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Abstract— Off-line point to point navigation to calculate
feasible paths and optimize them for different objectives 3
computationally difficult. Path planning problem is truly a
multi-objective problem, as reaching the goal point in shottime
is desirable for an autonomous vehicle while ability to gerate
safe paths in crucial for vehicle viability. Path represenation
methodologies using piecewise polynomial and B-splines V&
been used to ensure smooth paths. Multi-objective path plan
ning studies using NSGA-II algorithm to optimize path lengh
and safety measures computed using one of the three metrida3 (
an artificial potential field, (ii) extent of obstacle hindrance and
(iii) a measure of visibility are implemented. Multiple trade-
off solutions are obtained on complex scenarios. The resusit
indicate the usefulness of treating path planning as a muki
objective problem.

. INTRODUCTION

objectives of optimization, smoothness of path should be
implicit in the path representation scheme and should not
be taken as an independent objective.

We propose a bi-objective optimization for path length
and safety using a Genetic Algorithm (GA) with a path
representation method using B-splines which inherently en
sure path smoothness. Piecewise polynomial and B-splines
representation schemes have been used. Three different
forms of safety measure have been defined. First uses path
potential field approach where operator can customize the
difficulty level of environment using an artificial poteritia
field. Second approach of obstacle hindrance is operator
independent where robot tries to avoid obstacle-cluttered
areas by minimizing total obstacles in its neighbourhood.
Thirdly visibility has been defined using isovists lines 10

In recent years we have seen much advancement in thiaere mean sensor field of view is maximized for entire

field of Industrial Robotics but mobile intelligent machine path. Multi-objective optimization study of path lengthdan
have mainly been confined to research labs. For an aeach of the safety measure is done on case studies. It is also
tonomous vehicle to be used in real world applications hown how a generalized gene representation using B-spline
must be able to navigate autonomously and take intelligepan overcome the drawback of path monotonicity along one
decisions. Vehicle path planning comprises of not onlwaxis assumed in most studies [4] and solve complex point to
generating collision free paths from a given location to itgoint path planning problems.

destination point but also finding the optimal path. [1] and
[2] provides broad coverage of the field of motion planning
algorithms focusing on vehicle motion planning. Most path For successful implementation of any multi-objective op-
planning studies done in literature concentrate on findingmization algorithm the foremost requirement is meaning-
the shortest path to destination though in practical mobilfil representation of path in terms of variables. Different
robot applications it should consider multiple objectilige = methodologies [4], [5], [6] for such representation haverbe
path safety,path smoothness and visibility. Consideriatdh p used in literature for single and multi objective study.jiéks
safety as an objective would ensure that the resultant patfised length binary genes for monotonous paths on a grid. In
are navigable and do not pose high risk to robot safetyhere representation each sub-part of binary gene repisesen
Safety should not be defined just as collision free path but direction and displacement values of transition from orle co
should also take into account surrounding effects. Hence wenn to next in a grid. In such methods path is an aggregation
have proposed different measures of safety which are useffl straight line segments leading to irregular paths which a
in varied application scenarios. A multi-objective study f autonomous vehicle may not be able to traverse. In many
path length and safety using binary genes has been doneniobile autonomous vehicle’s heading is proportional to the
[3]. In a bi-objective genetic optimization for path lengthfirst derivative of the path while the second derivative is
and safety the resultant paths may come out to be zig-zagoportional to steering angle [7]. Discontinuities maysa
with sharp turns which a robot may not be able traverseéhe vehicle to stop and adjust its steering hence consuglerin
Similarly a solution path passing through narrow lanes wilthe control and dynamics constraints a path with continuous
have low visibility and obstacle detection sensors on boawkrivatives is essential. Different smooth path represent

will have lower probability of detecting a possible dangermethods for path planning are used in [7], [8] and [9].

The robot would prefer to move through areas where its One of the possible solutions for smooth curve repre-
sensor field of view is maximized ensuring less chances gentation of path is polynomial curve fitting on way-points
possible collision. While path length and safety are theomaj between start and destination through which path must pass.
The coordinates of the way-points are taken as variables in
optimization. Such a method would fail to represent paths
with large number of wiggles which a polynomial of large
degree may also fail in representing.
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depends on obstacle distribution in different problems and
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012345678 910111213141516 « It must reach the destination point

« It must not cross the grid outer boundaries
Fig. 1. Basis Splines and its control points. Hindrance aliete at point « It must not pass through an obstacle containing cell
A and isovist lines for local visibility at point B To ensure that the resultant path to be a valid following
measures are taken

o The start point is taken as the first spline node and
destination point as the last spline node. To clamp B-
splines knot multiplicity is used.

