proof: is similar to the proof of Corollary 1.7; we need only note that W as in the

argument is now a subalgebra, by Proposition 1.9, and by hypothesis suppλ is not

contained in any proper subalgebra of V1. 2

In the following sections we shall apply these results and techniques to a variety

of topics. It may be emphasized that the presentation here is not meant to give

a comprehensive account of the work on the topic concerned. Rather, the aim is

to describe a part of it, and this turns out to be substantial, that can be obtained

using the above theme; we shall however mention along the way some key references

through which the interested reader could pursue the topic further. In a similar

spirit, wherever convenient (depending on the references cited for requisite results), we

shall restrict ourselves to second countable (and hence separable metrizable) locally

compact groups, even if the condition is not strictly needed, in the overall context of

available literature.
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2 Convergence of types and invariance groups

Specialising the results of the last sections to the case when the domain and range

spaces are the same, leads to various theorems on what is called ‘convergence of

types’.

Let V be a finite-dimensional real vector space. A probability measure λ ∈ P (V )

is said to be full if the support of λ spans V (namely it is not contained in any proper

subspace of V ). If V is an algebra then we say that λ ∈ P (V ) is a-full if the support

of λ is not contained in any proper subalgebra of V . The results above readily yield

the following theorem.

Theorem 2.1 (Convergence of types theorem) Let V be a finite-dimensional

vector space over IR and {αi} be a sequence in GL(V ). Let λ, µ ∈ P (V ) and suppose

that there exists a sequence {λi} in P (V ) such that λi → λ and αi(λi) → µ. Suppose

also that one of the following conditions holds:

i) λ and µ are full measures on V , or

ii) V is an algebra, each αi is an algebra homomorphism of V , and λ and µ are

a-full measures on V .

Then {αi} is bounded (relatively compact) in GL(V ).

Proof: By Corollaries 1.7 and 1.10 the conditions λi → λ and αi(λi) → µ imply

together with i) and ii) as above that {αi} is bounded in Hom (V, V ). For all i

let µi = αi(λi). Then the conditions in the hypothesis also imply that µi → µ

and α−1
i (µi) → λ, and hence by Corollaries 1.7 and 1.10 {α−1

i } is also bounded in

Hom (V, V ); we note in this respect that if α ∈ GL(V ) is an algebra homomorphism

then so is α−1. Together, the conclusions mean that {αi} is a bounded in GL(V ). 2

The name ‘convergence of types’ signifies the following. Two probability measures

λ, λ′ ∈ P (V ) are said to be of the same ‘type’, if there exists α ∈ GL(V ) such that

α(λ) = λ′. Theorem 2.1(i) shows that if {λi} and {λ′i} are convergent sequences in

P (V ) such that for each i the measures λi and λ′i are of the same type and if the

limits of {λi} and {λ′i} are full measures, then they are of the same type.

For any λ ∈ P (V ) we denote by I(λ) and J(λ) the subgroups of GL(V ) defined

by

I(λ) = {γ ∈ GL(V ) | γ(λ) = λ} and

J(λ) = {γ ∈ GL(V ) | γ(v) = v for all v ∈ suppλ}.
It is easy to see that I(λ) and J(λ) are closed subgroups of GL(V ), and that J(λ) is

a normal subgroup of I(λ). We note the following:
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Corollary 2.2 I(λ)/J(λ) is compact. In particular if the support of λ spans V then

I(λ) is compact.

Proof: Let W be the subspace spanned by the support of λ. Let G be the subgroup

of GL(V ) consisting of all α ∈ GL(V ) such that α(W ) = W . If α ∈ I(λ) then the

support of λ is invariant under the action of α, and hence α(W ) = W . Hence I(λ)

is contained in G. Let η : G → GL(W ) be the map defined by setting, for any

α ∈ G, η(α) to be the restriction of α to W . Clearly η is a continuous surjective

homomorphism. The kernel of η is the subgroup consisting of all α such that α(w) =

w for all w ∈ W . Since suppλ spans W the subgroup is the same as J(λ). This

yields a continuous bijective map η : G/J(λ) → GL(W ), defined by η(gJ(λ)) = η(g)

for all g ∈ G. Since I(λ) is a closed subgroup of G containing J(λ), to show that

I(λ)/J(λ) is compact it now suffices to show that η(I(λ)) is compact. Let λ′ be the

measure on W given by restriction of the measure λ on V (recall that λ is supported

on W ). Clearly η(I(λ)) consists precisely of all β ∈ GL(W ) which leave invariant

the measure λ′, namely it is the subgroup I(λ′) of GL(W ). Thus it now suffices to

prove the corollary in the special case when λ is a full measure on V . Now if λ is a

full measure then by Theorem 2.1 every sequence {αi} in I(λ) is bounded in GL(V ).

This shows that I(λ) is compact in this case. 2

Remark 2.3 We note also, in the converse direction, that given a compact subgroup

K of GL(V ) there exists λ ∈ P (V ) such that suppλ spans V and λ is K-invariant.

Furthermore, it may be noted that any compact subgroup of GL(V ) is a group of

isometries with respect to an inner product on V . Thus, for a probability measure λ

whose support spans V the linear automorphisms leaving λ invariant are isometries

with respect to an inner product.

The study of the asymptotics of measures on algebras as above can be applied to

the question of convergence of types of measures on Lie groups. Let G be a connected

Lie group and Aut (G) be the group of continuous automorphisms of G; (we consider

the latter with its usual structure as a Lie group - see [18]). Then the question of

convergence of types may be (informally) posed as follows: Let {λi} be a sequence

in P (G) and {αi} be a sequence in Aut (G) such that λi → λ and αi(λi) → µ, where

λ, µ ∈ P (G). Then under what further conditions on λ and µ, by way of ‘genericity’

of the measures which would correspond to the fullness in the classical case of IRn,

n ≥ 1, can we conclude that {αi} is bounded (relatively compact) in Aut (G)?

Suppose that the Lie group G can be realised as a subset of a real vector space

V in such a way that the automorphisms αi are restrictions of nonsingular linear

transformations of V , namely elements of GL(V ). Now if the limit measures λ and
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µ as above are generic in the sense that their supports (individually), considered

as subsets of V , span V as a vector space, then under the convergence conditions

as above Theorem 2.1 implies that {αi} is bounded, when viewed as a sequence in

GL(V ), and hence in Aut (G). If, furthermore, V can be chosen to be an algebra such

that αi are algebra automorphisms, then whenever the supports of λ and µ are known

to be not contained a proper subalgebra of V , we can conclude that {αi} is bounded.

Variations of this strategy can be used together with Lie group-theoretic techniques

to prove various convergence of types theorems for measures on Lie groups. We shall

not go into the technical details here but rather content ourselves noting some results

that can be obtained in this way; the interested reader is referred to [8] and [10] for

details.

It may be observed that for the case when G is the n-dimensional torus with n ≥ 2,

Aut (G) is an infinite discrete group, while P (G) is compact, so no convergence of

types kind of assertion can be expected for these groups. In the light of these examples

we assume that the center of G has no compact subgroup of positive dimension; this

condition also ensures that the automorphism group has only finitely many connected

components (see [6]). Under this condition we have the following.

