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Abstract— Off-line point to point navigation to calculate
feasible paths and optimize them for different objectives is
computationally difficult. Path planning problem is truly a
multi-objective problem, as reaching the goal point in short time
is desirable for an autonomous vehicle while ability to generate
safe paths in crucial for vehicle viability. Path representation
methodologies using piecewise polynomial and B-splines have
been used to ensure smooth paths. Multi-objective path plan-
ning studies using NSGA-II algorithm to optimize path length
and safety measures computed using one of the three metrics (i)
an artificial potential field, (ii) extent of obstacle hindrance and
(iii) a measure of visibility are implemented. Multiple trade-
off solutions are obtained on complex scenarios. The results
indicate the usefulness of treating path planning as a multi-
objective problem.

I. INTRODUCTION

In recent years we have seen much advancement in the
field of Industrial Robotics but mobile intelligent machines
have mainly been confined to research labs. For an au-
tonomous vehicle to be used in real world applications it
must be able to navigate autonomously and take intelligent
decisions. Vehicle path planning comprises of not only
generating collision free paths from a given location to its
destination point but also finding the optimal path. [1] and
[2] provides broad coverage of the field of motion planning
algorithms focusing on vehicle motion planning. Most path
planning studies done in literature concentrate on finding
the shortest path to destination though in practical mobile
robot applications it should consider multiple objectiveslike
path safety,path smoothness and visibility. Considering path
safety as an objective would ensure that the resultant paths
are navigable and do not pose high risk to robot safety.
Safety should not be defined just as collision free path but it
should also take into account surrounding effects. Hence we
have proposed different measures of safety which are useful
in varied application scenarios. A multi-objective study for
path length and safety using binary genes has been done in
[3]. In a bi-objective genetic optimization for path length
and safety the resultant paths may come out to be zig-zag
with sharp turns which a robot may not be able traverse.
Similarly a solution path passing through narrow lanes will
have low visibility and obstacle detection sensors on board
will have lower probability of detecting a possible danger.
The robot would prefer to move through areas where its
sensor field of view is maximized ensuring less chances of
possible collision. While path length and safety are the major
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objectives of optimization, smoothness of path should be
implicit in the path representation scheme and should not
be taken as an independent objective.

We propose a bi-objective optimization for path length
and safety using a Genetic Algorithm (GA) with a path
representation method using B-splines which inherently en-
sure path smoothness. Piecewise polynomial and B-splines
representation schemes have been used. Three different
forms of safety measure have been defined. First uses path
potential field approach where operator can customize the
difficulty level of environment using an artificial potential
field. Second approach of obstacle hindrance is operator
independent where robot tries to avoid obstacle-cluttered
areas by minimizing total obstacles in its neighbourhood.
Thirdly visibility has been defined using isovists lines [10]
where mean sensor field of view is maximized for entire
path. Multi-objective optimization study of path length and
each of the safety measure is done on case studies. It is also
shown how a generalized gene representation using B-splines
can overcome the drawback of path monotonicity along one
axis assumed in most studies [4] and solve complex point to
point path planning problems.

II. REPRESENTATION

For successful implementation of any multi-objective op-
timization algorithm the foremost requirement is meaning-
ful representation of path in terms of variables. Different
methodologies [4], [5], [6] for such representation have been
used in literature for single and multi objective study. [4]uses
fixed length binary genes for monotonous paths on a grid. In
there representation each sub-part of binary gene represents
direction and displacement values of transition from one col-
umn to next in a grid. In such methods path is an aggregation
of straight line segments leading to irregular paths which an
autonomous vehicle may not be able to traverse. In many
mobile autonomous vehicle’s heading is proportional to the
first derivative of the path while the second derivative is
proportional to steering angle [7]. Discontinuities may cause
the vehicle to stop and adjust its steering hence considering
the control and dynamics constraints a path with continuous
derivatives is essential. Different smooth path representation
methods for path planning are used in [7], [8] and [9].

One of the possible solutions for smooth curve repre-
sentation of path is polynomial curve fitting on way-points
between start and destination through which path must pass.
The coordinates of the way-points are taken as variables in
optimization. Such a method would fail to represent paths
with large number of wiggles which a polynomial of large
degree may also fail in representing.
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Fig. 1. Basis Splines and its control points. Hindrance detection at point
A and isovist lines for local visibility at point B

Hence this paper details the implementation of piecewise
polynomial splines (PP-splines) and basis splines (B-splines)
as a tool for the multi-objective study.

A. Splines

Splines are piecewise polynomial functions defined
through a finite set of control points. We represent the path
by splines between different breakpoints or knots from start
to destination.