« Overshooting outside grid boundaries leads to penalty

A. Slines on all objectives proportional to overshoot. Hence genes

Splines are piecewise polynomial functions defined ~9radually decrease overshoot and become feasible.
through a finite set of control points. We represent the path * Obstacle cells are given high potential. If path crosses a
by splines between different breakpoints or knots fromtstar ~ oPstacle cell all objectives in multi-objective study are
to destination. penalized proportional to number of obstacles crossed.

Initially piecewise polynomial splines are used where a Obstacle crossing is intentionally not kept as a constraint
set of2n real numbers represent theandy coordinates of since doing so rejects many good genes in initial generstion
n way-points through which spline must pags! and C?  Penalization scheme proportional to number of obstacles
continuity is maintained hence ensuring a smooth resultagtossed has been found to give significantly better results.
path. Case study in IV-A uses PP-spline for multi-objective 1) Path monotonicity: Path planning applications using
optimization. The disadvantage observed using this repr&A usually take assumption of path monotonicity along
sentation was that many individuals (paths) of the popuati one axis. It helps in fixed length gene representation [3],
overshoot outside the grid. The way-points do not have godd]. After this assumption, though the representation is no
control on the bounds of entire spline curve. Such paths ageneral but it is more efficient in handling most sparse
deemed invalid as explained in 1I-B. obstacle grids. Such problems are more common in real

To counter above problem B-splines are used which a@utdoor path planning scenarios.

a generalization of the Bezier curve. A B-spline curve of In our study we have assumed path monotonicity for initial
degreem with n control points consist ofn — m) bezier test cases to improve optimization convergence time. This
curve segments. The shape of the spline is controlled by isggnificantly reduces the search space hence speeding the GA
control points. The benefit is that no matter how we vary tha path search. To implement monotonicity while decoding
control points the curve always lies within the convex hulh gene the the control points are taken in ascending order of
of the control polygon. The polygon formed by connectinghere x coordinates (for X monotonicity).

the successive control points with lines is called the aintr A generalized representation of path by a gene is not
polygon. In all our simulations we have used uniform Bpossible in schemes where each grid cell through which
splines of order 4. A uniform B-spline is a curve where th@ath passes is represented in the gene due to absence of
intervals between successive control points are equalBFhe any knowledge about constraints on path length. For such
spline is clamped at start and destination using multiglief a problem path may swing back and forth before reaching
knots while other knots are uniformly placed between souradestination making it difficult to use fixed gene length.
and destination. Using B-splines the same method is further extended to non-

A set of2n real numbers represent theandy coordinates monotonous paths in IV-E. For this just like previous case we
of n control points of the B-spline. A sample B-spline withtake 2n real numbers representing the spline control points
3 variable control points is shown in Fig. 1 but there sequence is also accounted. The splines arectreate

The number of control points for B-splines and piece- using successive nodes irrespective of there coordinhteva
wise polynomial spline is very crucial, affecting compu-on the grid. Hence the resultant path is not constrained to
tational time and result accuracy. It is observed that be monotonic along any direction and it can come back

Hence this paper details the implementation of piecewise
polynomial splines (PP-splines) and basis splines (Bisp)i
as a tool for the multi-objective study.



and forth. Such implementation is possible for PP-splines
also where way-points are variables and we evaluate each
spline part for consecutive node points while simultangous
satisfying end condition for smoothness. The problem arise
when the end conditions of curvature cannot be satisfied
leading to discontinuities. Hence a more preferred saftuso

to use B-splines for non-monotonic cases. They ensure path
smoothness and can easily cater to local shape behaviour by
varying control points.