Theorem 2.4 (see [10], Corollary 3.3) Let G be a connected Lie group such that

the center of G contains no compact subgroup of positive dimension. Let G be the Lie

algebra of G, and ρ : G→ GL(G) be the adjoint representation of G. Let λ, µ ∈ P (G)

be such that every subalgebra of EndG which contains either suppλ or suppµ also

contains ρ(G). Suppose also that the support of λ is not contained in any closed

normal subgroup H such that G/H is a vector group (topologically isomorphic to IRn

for some n). Let {αi} be a sequence of continuous automorphisms of G. Suppose that

there exists a sequence {λi} in P (G) such that λi → λ and αi(λi) → µ. Then {αi} is

bounded.

In the case of simply connected nilpotent Lie groups the convergence of types

theorem takes a simple form. The following result, which was proved earlier by

Hazod and Nobel, can be obtained as a special case of the above theorem (actually

in this case the technical issues involved are substantially simpler); see [8] for details.

Theorem 2.5 Let G be a simply connected nilpotent Lie group. Let λ, µ ∈ P (G) be

such that neither suppλ nor suppµ is contained in a (closed) connected Lie subgroup

of G. Let {αi} be a sequence of continuous automorphisms of G. If there exists a

sequence {λi} in P (G) such that λi → λ and αi(λi) → µ then {αi} is bounded.

Some other results of Hazod on convergence of types have also been also deduced

from Theorem 2.4 in [10].
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We next describe an analogue of Corollary 2.2; (see [8], Theorem 1.8).

Corollary 2.6 Let G be a connected Lie group such that the center of G has no

compact subgroup of positive dimension. Let λ ∈ P (G) and let

I(λ) = {α ∈ Aut (G) | α(λ) = λ} and

J(λ) = {α ∈ Aut (G) | α(g) = g for all g ∈ suppλ}.

Then I(λ)/J(λ) is compact. In particular if the support of λ is not contained in any

proper closed subgroup of G then I(λ) is compact.

3 Concentration functions

In this section we apply the results on asymptotics of measures to the study of what

are called concentration functions of probability measures. By and large we follow

the argument as in [9]; there are however some differences towards the end.

We begin by recalling various definitions and facts. Let G be a locally compact

group. For any µ ∈ P (G) and any compact subset K of G let

cK(µ) = supx∈G µ(Kx);

it is called the concentration function of µ; calling it a ‘function’ may seem confusing

to some readers as the implicit domain for such a function is the rather out of the

way set of all compact subsets of G; the nomenclature is however traditional, and

it may be noted in this respect that for the classical case of G = IR it suffices to

consider compact sets of the form [−t, t], on which it corresponds to a function of a

real variable. We note that if µ is ‘concentrated in a small part’ of the group, in the

intuitive sense, then cK(µ) is close to 1, while if it is ‘thinly spread’ then cK(µ) is

small.

Now, given a probability measure µ on G consider its convolution powers µn,

for n = 1, 2, . . . . How does the ‘concentration’ behave as n goes to infinity? The

vague intuitive expectation would be that if the group is noncompact the convolution

powers would ‘scatter’, so their concentration function would go to 0, for every fixed

compact subset K.

We say that µ ∈ P (G) is scattering if for every compact subsetK ofG, cK(µn) → 0

as n→∞.

For µ ∈ P (G) we denote by G(µ) be the smallest closed subgroup of G containing

the support of µ. To begin with we note the following.
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Lemma 3.1 Let G be a locally compact group and µ ∈ P (G). Then µ is scattering

as a measure on G if and only if it is scattering as a measure on G(µ).

Proof: Let K be any compact subset of G. Let x ∈ G and n ≥ 1 be such that

µn(Kx) > 0. Let g ∈ Kx ∩G(µ) (the preceding condition implies in particular that

this set is nonempty). Then x ∈ K−1g and hence

µn(Kx) = µn(Kx ∩G(µ)) ≤ µn(KK−1g ∩G(µ)) = µ((KK−1 ∩G(µ))g).

As this holds for all x ∈ G and n ≥ 1 be such that µn(Kx) > 0 it follows that for all

n the value of the concentration function of µn with respect to G, for the compact

set K is majorised by that with respect to concentration in concentration in G(µ) for

the compact set KK−1 ∩ G(µ). This shows that if µ is scattering as a measure on

G(µ) it is scattering as a measure on G. It is straightforward to verify that the other

way assertion also holds. This proves the lemma. 2

The following is a similar general fact which is easy to prove.

Lemma 3.2 Let G be a locally compact group and µ ∈ P (G). Let H be a closed

normal subgroup of G and let η : G→ G/H be the quotient homomorphism. If η(µ)

is scattering then so is µ.

Remark 3.3 LetG be a locally compact group and µ ∈ P (G). IfG(µ) has a compact

normal subgroup H such that µ(Hx) = 1 for some x ∈ G, then µ is not scattering;

in this case clearly cH(µn) ≥ µn(Hxn) = 1 for all n. The condition in the hypothesis

of the theorem below may be compared with this situation, except that the subgroup

H there need not be compact. See the remarks at the end of the section for a more

complete picture.

The following is the main result to be proved in this section.

Theorem 3.4 Let V be a finite-dimensional vector space over IR and let µ be a

probability measure on GL(V ). Suppose that G(µ) is noncompact. Then either µ is

scattering or there exists an open normal subgroup H of G(µ) such that G(µ)/H is

infinite and µ(Hx) = 1 for some x /∈ H.

The theorem enables us to conclude scattering property under various topological

and algebraic conditions. We note some consequences of the theorem before going

over to the proof. (See also Corollary 3.12 below for application to more general

situation).
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Corollary 3.5 Let V be a finite-dimensional vector space over IR and µ be a prob-

ability measure on GL(V ) such that G(µ) is noncompact. Suppose also that one of

the following conditions is satisfied:

i) G(µ) has only finitely many connected components;

ii) there is no continuous surjective homomorphism of G(µ) onto ZZ;

iii) µ is symmetric (that is, µ({x−1 | x ∈ E}) = µ(E) for all Borel subsets E of

G).

Then µ is scattering.

Proof: If µ is not scattering then by Theorem 3.4 there exists an open normal subgroup

H of G(µ) such that G(µ)/H is infinite and µ(H) = 1; in this case clearly G(µ)/H

is isomorphic to ZZ and µ is not symmetric. This shows that the assertion as in the

corollary holds under conditions ii) or iii). Condition i) is a particular case of ii).

This proves the corollary. 2

We begin with some preliminary general results. The essential ideas involved in

the proofs of the next two Propositions, which play a crucial role in studying the

question of scattering, go back to Csiszár [5].

Proposition 3.6 Let G be a locally compact group and µ ∈ P (G). Then for any

compact subset K of G, the sequence {cK(µn)} is nonincreasing. Furthermore if lK
is the limit of the sequence, then either lK = 0 for all compact subsets K, or for every

ε > 0 there exists a compact subset K(ε) such that lK(ε) > 1− ε.

Proof: Let K be any compact subset of G. For any n > m and x ∈ G we have

µn(Kx) =

∫
G

µm(Kxy−1)dµn−m(y) ≤ cK(µm),

and hence the sequence {cK(µn)} is nonincreasing. For any compact subset K of G

let lK denote the limit of the sequence {cK(µn)}. Suppose that there exists a compact

subset K of G such that lK > 0. Let ε > 0 be given, and let δ = lKε/2. There exists

m such that cK(µm) ≤ lK + δ. Let C be a compact symmetric subset of G such that

µm(C) > 1− δ. Let n > m and x ∈ G be arbitrary. Then

µn(Kx) =

∫
CKx

µm(Kxy−1)dµn−m(y) +

∫
G\CKx

µm(Kxy−1)dµn−m(y).