Initially piecewise polynomial splines are used where a
set of2n real numbers represent thex andy coordinates of
n way-points through which spline must pass.C1 andC2

continuity is maintained hence ensuring a smooth resultant
path. Case study in IV-A uses PP-spline for multi-objective
optimization. The disadvantage observed using this repre-
sentation was that many individuals (paths) of the population
overshoot outside the grid. The way-points do not have good
control on the bounds of entire spline curve. Such paths are
deemed invalid as explained in II-B.

To counter above problem B-splines are used which are
a generalization of the Bezier curve. A B-spline curve of
degreem with n control points consist of(n − m) bezier
curve segments. The shape of the spline is controlled by its
control points. The benefit is that no matter how we vary the
control points the curve always lies within the convex hull
of the control polygon. The polygon formed by connecting
the successive control points with lines is called the control
polygon. In all our simulations we have used uniform B-
splines of order 4. A uniform B-spline is a curve where the
intervals between successive control points are equal. TheB-
spline is clamped at start and destination using multiplicity of
knots while other knots are uniformly placed between source
and destination.

A set of2n real numbers represent thex andy coordinates
of n control points of the B-spline. A sample B-spline with
3 variable control points is shown in Fig. 1

The number of control pointsn for B-splines and piece-
wise polynomial spline is very crucial, affecting compu-
tational time and result accuracy. It is observed thatn

depends on obstacle distribution in different problems and
in test casesn is chosen by fixing computational cost and
observing improvement in pareto front for differentn values.
Interestingly for a desired path if we keep increasingn then
the control polygon eventually converges on the path itself.

For simplicity we represent the terrain profile by ak × k

grid and place obstacles in grid cells but the methodology
can be applied to obstacles of any shape.

B. Path characteristics

We define a valid path with following characteristics

• It must begin at the start point
• It must reach the destination point
• It must not cross the grid outer boundaries
• It must not pass through an obstacle containing cell

To ensure that the resultant path to be a valid following
measures are taken

• The start point is taken as the first spline node and
destination point as the last spline node. To clamp B-
splines knot multiplicity is used.

• Overshooting outside grid boundaries leads to penalty
on all objectives proportional to overshoot. Hence genes
gradually decrease overshoot and become feasible.

• Obstacle cells are given high potential. If path crosses a
obstacle cell all objectives in multi-objective study are
penalized proportional to number of obstacles crossed.

Obstacle crossing is intentionally not kept as a constraint
since doing so rejects many good genes in initial generations.
Penalization scheme proportional to number of obstacles
crossed has been found to give significantly better results.

1) Path monotonicity: Path planning applications using
GA usually take assumption of path monotonicity along
one axis. It helps in fixed length gene representation [3],
[4]. After this assumption, though the representation is not
general but it is more efficient in handling most sparse
obstacle grids. Such problems are more common in real
outdoor path planning scenarios.

In our study we have assumed path monotonicity for initial
test cases to improve optimization convergence time. This
significantly reduces the search space hence speeding the GA
in path search. To implement monotonicity while decoding
a gene the the control points are taken in ascending order of
there x coordinates (for x monotonicity).

A generalized representation of path by a gene is not
possible in schemes where each grid cell through which
path passes is represented in the gene due to absence of
any knowledge about constraints on path length. For such
a problem path may swing back and forth before reaching
destination making it difficult to use fixed gene length.
Using B-splines the same method is further extended to non-
monotonous paths in IV-E. For this just like previous case we
take 2n real numbers representing the spline control points
but there sequence is also accounted. The splines are created
using successive nodes irrespective of there coordinate values
on the grid. Hence the resultant path is not constrained to
be monotonic along any direction and it can come back



and forth. Such implementation is possible for PP-splines
also where way-points are variables and we evaluate each
spline part for consecutive node points while simultaneously
satisfying end condition for smoothness. The problem arises
when the end conditions of curvature cannot be satisfied
leading to discontinuities. Hence a more preferred solution is
to use B-splines for non-monotonic cases. They ensure path
smoothness and can easily cater to local shape behaviour by
varying control points.

III. M ETHODOLOGY

We have used MATLAB implementation of NSGA-II
algorithm [11] with control points as variables. The method
finds a trade-off front for multiple objective functions us-
ing genetic algorithm. The initial population is generated
randomly within the variable bounds specified. The next
generation of the population is computed using the non-
dominated rank and a distance measure of the individuals in
the current generation. The method uses controlled elitistge-
netic algorithm which favours individuals with better fitness
value as well as increase the diversity of the population by
measure of crowding distance. Binary Tournament selection,
uniform mutation and crossover are used as parameter set-
tings. It is observed that results are sensitive to mutation. A
balance between exploitation and exploration is maintained
by suitably choosing mutation rate. Mutation rate between
0.03 to 0.08 for 5 to 8 control points has been found to give
good results in test cases.