[ll. METHODOLOGY Fig. 2. Potential field for obstacle grid of IV-B

We have used MATLAB implementation of NSGA-II
algorithm [11] with control points as variables. The method
finds a trade-off front for multiple objective functions us-to it. The total difficulty of a path is summation of potential
ing genetic algorithm. The initial population is generatedield values the path traverses.
randomly within the variable bounds specified. The next The initial grid cells are large in size hence grid side is
generation of the population is computed using the norivided intonx k cells and spline is dicretized on it. Potential
dominated rank and a distance measure of the individuals per unit area for each cell is multiplied by area traversed by
the current generation. The method uses controlled ajjgist the path in that cell. Summation of these potential values ov
netic algorithm which favours individuals with better figse the grid gives net difficulty. To reduce computational time w
value as well as increase the diversity of the population blyave used matrix representation methods for obstacle field,
measure of crowding distance. Binary Tournament selectiopotential fields and resultant path. Simple matrix operatio
uniform mutation and crossover are used as parameter siet-MATLAB help in quick evaluation of objectives.
tings. It is observed that results are sensitive to muta®on  |n our simulations we have given each obstacle cell
balance between explOitation and eXploration is maindﬂin%otentiaj value 1 and all its empty neighbouring cells po-
by suitably choosing mutation rate. Mutation rate betweeggntial value of 0.15. Hence an empty cell with 3 obstacle
0.03 to 0.08 for 5 to 8 control points has been found to givgontaining cells in its immediate neighbourhood will have

good results in test cases. total potential of 0.45. Potential value of only immediate
neighbours are affected by a particular obstacle. The giaten
A. Path length field corresponding to obstacles in case study in IV-B is

In case of PP-splines the polynomial equation of SplinéhOWﬂ in Fig. 2. The potential values are shown in colour
parts between various nodes is known. Line integral of eadtar alongside.
spline part to find part length is done, summation of which
gives the exact path length. Such an integration method f%r
B-splines and PP-splines is computationally expensiveden ™

path length is calculated using numerical approximation The potential field approach is a flexible method to exactly
methods with straight line segment approximation on smaflgfine each cells potential value and how an obstacle is
intervals. affecting the difficulty level in its surroundings. The ptein
. arises when user input is not available to robot or a user does

B. Path potential not have any knowledge of environment except presence or

Path safety on entire obstacle grid is defined in terms @bsence of obstacles. Hence we define another simple safety
potential field value. The grid is divided intb x k cells objective to minimize total surrounding obstacles for enti
and each cell is allotted a potential value. The potentigdath. Suppose single cell neighbourhood is considered then
value is proportional to difficulty faced in passing throughat each path cell obstacles present in its 8 surrounding cell
a particular cell. Obstacle containing cells are given highre called hindrance obstacles since they clutter the spate
potentials. It is unsafe for a robot to just brush through anause difficulty. Number of hindrance obstacles gives local
obstacle containing cell hence all neighbouring cells of ahindrance value. In Fig. 1 local obstacle hindrance value at
obstacle containing cell are also allotted a potential éalupoint A is 2. To calculate path hindrance all such obstacles
In this way the entire grid is represented in the form of an neighbourhood of the entire path are counted with each
potential field. The potential field can be customized specifiobstacle cell counted only once. Hence total hindranceesvalu
to actual problem environment and requirements of usguresent is minimized as an objective. This ensures that
Potential field of surroundings due to obstacles can be giveabot will move at safe distance from obstacles as well as
by different models using euclidean distance, Gaussian diavoid narrow passages and cluttered environments. In IV-C
tribution or linearly decreasing potential value. The diffty = path length and obstacle hindrance are conflicting objestiv
level of cells far away from a particular obstacle contagnin hence a trade off front is obtained giving the robot choice
cell are not affected by it hence they have zero potential dwemong possible optimal paths.

Obstacle hindrance



D. Visbility

For application areas which use mobile robots with on B sath © ===== i
board sensors, visibility becomes an important criteria fo E : Y EEEEN
path planning. Most robots use either camera vision or 2f oy =y “‘ ===== A
proximity sensors like laser scanner or infra-red sensars f 1; $ ¢ s EEEEE /')

static and dynamic obstacle detection. Robot visibility at
a point can be viewed as the area visible to its sensors.
If visibility is high it is more probable that it will detect
danger thereby enhancing safety as compared to case wher
most sensor range is blocked by obstacles. Hence visibility
is a safety related measure that allows for a better risk
perception and avoidance, such that maximizing visibility
can potentially minimize risks.