For y /∈ CKx the sets Kxy−1 and C are disjoint and hence µm(Kxy−1) ≤ δ, and

hence the second term above is at most δ. On the other hand the first term is at most
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cK(µm)µn−m(CKx) ≤ (lK +δ)µn−m(CKx). Thus µn(Kx) ≤ (lK +δ)µn−m(CKx)+δ.

Since this holds for all x ∈ G we get that cK(µn) ≤ (lK +δ)cCK(µn−m)+δ. Passing to

limit as n→∞ we get that lK ≤ (lK+δ)lCK+δ. Hence lCK ≥ (lK−δ)/(lK+δ) > 1−ε.
This proves the proposition. 2

Proposition 3.7 Let G be a locally compact second countable group and µ ∈ P (G).

If µ is not scattering then there exists a sequence {gn} in G(µ) such that {µng−1
n } is

relatively compact.

Proof: In view of Proposition 3.1 we may assume that G = G(µ). Suppose µ is

not scattering. Then by Proposition 3.6 there exists a compact subset K of G such

that cK(µn) > 1
2

for all n. Therefore there exists gn ∈ G, for each n, such that

µn(Kgn) > 1
2
.

Similarly for any t > 0 there exist a compact subset Kt and a sequence {g(t)
n } such

that µn(Ktg
(t)
n ) > 1− t for all n. Then for t < 1

2
and any n, Ktg

(t)
n ∩Kgn is nonempty;

this implies that g
(t)
n ∈ K−1

t Kgn, and in turn that Ktg
(t)
n is contained in KtK

−1
t Kgn.

Thus for every t > 0 there exists a compact subset Ct, namely Ct = KtK
−1
t K, such

that (µng−1
n )(Ct) = µn(Ctgn) > 1− t. This shows that {µng−1

n } is relatively compact

(see [26], Chapter II, Theorem 6.7). This proves the proposition. 2

We next note the following observation due to Riddhi Shah.

Lemma 3.8 Let G be a locally compact second countable group and µ ∈ P (G). Let

{gn} be a sequence in G such that {µng−1
n } is relatively compact. Then {gnµg

−1
n } is

relatively compact.

Proof: We have µn+1g−1
n = (µng−1

n )(gnµg
−1
n ) for all n. Since {µn+1g−1

n } and {µng−1
n }

are relatively compact the preceding equation implies that {gnµg
−1
n } is relatively

compact (see [26], Chapter III, Theorem 2.1). 2

We now recall the following result due to A. Mukherjea [24]; a proof starting from

basic principles may be found in [9], Appendix; (though in [9] the group is assumed

to be second countable the assumption is not needed in the proof).

Proposition 3.9 Let G be a locally compact group. Let µ ∈ P (G) be such that {µn}
is relatively compact. Then G(µ) is compact.

The following Proposition, first noted in [4], settles the questions of decay of

concentration functions for the case of abelian groups.
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Proposition 3.10 Let G be a locally compact second countable abelian group and

µ ∈ P (G). Then µ is scattering if and only if there does not exist any compact open

subgroup K of G(µ) such that µ(gK) = 1 for some g ∈ G(µ).

Proof: The ‘only if’ part is immediate from Remark 3.3. We now prove the ‘if’ part.

In view of Proposition 3.1 without loss of generality we may assume G = G(µ).

Suppose that µ is not scattering. Then by Proposition 3.7 there exists a sequence

{gn} such that {µngn} is relatively compact. Let Ĝ be the dual group of G, and

f = µ̂, the Fourier transform of µ. Then the Fourier transform of µngn is ĝnf
n, for

any n, ĝn being the evaluation character corresponding to gn defined by ĝn(χ) = χ(gn)

for all χ ∈ Ĝ. If λ is a limit point of {µngn} then for any χ ∈ Ĝ, λ̂(χ) is a limit of a

subsequence of ĝnf
n(χ). Since |ĝnf

n| = |fn| this implies that for any χ ∈ Ĝ, |λ̂(χ)| is
either 0 or 1; furthermore, if |f(χ)| < 1 then λ̂(χ) = 0, and since |f(χ)| ≤ 1 it follows

that |f(χ)| = 1 whenever |λ̂(χ)| = 1. As |λ̂| is a continuous function this implies that

the set Ω = {χ ∈ Ĝ | |λ̂(χ)| = 1} is an open and closed neighbourhood of the identity

in Ĝ, and |f(χ)| = 1 for all χ ∈ Ω. Being an open and closed neighbourhood of the

identity, Ω contains an open subgroup of Ĝ, say Ψ. Let H be the annihilator of Ψ in

G. As Ψ is open in Ĝ, H is a compact subgroup, and Ψ is the dual group of G/H.

The restriction of f to Ψ is the Fourier transform of the image of µ on G/H. Since

the restriction has absolute value 1 identically, it follows that the image of µ on G/H

is a point mass. Thus there exists g ∈ G such that µ(gH) = 1. Since G = G(µ), it

follows that the subgroup generated by H and g is dense in G. Thus H is a compact

subgroup and G/H is monothetic. Therefore it follows that there exists a compact

open subgroup K of G containing H. Clearly µ(gK) = 1; this proves the proposition.

2

We next prove the following result which covers a special case of Theorem 3.4,

with a stronger conclusion.

Proposition 3.11 Let V be a finite-dimensional vector space over IR. Let W be a

closed subgroup of GL(V ) topologically isomorphic to IRd for some d ≥ 0, and let C

be a compact subgroup of GL(V ) normalising W . Let µ be a nonscattering probability

measure on GL(V ) such that G(µ) is contained in the closed subgroup CW . Then

there exist a compact open normal subgroup K of G(µ) and x ∈ G(µ) such that

µ(Kx) = 1.

Proof: To begin with we note that by replacing C by a smaller subgroup if necessary,

we may assume that G(µ)W is dense in CW . We now proceed by induction on d.

If d = 0 the assertion is obvious. We may assume that the contention holds for

lower values of d than the dimension of W under consideration. We view W as a
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vector space and considering the action of C on W by conjugation, express W as a

direct sum W0 ⊕W1, where W0 is the vector subspace consisting of all points fixed

under the action of C, and W1 is a C-invariant vector subspace containing no nonzero

fixed point. Then CW is a direct product of W0 and CW1. Let p0 and p1 be the

projection homomorphisms onto W0 and CW1 respectively. Suppose that W0 is of

positive dimension. So W1 is of lower dimension than W , and hence by the induction

hypothesis the contention of the theorem holds for CW1. Since µ is nonscattering so

is p1(µ), and hence G(p1(µ)) contains a compact open normal subgroup K such that

p1(µ) is supported on a coset of K. Since W0 is a vector space and µ is nonscattering

by Proposition 3.10 p0(µ) is a point measure. Now let x ∈ suppµ. Considering its

projections under p0 and p1 we see that the set (suppµ)x−1 is contained in K. Hence

µ(Kx) = 1. This proves the proposition in the case at hand. We may therefore

suppose that W0 is trivial; that is, the C-action on W has no nonzero fixed points.