A. Path length

In case of PP-splines the polynomial equation of spline
parts between various nodes is known. Line integral of each
spline part to find part length is done, summation of which
gives the exact path length. Such an integration method for
B-splines and PP-splines is computationally expensive hence
path length is calculated using numerical approximation
methods with straight line segment approximation on small
intervals.

B. Path potential

Path safety on entire obstacle grid is defined in terms of
potential field value. The grid is divided intok × k cells
and each cell is allotted a potential value. The potential
value is proportional to difficulty faced in passing through
a particular cell. Obstacle containing cells are given high
potentials. It is unsafe for a robot to just brush through an
obstacle containing cell hence all neighbouring cells of an
obstacle containing cell are also allotted a potential value.
In this way the entire grid is represented in the form of a
potential field. The potential field can be customized specific
to actual problem environment and requirements of user.
Potential field of surroundings due to obstacles can be given
by different models using euclidean distance, Gaussian dis-
tribution or linearly decreasing potential value. The difficulty
level of cells far away from a particular obstacle containing
cell are not affected by it hence they have zero potential due
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Fig. 2. Potential field for obstacle grid of IV-B

to it. The total difficulty of a path is summation of potential
field values the path traverses.

The initial grid cells are large in size hence grid side is
divided intoη×k cells and spline is dicretized on it. Potential
per unit area for each cell is multiplied by area traversed by
the path in that cell. Summation of these potential values over
the grid gives net difficulty. To reduce computational time we
have used matrix representation methods for obstacle field,
potential fields and resultant path. Simple matrix operations
in MATLAB help in quick evaluation of objectives.

In our simulations we have given each obstacle cell
potential value 1 and all its empty neighbouring cells po-
tential value of 0.15. Hence an empty cell with 3 obstacle
containing cells in its immediate neighbourhood will have
total potential of 0.45. Potential value of only immediate
neighbours are affected by a particular obstacle. The potential
field corresponding to obstacles in case study in IV-B is
shown in Fig. 2. The potential values are shown in colour
bar alongside.

C. Obstacle hindrance

The potential field approach is a flexible method to exactly
define each cells potential value and how an obstacle is
affecting the difficulty level in its surroundings. The problem
arises when user input is not available to robot or a user does
not have any knowledge of environment except presence or
absence of obstacles. Hence we define another simple safety
objective to minimize total surrounding obstacles for entire
path. Suppose single cell neighbourhood is considered then
at each path cell obstacles present in its 8 surrounding cells
are called hindrance obstacles since they clutter the spaceand
cause difficulty. Number of hindrance obstacles gives local
hindrance value. In Fig. 1 local obstacle hindrance value at
point A is 2. To calculate path hindrance all such obstacles
in neighbourhood of the entire path are counted with each
obstacle cell counted only once. Hence total hindrance value
present is minimized as an objective. This ensures that
robot will move at safe distance from obstacles as well as
avoid narrow passages and cluttered environments. In IV-C
path length and obstacle hindrance are conflicting objectives
hence a trade off front is obtained giving the robot choice
among possible optimal paths.



D. Visibility

For application areas which use mobile robots with on
board sensors, visibility becomes an important criteria for
path planning. Most robots use either camera vision or
proximity sensors like laser scanner or infra-red sensors for
static and dynamic obstacle detection. Robot visibility at
a point can be viewed as the area visible to its sensors.
If visibility is high it is more probable that it will detect
danger thereby enhancing safety as compared to case where
most sensor range is blocked by obstacles. Hence visibility
is a safety related measure that allows for a better risk
perception and avoidance, such that maximizing visibility
can potentially minimize risks.

Visibility at a point is defined by using set of lines of sight
referred to as isovists lines which can be obtained by casting
light rays, uniformly in all directions from a cell [10]. These
lines intersect with grid boundary or surrounding obstacles.
The length of isovist lines are summed up and divided by the
total number of rays to give the local average visibility value.
Mean visibility for entire path is calculated by summing all
local visibility values from path cells and dividing by the
number of cells traversed. Maximizing visibility for entire
path will avoid congested surroundings hence enhancing
safety.

Since proximity sensors have limited range so the maxi-
mum range of isovist lines can be given accordingly. Isovist
lines for local visibility at pointB is shown in Fig. 1
where range is restricted to 2 cell neighbourhood. Case
study in IV-D shows trade-off front solutions for bi-objective
optimization between path length and visibility.