Since µ is nonscattering, by Propositions 3.7 there exists a sequence {gn} in CW

such that {µng−1
n } is relatively compact. Hence by Lemma 3.8 {gnµg

−1
n } is relatively

compact. If G(µ) is compact then the assertion in the proposition is obvious. Now

suppose that G(µ) is noncompact. Then by Proposition 3.9 {gn} is unbounded. By

passing to a subsequence of {gn} we get a divergent sequence {gi} in CW such that

{giµg
−1
i } converges. Since C is compact we may also assume {gi} to be contained in

W .

Now let E = Hom (V, V ) and consider the maps x 7→ gixg
−1
i of E into itself.

Since {giµg
−1
i } converges, by Corollary 1.5 suppµ is contained in the subspace E1 of

E consisting of all x such that {gixg
−1
i } is converges. For c ∈ C, let αc : W → W

be the map defined by αc(y) = (c−1yc)y−1 for all y ∈ W . Since gi ∈ W for all i, for

x ∈ cW , where c ∈ C, we have gixg
−1
i = gicg

−1
i = cαc(gi).

Now consider any x ∈ cW ∩ (suppµ), where c ∈ C. Then {gixg
−1
i } is convergent,

and hence so is {αc(gi)}. In any vector space W given a subset S there exists a

smallest vector subspace U such that the image of S in W/U is relatively compact.

Let U be the smallest subspace of W as above such that the image of {gi} in W/U

is relatively compact; since {gi} is unbounded the subspace U is nontrivial. As αc is

a linear map on W and {αc(gi)} is convergent it follows that U is contained in the

kernel of αc. Therefore U is centralised by c, and hence also by x. As this holds for

all x in the support of µ it follows that G(µ) centralises U . Since U ⊂ W it follows

that U is centralised by G(µ)W . Since by our assumption in the beginning of the

proof G(µ)W is dense in CW , it follows that U is centralised by CW . Therefore, in

particular, U is pointwise fixed under the conjugation action of C. However this is a

contradiction since U is a nonzero subspace of W , and by our choice the latter has no

nonzero fixed point. This shows that G(µ) has to be compact, in the case at hand.

This proves the proposition. 2

14



Proof of Theorem 3.4: We shall proceed by induction on the dimension of V . If the

dimension is 1 then GL(V ) is abelian and the theorem follows from Proposition 3.10.

Now let V be of higher dimension and suppose that the contention of the theorem

holds for all vector spaces of dimension less than that of V . Let GL1(V ) be the

subgroup of GL(V ) consisting of elements of determinant ±1. It is a closed normal

subgroup and the quotient is topologically isomorphic to IR. Consider the image of

µ in the quotient, say µ. If µ is not a point mass then by Proposition 3.10 µ is

scattering, and hence by Lemma 3.2 so is µ. Now suppose that µ is a point mass. If

it is a point mass at a nonzero point then it can be verified that the contention of

the theorem holds if we choose H to be GL1(V ) ∩ G(µ). Therefore we may assume

that the image is the point mass at the zero in the quotient group, which means that

G(µ) is contained in GL1(V ).

Now suppose that µ is not scattering. Then by Proposition 3.7 there exists a

sequence {gn} in G(µ) such that {µng−1
n } is relatively compact. Since by hypothesis

G(µ) is noncompact, by Proposition 3.9 it follows that {gn} is not relatively compact.

Also, by Lemma 3.8 it follows that {gnµg
−1
n } is relatively compact. Let {e1, . . . , ed},

where d is the dimension of V , be a basis of V , and for each n let gn = θ′nanθn

be a polar decomposition, where θ′n and θn are contained in the orthogonal group

(corresponding to an inner product) and an are represented (with respect to the

basis {e1, . . . , ed}) by diagonal matrices with positive entries in the increasing order,

as diag (λ
(1)
n , . . . , λ

(d)
n ); thus {λ(k)

n }, k = 1, . . . , d, are sequences of positive numbers

such that λ
(1)
n ≤ λ

(2)
n ≤ · · · ≤ λ

(d)
n for each n. We note that since {gnµg

−1
n } is relatively

compact {anθnµθ
−1
n a−1

n } is also relatively compact.

We can choose an increasing sequence {ni} of natural numbers such that {gni
}

is divergent, {θni
} is convergent, {ani

θni
µθ−1

ni
a−1

ni
} is convergent, and for each k =

1, . . . , d, λ
(k)
ni either converges or diverges, as i → ∞. We note that since {gni

} is

divergent and the determinants of gn are ±1, λ
(1)
ni → 0 and λ

(d)
ni →∞, as i→∞. Let

θ denote the limit of {θni
}.

Now for each i let µi = θni
µθ−1

ni
. Then {ani

µia
−1
ni
} is convergent. We view µ

and µi as measures on E = Hom (V, V ). For any g ∈ GL(V ) the map x 7→ gxg−1

for all x ∈ E is a linear transformation of E. For all 1 ≤ p ≤ d, and 1 ≤ q ≤ d

let epq ∈ E be the transformation corresponding to the matrix whose (p, q) entry

is 1 and all other entries are 0. Then {epq | p, q = 1, . . . , d} is a basis of E. For

a = diag (λ(1), . . . , λ(d)) ∈ GL(V ) the corresponding map x 7→ axa−1 for all x ∈ E is

represented by a diagonal matrix with respect to the basis {epq | p, q = 1, . . . , d}, the

eigenvalue corresponding to epq being λ(p)/λ(q). Since µi → θµθ−1 and {ani
µia

−1
ni
} is

convergent, by Corollary 1.5 (see also Example 1.3) this implies that θµθ−1 is sup-

ported on the subspace of E spanned by the epq’s such that {λ(p)
ni /λ

(q)
ni } is convergent.
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Since λ
(1)
n ≤ λ

(2)
n ≤ · · · ≤ λ

(d)
n for each n, λ

(1)
ni → 0 and λ

(d)
ni → ∞, it follows that

there exists a k, 1 ≤ k < d such that λ
(p)
ni /λ

(q)
ni → ∞ whenever p > k and q ≤ k.

Thus every element of the support of θµθ−1 leaves invariant the subspace spanned

by {e1, . . . , ek}. Then x(V1) ⊂ V1 for all x in the support of µ, where V1 is the sub-

spaces of V spanned by {θ−1e1, . . . , θ
−1ek}. Hence G(µ) is contained in the subgroup

P = {g ∈ GL1(V ) | g(V1) = V1}. By modifying the initial choice of the basis we may

assume that V1 is the subspace spanned by {e1, . . . , ek}; this is strictly not necessary

for the following argument, but it will be convenient in following the proof.

Now let V2 be a subspace complementary to V1 in V , and let ψ1 : P → GL(V1)

and ψ2 : P → GL(V2) be the maps defined by setting ψ1(g) to be the restriction of

g to V1 and ψ2(g) the factor of g on V2. Since by assumption µ is not scattering,

ψ1(µ) and ψ2(µ) are non-scattering. Hence by the induction hypothesis for each of

j = 1 and 2, either G(ψj(µ)) is compact or there exists an open normal subgroup

Hj of G(ψj(µ)) such that G(ψj(µ))/Hj is infinite and ψj(µ)(Hjxj) = 1 for some

xj ∈ G(ψj(µ))\Hj. If the latter condition holds for either j = 1 or 2 then there

exists an open normal subgroup H of G(µ) such that µ(Hx) = 1 for some x /∈ H,

and the contention of the theorem holds in this case. Therefore we may assume that

G(ψ1(µ)) and G(ψ2(µ)) are both compact. Now let W = kerψ1 ∩ kerψ2, namely the

subgroup of P consisting of all g such that the restriction to V1 is the identity and the

factor on V2 is the identity (these transformations are represented by upper triangular

rectangular block matrices if V1 and V2 are subspaces spanned by {e1, . . . , ek} and

{ek+1, . . . , ed} respectively). Let C be the subgroup of G(ψ1(µ)) × G(ψ2(µ)), the

latter is a subgroup of GL(V1)×GL(V2) which we consider canonically as a subgroup

of GL(V ), via the decomposition of V as V1 ⊕ V2. Then C normalises W and G(µ)

is contained in CW .

Observe thatW is a vector group; in fact it is canonically isomorphic to Hom (V2, V1).

Since µ is not scattering and G(µ) is contained in CW , by Proposition 3.11 it fol-

lows that there exist a compact open normal subgroup H and x ∈ G(µ) such that

µ(Hx) = 1. Also, since G(µ) is noncompact, G(µ)/H is infinite and x /∈ H. This

proves the theorem. 2

A locally compact group G is said to be almost connected if G/G0 is compact,

where G0 denotes the connected component of the identity in G. From the case of

subgroups of linear groups we now deduce the following result, using some general

facts.

Corollary 3.12 Let G be any almost connected locally compact noncompact group

and µ be a probability measure on G such that the support of µ is not contained in

any proper closed subgroup of G. Then µ is scattering.
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Proof: Any G as in the hypothesis admits a compact normal subgroup M such that

G/M is a noncompact Lie group ([23], § 4.6). By Lemma 3.2 it suffices to show that

the image of µ on G/M is scattering, and hence we may without loss of generality

assume that G is a noncompact Lie group with finitely many connected components.

To prove the corollary it would therefore suffice, in view of Corollary 3.5(i), to know

that any such Lie group admits a representation ρ : G → GL(V ) over a finite-

dimensional vector space V , such that ρ(G) is noncompact. This can be seen to

be the case, using some structure theory for Lie groups. Let G0 be the connected

component of the identity inG. If the image ofG0 under its adjoint representation has

noncompact closure, then the assertion is obvious, since the representation extends

to G. If not, then G0 is a direct product of a compact group with an abelian group,

and passing to quotient modulo a compact normal subgroup we may assume G0 to

be IRd for some d. Then a quotient of G by a finite normal subgroup is a group of

euclidean motions, and admits a faithful representation in which the image is closed.

This proves the corollary. 2

The following simple example shows that G(µ) being noncompact does not imply

that µ is scattering, even for measures on linear groups.

Example 3.13 Let α ∈ (0, 1) and G = L ·C be the semidirect product where L = IR

and C = ZZ and the action of C on L is given by ntn−1 = αnt for all n ∈ C = ZZ

and t ∈ L = IR. Let I = [0, 1] and ` denote the Lebesgue measure on I, viewed

as a measure on IR. Let µ be the measure on G defined by µ(E × {1}) = `(E),

and µ(E × {k}) = 0 for k 6= 1, for any Borel subset E of IR. Then G(µ) = G

which is noncompact. We write µ as λg, where λ is supported on L and g is the

generator of C corresponding to 1 ∈ ZZ. Then for n ≥ 2 we have µn = (λg) · · · (λg) =

λ(gλg−1)(g2λg−2) · · · (gn−1λg−(n−1))gn. It can be seen that for all n the measure

λ(gλg−1)(g2λg−2) · · · (gn−1λg−(n−1)) is supported on the subset, say K, of L which

corresponds to the interval [0, (1− α)−1] in IR, under the identification of L with IR.

It follows that cK(µn) = 1 for all n. Hence µ is not scattering.

Corollary 3.12 was proved, for a connected locally compact group, in [14], via a

stronger notion of ‘collapsible measures’. The study of collapsible measures, which

we shall not go into here, also depends on techniques analogous to those discussed

here.

A more general result on concentration functions, valid for all locally compact

groups, was proved around the same time in [21]. A complete characterisation of

the scattering condition for measures on locally compact groups has been given by

Jaworski; see [19] and [20]. It is shown in particular that if G is a noncompact
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locally compact group and there exists µ ∈ P (G) such that G(µ) = G which is not

scattering then G is a semidirect product of ZZ with a subgroup N of G which is

‘contractive modulo a compact subgroup’ under the action of a generator of ZZ and µ

is supported on a nontrivial coset of N in G. It is also shown that if G is unimodular

then µ ∈ P (G) such that G(µ) = G is nonscattering if and only if it is supported on

nontrivial coset of a compact subgroup.

4 Factors and factor compactness

In this section we apply the study of asymptotics of measures to ‘factor compactness’.

The main ideas involved are taken from [11] and [12].

Let G be a locally compact group and let µ be a probability measure on G. A

measure λ ∈ P (G) is called a factor of µ if there exists a ν ∈ P (G) such that µ = λν =

νλ; sometimes a factor in this sense is called a two-sided factor to distinguish from the

notion of a one-sided factor, but we will be concerned with only one notion of factors,

as above. We shall denote by F (µ) the set of all factors of µ. Recall that G(µ) denotes

the smallest closed subgroup of G containing the support of µ. We shall denote by

N(µ) the normaliser of G(µ) in G, namely N(µ) = {g ∈ G | gG(µ)g−1 = G(µ)}. We

first note the following.

Proposition 4.1 For any λ ∈ F (µ) the support of λ is contained in N(µ).

Proof: Let ν ∈ P (G) be such that µ = λν = νλ. Then (suppλ)(supp ν) and

(supp ν)(suppλ) are dense subsets of suppµ. Let g ∈ suppλ be given. Let x ∈ supp ν

and y ∈ suppλ be arbitrary. Then we have g(xy)g−1 = (gx)(yx)(gx)−1, and by the

observations above gx, yx and gx are contained suppµ, so gxyg−1 is contained in

G(µ). As this holds for all x ∈ supp ν, y ∈ suppλ and (supp ν)(suppλ) is dense in

suppµ it follows that gzg−1 ∈ G(µ) for all z ∈ suppµ and hence for all z ∈ G(µ).

Similarly, using the relation g−1(yx)g = (xg)−1(xy)(xg) we conclude that g−1zg ∈
G(µ) for all z ∈ G(µ). This shows that g ∈ N(µ), thus proving the proposition. 2

Let Z(µ) be the centraliser of suppµ in G, namely the subgroup of G consisting

of all g in G such that gx = xg for all x ∈ suppµ. We note that for any λ ∈ F (µ)

and g ∈ Z(µ) we have λg ∈ F (µ), since if ν is such that µ = λν = νλ then

µ = (λg)(g−1ν) = (g−1ν)(λg); more generally this shows also that if g ∈ G is such

that gµg−1 = µ then for any λ ∈ F (µ), λg ∈ F (µ).