IV. RESULTS

A. Path length and potential using PP-spline

This case is similar to Benchmark 2 in [3] with 88 obstacle
cells on a16× 16 obstacle grid. The potential field has been
defined using rules mentioned in III-B. We have represented
the piecewise cubic spline by 6 control points with 2 control
points being fixed at source and destination. Hence the GA
uses 8 real number variables for x and y coordinates of
4 variable points. Grid boundaries are defined as variable
bounds.

The trade off front obtained with a population size of
60 and 200 generations is shown in Fig. 4, where each
point represents a path. In Fig. 3 representative paths marked
on trade-off front as A, B and C are shown. A is the
shortest path while C is safest path obtained. The control
points are also marked on the paths. The trade-off between
the two objectives in obtained paths is clear from Fig. 3.
Due to availability of space, a smooth trade-off between
the two objectives is possible for this problem. Solutions
having small distance are too close to the obstacles and safe
solutions keep away from obstacles.

B. Path length and potential using B-spline

In this test case B-splines have been introduced to solve a
complex scattered obstacle problem with388 obstacles on a
64× 64 grid. The objectives considered are path length and
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path potential. The corresponding potential field has been
shown in Fig. 2. Uniform B-Spline with 8 control points is
taken. The trade off front and corresponding paths obtained
with a population size of 100 and 500 generations are shown
in Fig. 5 and 6. It is noted that in this case solution paths
look similar. This is because each obstacle affects potential
up to 1 cell neighbourhood only. Due to large grid size
differences between paths are not noticeable on this scale.
It is interesting to note that all obtained trade-off solutions
are members of two different principal paths – one for small
distance and other for a better safety. There are small trade-
offs between paths within each class. When search space is
tightly constrained this is an usual phenomenon with multi-
objective optimization. The front shown in Fig. 6 is also
fragmented. The intermediate part of the front makes a small
trade-off here and there between the two main principal
paths.

C. Path length and hindrance using B-spline

This case considers a32 × 32 grid with 245 obstacle
cells to study the safety measure of obstacle hindrance
along with path length. One cell neighbourhood (Fig. 1) is
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Fig. 6. Case study IV-B Trade-off front for path length and potential

considered for simulation and total hindrance obstacles are
minimized along with path length. The conflict in path length
and obstacle hindrance is evident from the resultant paths
where to traverse the shortest path robot has to face many
obstacles in its neighbourhood and pass through a small gap.
B-Splines have been used for this bi-objective case with 5
control points and GA population size of 200 is used for
300 generations. Resultant paths obtained are shown in Fig.
7. Due to availability of intermediate spaces between the
blocks of obstacles, principally different paths are obtained
in this case.

D. Path length and visibility using B-spline

Analysis of visibility as a safety objective is done along
with path length on a32× 32 grid. The aim is to get paths
where robot sensors(vision or proximity) have large field of
view as well as the resultant paths are short and smooth.16
isovists lines from each path cell are taken and the maximum
range of visibility sensor at a point is constrained inside a
box of dimensions5 × 5 cells as shown in Fig. 1. Using
the dual principle instead of maximizing mean visibility
and minimizing path length we have posed our problem as
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minimization of path length and negative of mean visibility.
5 control points define the uniform B-spline and population
size of 200 is used for 300 generations. The obtained trade
off front is shown in Fig. 9 and four solution paths marked
on it are shown in Fig. 8.

E. Non monotonic path using B-spline

Finally we have taken a difficult obstacle environment
on a 64 × 64 grid with 887 obstacles which cannot be
solved by one axis monotonic paths. To solve this B-spline is
clamped at destination and start point and its control points
are not taken in sequential order. Path length and safety
potential are minimized using 8 control points. Population
size and number of generations are fixed at 200 and 500.
The corresponding solutions are shown in Fig. 10. From
the solution we observe that in both x and y axes, non-
monotonic paths are obtained. In this problem, there are not
many principal paths possible and the obtained ones are the
most viable ones. Slight variations in paths come to make a
trade-off between multiple objectives.
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V. CONCLUSION

We have used smooth path representation method using
splines and defined different safety measures of poten-
tial, hindrance and visibility. Multi-objective analysisusing
NSGA-II for path length and each safety measure is done
on test problems. The method gives the robot operator a set
of choices for paths with varied length and safety measures
from which final path can be selected. Besides finding trade-
off paths, an analysis of the obtained paths (their numbers,
principal shapes and their differences) can provide useful
knowledge about how to plan a viable path under certain
placement of obstacles. Once such knowledge is gained and
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Fig. 11. Case study IV-E Trade-off front for path length and potential

learnt, they can be captured using some rule base or by some
other means and used in dynamic path planning problems.
This method can be extended using Non Uniform Rational
Basis Splines (NURBS) and integrating it with such dynamic
path planning methodologies.
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