One question of interest is whether modulo the translations by elements of Z(µ)

the set of factors is compact, and in particular whether F (µ) is compact when Z(µ)

is compact.
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Proposition 4.2 Let G be a locally compact group and let µ ∈ P (G). Let {λn} be

a sequence of factors of µ. Then there exists a sequence {gn} in N(µ) such that the

following conditions are satisfied.

i) the sequences {gnµg
−1
n } and {g−1

n µgn} are relatively compact;

ii) if F is a closed normal subgroup of G and η : G→ G/F is the natural quotient

map, then {η(gn)} is a relatively compact subset of G/F if and only if there exists a

sequence {xn} in F such that {λnxn} is relatively compact in P (G).

Proof: For each n let νn ∈ P (G) be such that µ = λnνn = νnλn. Let {Km} be a

sequence of compact subsets of G such that µ(Km) > 1 − 4−(m+1) for all m. For all

m,n let

Em
n = {g ∈ G | λn(Kmg

−1) > 1− 2−m},

and let Fn = ∩∞m=1E
m
n for all n. Then we have

µ(Km) = (λnνn)(Km) =

∫
Em

n

λn(Kmg
−1)dνn(g) +

∫
G\Em

n

λn(Kmg
−1)dνn(g)

and therefore

1− 4−(m+1) ≤ µ(Km) ≤ νn(Em
n ) + (1− 2−m)νn(G\Em

n ) = 1− 2−mνn(G\Em
n ).

Hence νn(G\Em
n ) ≤ 2−(m+2) for all m and n, and in turn

νn(G\Fn) ≤ Σm 2−(m+2) = 1/4,

for all n. Similarly we put

Bm
n = {g ∈ G | λn(g−1Km) > 1− 2−m},

for all m and n, and Cn = ∩∞m=1B
m
n , for all n, and conclude that νn(G\Cn) ≤ 1/4.

It follows that νn(Fn ∩ Cn) ≥ 1/2. Therefore we can pick gn ∈ Fn ∩ Cn, which in

view of Proposition 4.1 may further be assumed to be contained in N(µ). Let {gn}
be a sequence so formed. From the definition of Fn it follows that λn(Kmg

−1
n ) >

1− 2−m for all m and n, which shows that the {λngn} is relatively compact (see [26],

Chapter II, Theorem 6.7). Since µ = λnνn = (λngn)(g−1
n νn) for all n, the preceding

conclusion implies also that {g−1
n νn} is relatively compact (see [26], Chapter III,

Theorem 2.1). Similarly, using that gn ∈ Cn and µ = νnλn for all n we conclude

that {gnλn} and {νng
−1
n } are relatively compact. Now, gnµg

−1
n = (gnλn)(νng

−1
n ), and

g−1
n µgn = (g−1

n νn)(λngn) for all n, and hence it follows that {gnµg
−1
n } and {g−1

n µgn}
are relatively compact.
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ii) Now let F be a closed normal subgroup of G, η : G→ G/F be the quotient map,

and suppose that {η(gn)} is relatively compact in G/F . Then there exists a sequence

{xn} in F such that {x−1
n gn} is relatively compact. Now, λnxn = (λngn)(x−1

n gn)−1 for

all n, and since {λngn} and {x−1
n gn} are relatively compact this implies that {λnxn}

is relatively compact. This proves the ‘only if’ part of ii). Conversely suppose that

there exists a sequence {xn} in F such that {λnxn} is relatively compact. By the

choice of the gn’s {λngn} is also relatively compact, and hence we get that {x−1
n gn}

is relatively compact. Therefore {η(gn)} is relatively compact. This proves ii), and

completes the proof of the proposition. 2

We shall now discuss factor compactness of measures on linear groups. Let V

be a finite-dimensional vector space over IR. A subgroup G of GL(V ) is said to be

algebraic if there exists a polynomial function on GL(V ) (namely a function which is

a polynomial in the coordinates when GL(V ) is realised as GL(d, IR) with respect to a

- any - basis of V ) such that G = {x ∈ GL(V ) | P (x) = 0}; (over a general field such

an object is defined using a finite collection of polynomials, but over the reals a single

polynomial serves the purpose!). Many groups like SL(V ), the subgroup consisting of

elements which correspond to upper triangular matrices with respect to a fixed basis,

the orthogonal subgroups with respect to inner products and more generally with

respect to quadratic forms, are algebraic subgroups. A subgroup is said to be almost

algebraic if it is a subgroup of finite index in an algebraic subgroup. We note that

the centraliser of any subset of GL(V ) and the normaliser of an algebraic subgroup

are algebraic subgroups of GL(V ). We note also that images of almost algebraic

groups under homomorphisms which are restrictions of algebraic homomorphisms

of the ambient algebraic groups, are almost algebraic. (see [2] and [3] for general

references in this respect; see also [1] and [30], Chapter 3).

Theorem 4.3 Let V be a finite-dimensional vector space, and let G be an almost

algebraic subgroup of GL(V ). Let µ be a probability measure on G. Then F (µ)/Z(µ)

is relatively compact; that is, for any sequence {λn} of factors of µ there exists a

sequence {zn} in Z(µ) such that {λnzn} is relatively compact.

Proof: To begin with we note that as Z(µ) is almost algebraic, its normaliser is

an almost algebraic subgroup. Also the latter contains the normaliser of G(µ) and

hence by Proposition 4.1 the supports of all factors of µ are contained in it. Therefore,

replacing G by the normaliser we may without loss of generality assume that Z(µ)

is normal in G. Now let {λn} be a sequence of factors of µ. Let {gn} be a sequence

in N(µ) such that the assertions as in Proposition 4.2 are satisfied. We view µ as

a measure on E = Hom(V, V ). For each n let αn : E → E be the map defined by

αn(x) = gnxg
−1
n for all x ∈ E. Then αn ∈ GL(E) for all n and by Proposition 4.2
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{αn(µ)} and {α−1
n (µ)} are relatively compact. Then by Corollary 1.5 there exists a

subsequence of {αn}, which also we shall write as {αn} (by passing to a subsequence

and modifying the notation), such that the support of µ is contained in the subspace,

say E1, consisting of v in E such that both {αn(v)} and {α−1
n (v)} are convergent.

Since each αn is an algebra automorphism of E it follows that E1 is a subalgebra of

E, containing the identity. Let W be the smallest subalgebra containing the support

of µ and the identity. Then for any g ∈ suppµ and any natural number k, g(suppµ)k

is contained in W . Hence gW ⊂ W , and by dimension consideration gW = W for

all g ∈ suppµ. Since W contains the identity this implies that it contains g−1 for all

g ∈ suppµ, and hence G(µ) is contained in W .

Now, W is contained in E1, and hence {αn(v)} and {α−1
n (v)} are convergent for all

v ∈ W . Furthermore, since each gn normalises G(µ), W is invariant under each αn.

Now for every n let βn be the restriction of αn to W . By Proposition 1.6 the preceding

condition implies that {βn} and {β−1
n } are both bounded sequences in Hom (W,W ).

Therefore {βn} is a bounded sequence in GL(W ). Now let G1 be the subgroup of G

consisting of all elements g such that gWg−1 = W . Then G1 is an almost algebraic

subgroup of GL(V ). Let η : G1 → GL(W ) be the map associating to each g ∈ G1 the

map w 7→ gwg−1 for all w ∈ W . Then the image of η is an almost algebraic subgroup

of GL(W ), and in particular it is a closed subgroup. We note that the kernel of

η is Z(µ). In view of the preceding observation it now follows that gZ(µ) 7→ η(g)

is a homeomorphism of G1/Z(µ) onto η(G1). We note that η(gn) = βn for all n.

Thus {η(gn)} is a bounded sequence in GL(W ). Since {gn} also satisfies the second

statement in Proposition 4.2, choosing F = Z(µ), we get that there exists a sequence

{zn} in Z(µ) such that {λnzn} is relatively compact. This proves the theorem. 2

Corollary 4.4 Let G be an almost algebraic subgroup of GL(V ), where V is a finite-

dimensional vector space. Let µ be a probability measure on G such that Z(µ) is

compact. Then µ is factor compact.

Proof: Under the hypothesis as above Theorem 4.3 implies every sequence of factors

of µ is relatively compact. Any limit point of such a sequence can also be seen to

be a factor of µ. Also, if {λn} is a sequence in F (µ) such that λn → λ, and {νn}
is a sequence such that µ = λnνn = νnλn for all n, then {νn} has a subsequence

converging to say a probability measure ν and then we get that µ = λν = νλ, and

so λ ∈ F (µ). This shows that F (µ) is compact, namely µ is factor compact. 2

The following examples show the necessity of the conditions as in Theorem 4.3

and Corollary 4.4.

Examples: Let H be the Heisenberg group consisting of all 3 × 3 upper triangular

unipotent matrices, namely (xij) such that xij = 0 if i > j and xij = 1 for i = j,
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the remaining variables being free. We equip H with the topology as a group of

matrices. The center, say Z, of H can be seen to be the one-parameter subgroup

consisting of matrices which satisfy furthermore the conditions x12 = x23 = 0, x13

being a free variable. Now let D be an infinite cyclic subgroup of Z. Then D is a

closed normal subgroup of H. Let G = H/D, which is a connected Lie group. Let C

be the subgroup Z/D. Then C is compact and it is the center of G. Let m be the

normalised Haar measure on C, viewed as a measure on G. Let λ ∈ P (G) be such

that suppλ is not contained in any proper closed subgroup of G, and let µ = λm.

Then Z(µ) = Z(λ) = C, which is compact. On the other hand mg is a factor of µ

for every g ∈ G, which shows that F (µ) is not compact.

In the above example the Lie group is not a linear group (not a subgroup of GL(V )

for any vector space V ); (this follows from the fact that under any representation

ρ : G → GL(V ) the image ρ([G,G]) of the commutator subgroup must - by Lie’s

theorem - consist of unipotent elements, while on the other hand since [G,G] = C

it must be compact, which implies that it must be trivial). An example of a linear

group (not almost algebraic) with a similar property can be given as follows. Let T

be the two-dimensional torus, and let V be a 4-dimensional vector space equipped

with a T -action which is faithful and has no nonzero fixed point. Let L be a one-

parameter Lie subgroup of T which is dense in T ; as a Lie subgroup L is isomorphic

to IR. We now form a Lie group G, as the semidirect product of L and V , (under

the action obtained by restricting the T -action to L). Under the condition as above

there exists t ∈ L such that the action of t on V has no nonzero fixed point. Now let

λ be a probability measure on V invariant under the T -action on V , and let µ be the

measure on G defined by µ = tλ. Then it can be seen that Z(µ) is trivial. On the

other hand for any s ∈ L, the point mass δs at s is a factor of µ, and hence F (µ) is

noncompact.

Remark 4.5 Let G be a Lie group and µ ∈ P (G). Let T (µ) = {g ∈ G | gµ = µg}.
As was noted earlier, for any λ ∈ F (µ) and g ∈ T (µ), λg ∈ F (µ). Hence in analogy

with Theorem 4.3 one may ask (the weaker question) whether F (µ)/T (µ) is compact.

This can be seen to hold in either of the above examples. The answer to the question

is not known so far.

A larger class of Lie groups called ‘weakly algebraic groups’ was described in [11]

with the property that F (µ)/Z(µ) is compact, in the sense as in Theorem 4.3, for all

µ ∈ P (G). A somewhat larger class of groups with this property was also described

in [13].

A probability measure µ on a locally compact group is said to be root compact if

the subset of P (G) consisting of all λk where k is a natural number and λ is a l-th
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root of µ for some k ≤ l, is relatively compact; each such λk is a factor of µ and

hence it follows that every factor compact measure is root compact. This fact is used

crucially in [12] in proving the embedding theorem (see the section of M. McCrudden

in these notes).

5 Levy’s probability measures

Let G be a locally compact group. A probability measure µ on G is called Levy’s

measure if it is the limit of a sequence of measures of the form {giαi(µ1 ∗µ2 ∗ · · ·µi)},
where {gi} is a sequence in G, {αi} is a sequence of automorphisms of G, and {µi} is a

sequence in P (G) such that {αi(µj) | 1 ≤ j ≤ i} is an infinitesimal triangular system,

that is, {αi(µj)} converges to the point mass at the identity as i→∞, uniformly in j.

Levy’s measures on Euclidean spaces were described by K. Urbanik [28], and Riddhi

Shah [27] studied them in the case of nilpotent Lie groups. In a paper of Riddhi

Shah and the present author [15] it was shown that the class of nilpotent groups is

the natural setting for the measures, at least among connected Lie groups, in the

sense that if a connected Lie group admits a Levy’s measure such that G(µ) = G and

suppµ contains the identity element, then G is a nilpotent Lie group. Here I discuss

the role of asymptotics of measures under automorphisms in proving such a result.

The proof crucially depends on the following theorem.

Theorem 5.1 Let G = GL(n, IR), the group of all n× n matrices with real entries.

Let U be the subgroup consisting of all upper triangular unipotent matrices in G.

Let {gi} be a sequence in G, and for each i let αi be the inner automorphism of G

corresponding to gi, (defined by αi(x) = gixg
−1
i for all x ∈ G). Let e be the identity

element in G and

H = {x ∈ G | αi(x) → e as i→∞}.

Also let δe be the point mass at e and

C = {µ ∈ P (G) | αi(µ) → δe as i→∞}.

Then the following conditions are satisfied:

i) H is a closed subgroup of G, and there exists κ ∈ G such that H ⊆ κ−1Uκ;

ii) for any µ ∈ C, suppµ is contained in H; and

iii) if {µi} is a sequence in C and αi(µi) → µ ∈ P (G), then there exists σ ∈ G

such that suppµ is contained in σUσ−1.
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For the proof we need the following lemma, which is a variation of a Lemma of

Azencott. Given a locally compact second countable space X, a compact subset K

of X, a sequence {xi} in X is said to converge to K, and we write xi → K, if for

every neighbourhood Ω of K there exists i0 such that xi ∈ Ω for all i ≥ i0.

Lemma 5.2 Let G be a locally compact second countable group, µ ∈ P (G) and {αi}
be a sequence of automorphisms of G such that αi(µ) → ν ∈ P (G). If the support of

ν is contained in a compact subset K of G, then there exists a subsequence {αki
} of

{αi} such that αki
(x) → K for µ-almost all x in G.

Proof: Let {Ωi} be a decreasing sequence of open neighbourhoods ofK such that every

neighbourhood of K contains Ωi for some i; in particular it follows that ∩Ωi = K.

Since αi(µ) → ν and ν(K) = 1 it follows that for every i there exists ki such that

µ(α−1
ki

(Ωi)) > 1 − 2−i. Let S = ∪j ∩∞i=j α−1
ki

(Ωi). Then clearly µ(S) = 1 and

αki
(x) → K for any x ∈ S. This proves the lemma. 2

Proof of Theorem 5.1: i) Let M(n, IR) be the algebra of all n × n matrices and let

W = {x ∈ M(n, IR) | gixg
−1
i → 0}, where 0 denotes the zero matrix in M(n, IR).

Clearly, for x ∈ GL(n, IR), x ∈ H if and only if x − e ∈ W . This shows that H is

closed. It is evidently a subgroup. Now let gi = kiaiκi be the polar decompositions of

gi, i = 1, 2, . . . , where ki and κi are orthogonal matrices and ai are diagonal matrices

with positive entries in the increasing order. Since {κi} consists of orthogonal matrices

it has a convergent subsequence, say κmi
→ κ. Now let x ∈ H. Then gixg

−1
i → 0

and hence aixia
−1
i → e, where xi = κixκ

−1
i for all i. It is straightforward to verify

(along the lines of Example 1.3) that the latter condition implies that the limit κxκ−1

of xmi
= κmi

xκ−1
mi

is contained in U . Therefore x ∈ κ−1Uκ. This shows that H is

contained in κ−1Uκ, thus proving i).

ii) Let µ ∈ C. Suppose that the support of µ is not contained in H. Let g ∈ suppµ

be an element not contained in H. Then there exists a neighbourhood Ω of e, and

a subsequence {αki
} of {αi} such that αki

(g) /∈ Ω. Applying Lemma 5.2 to the

subsequence {αki
} we deduce that there exists a subsequence {αli} of {αki

} such that

the support of µ is contained in the subgroup {x ∈ G | αli(x) → e}, which by the

assertion as in i) is a closed subgroup. But this is a contradiction since g ∈ suppµ,

but αli(g) does not converge to e, as it is outside Ω. This proves ii).

iii) Let {µi} be a sequence in C and suppose αi(µi) → µ ∈ P (G). By (i) for all i the

support of µi is contained in κ−1Uκ, and hence the support of αi(µi) is contained in

(giκ
−1)U(giκ

−1)−1. We write each giκ
−1 as σibi, where σi is an orthogonal matrix and

bi is an upper triangular matrix. Then biUb
−1
i = U and hence (giκ

−1)U(giκ
−1)−1 =

σiUσ
−1
i for all i. Since the orthogonal group is compact, passing to a subsequence we
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may assume that {σi} is convergent, say σi → σ. Then σ−1
i αi(µi)σi → σ−1µσ. Also,

since for any i the support of αi(µi) is contained in (giκ
−1)U(giκ

−1)−1 = σiUσ
−1
i , it

follows that σ−1
i αi(µi)σi is supported on U . Therefore σ−1µσ is supported on U and

so the support of µ is contained in σUσ−1. This proves the theorem. 2

We shall now apply the theorem to deduce that the supports of Levy’s measures

on connected Lie groups are contained in cosets of nilpotent subgroups.

Let G be a connected Lie group and µ be a Levy’s measure on G. Let {gi} be a

sequence in G, {αi} be a sequence of automorphisms of G, and {µi} be a sequence

in P (G) such that {αi(µj) | 1 ≤ j ≤ i} is an infinitesimal triangular system and µ is

the limit of {giαi(µ1 ∗ µ2 ∗ · · · ∗ µi)}. For any λ ∈ P (G) we denote by λ̃ the measure

defined by λ̃(E) = λ({g−1 | g ∈ E}) for all Borel subsets E of G. For each j let

λj = µ1 ∗ µ2 ∗ · · · ∗ µj and let νj = λ̃jλj. Then we have νj → δe, the point mass

at the identity, and αj(νj) → µ̃µ. We shall show that under these conditions µ̃µ is

supported on a nilpotent closed subgroup. The latter implies that µ is supported

on a coset of the nilpotent subgroup, for if g ∈ suppµ then for any x ∈ suppµ,

x−1g ∈ supp µ̃µ.

We note that the desired conclusion as above follows from Theorem 5.1 if G is

a linear group, say GL(V ) where V is a finite-dimensional vector space, and the

automorphisms in question are given by conjugation action of a sequence in GL(V ).

The essential task in the proof of the following theorem, proving the above-stated

result, is to reduce to this case.

Theorem 5.3 Let G be a connected Lie group and {αi} be a sequence of continuous

automorphisms of G. Suppose that there exists a sequence {νj} in P (G) such that

νj → δe, the point mass at the identity, and {αj(νj)} converges to ν in P (G). Then

supp ν is contained in a closed nilpotent subgroup of G.

Proof: We shall first show that in proving the theorem we may assume that the

center of G is discrete. Let Z be the center of G and suppose it is not discrete.

Let η : G → G/Z be the natural quotient map. Then the image of η(ν) on G/Z

satisfies the condition in the hypothesis as above, as a measure on G/Z, and on the

other hand if the support of η(ν) is proved to be contained in a nilpotent subgroup of

G/Z it follows that the support of ν is contained in a nilpotent subgroup. Therefore

it suffices to prove the theorem for G/Z in the place of G. The latter is a lower-

dimensional Lie group, and hence by an obvious inductive argument we see that it

suffices to prove the result in the case when the center is discrete.

When the center of G is discrete, the group of continuous automorphisms has

only finitely many connected components; see [7]. Therefore infinitely many αi’s

are contained in a single connected component, and by replacing ν by α(ν) for a
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suitable automorphism α we may assume that {αi} are all contained in the connected

component of the identity automorphism.

Now let Aff (G) denote the group of affine automorphisms of G (namely homeo-

morphisms of the form Tg ◦ α where Tg is the (left) translation by g ∈ G and α is an

automorphism of G). Let S be the connected component of the identity in Aff (G).

By the reduction step as above the automorphisms αi are all contained in S. We

realise G as a subgroup of S consisting of left translations. Let V be the Lie algebra

of S and let ρ : S → GL(V ) be the adjoint representation of S. Now {ρ(νi)} is

a sequence in P (GL(V )) such that ρ(νj) → δI , the point mass at the identity I of

GL(V ), and {ρ(αj(νj))} converges to ρ(ν). Moreover ρ(αj(νj)) = ρ(αj)νjρ(α
−1
j ) for

each j. Therefore by Theorem 5.1,(iii) the support of ρ(ν) is contained in a unipotent

subgroup of GL(V ). Since the kernel of ρ is contained in the center of G this implies

that ν is supported on a nilpotent subgroup of G, thus proving the theorem. 2

As indicated earlier Theorem 5.3 implies the following.

Corollary 5.4 Let G be a connected Lie group and µ be a Levy’s measure on G.

Then there exists a closed nilpotent subgroup N of G such that the support of µ is

contained in a coset of N . In particular if suppµ is not contained in a proper closed

subgroup of G and the identity element is contained in the support of µ then G is

nilpotent.

In [15] it is shown that in fact there exists a closed connected nilpotent subgroup

N of G, containing the support of µ as above. The proof however, though similar

in spirit and based on Theorem 5.1, involves also some more detailed features of Lie

group theory. We shall not go into the details along those lines, since the purpose here

has been to give a flavour of the application of the ideas on asymptotics of measures.
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