Visibility at a point is defined by using set of lines of sight
r.eferred o aS. iSOViSt.S IineS.Whi(.:h can be obtained by cg"lstirllzig 3. Case study IV-A Obstacles onlé x 16 grid and few solution
light rays, uniformly in all directions from a cell [10]. Tke paths obtained on the pareto front
lines intersect with grid boundary or surrounding obstsicle
The length of isovist lines are summed up and divided by the
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total number of rays to give the local average visibilityuel
Mean visibility for entire path is calculated by summing all of@<——Path A
local visibility values from path cells and dividing by the
number of cells traversed. Maximizing visibility for erdir e
path will avoid congested surroundings hence enhancing LT
safety. E ‘.
Since proximity sensors have limited range so the maxi- % . Path B
mum range of isovist lines can be given accordingly. Isovist st -t/ Path &
lines for local visibility at point B is shown in Fig. 1 A i
where range is restricted to 2 cell neighbourhood. Case * .
study in IV-D shows trade-off front solutions for bi-objat 3 R o
optimization between path length and visibility. . ‘ ‘ °
30 35 40 45

Path Length

IV. RESULTS
A. Path length and potential using PP-spline

This case is similar to Benchmark 2 in [3] with 88 obstacle
cells on al6 x 16 obstacle grid. The potential field has been
defined using rules mentioned in 11I-B. We have representgehth potential. The corresponding potential field has been
the piecewise cubic spline by 6 control points with 2 contro$hown in Fig. 2. Uniform B-Spline with 8 control points is
points being fixed at source and destination. Hence the Giaken. The trade off front and corresponding paths obtained
uses 8 real number variables for x and y coordinates fith a population size of 100 and 500 generations are shown
4 variable points. Grid boundaries are defined as variabile Fig. 5 and 6. It is noted that in this case solution paths
bounds. look similar. This is because each obstacle affects patenti

The trade off front obtained with a population size ofup to 1 cell neighbourhood only. Due to large grid size
60 and 200 generations is shown in Fig. 4, where eadlifferences between paths are not noticeable on this scale.
point represents a path. In Fig. 3 representative pathsadarkt is interesting to note that all obtained trade-off salug
on trade-off front as A, B and C are shown. A is theare members of two different principal paths — one for small
shortest path while C is safest path obtained. The contrdlstance and other for a better safety. There are small-trade
points are also marked on the paths. The trade-off betweeffs between paths within each class. When search space is
the two objectives in obtained paths is clear from Fig. 3tightly constrained this is an usual phenomenon with multi-
Due to availability of space, a smooth trade-off betweenbjective optimization. The front shown in Fig. 6 is also
the two objectives is possible for this problem. Solutionfragmented. The intermediate part of the front makes a small
having small distance are too close to the obstacles and s#fade-off here and there between the two main principal
solutions keep away from obstacles. paths.

Fig. 4. Case study IV-A Trade off front for path length andqtal

B. Path length and potential using B-spline C. Path length and hindrance using B-spline

In this test case B-splines have been introduced to solve aThis case considers 82 x 32 grid with 245 obstacle
complex scattered obstacle problem wi8 obstacles on a cells to study the safety measure of obstacle hindrance
64 x 64 grid. The objectives considered are path length andlong with path length. One cell neighbourhood (Fig. 1) is



ngt;aii.ed Case study IV-B Obstacles onGa x 64 grid and solution paths Fig. 7. Case study IV-C Solution paths obtained on miningzdath length
and total hindrance

Path Difficulty
o

5 L L L L L L
o1 ) 93 o4 o7 %8 % 100

9 9%
Path Length

Fig. 6. Case study IV-B Trade-off front for path length andepdial Fig. 8. Case study IV-D Solution paths from visibility andtipdength
trade off front

considered for simulation and total hindrance obstacles ar

minimized along with path length. The conflictin path lengtminimization of path length and negative of mean visibility
and obstacle hindrance is evident from the resultant patBscontrol points define the uniform B-spline and population
where to traverse the shortest path robot has to face magiye of 200 is used for 300 generations. The obtained trade

obstacles in its neighbourhood and pass through a small g&j front is shown in Fig. 9 and four solution paths marked
B-Splines have been used for this bi-objective case with &n it are shown in Fig. 8.

control points and GA population size of 200 is used for
300 generations. Resultant paths obtained are shown in F%}. N . h usng B-soli

7. Due to availability of intermediate spaces between the on monotonic path using B-spline
blocks of obstacles, principally different paths are aidi

Finally we have taken a difficult obstacle environment
in this case.

on a 64 x 64 grid with 887 obstacles which cannot be
N ) _ solved by one axis monotonic paths. To solve this B-spline is
D. Path length and visibility using B-spline clamped at destination and start point and its control jgoint
Analysis of visibility as a safety objective is done alongare not taken in sequential order. Path length and safety
with path length on @2 x 32 grid. The aim is to get paths potential are minimized using 8 control points. Population
where robot sensors(vision or proximity) have large field o§ize and number of generations are fixed at 200 and 500.
view as well as the resultant paths are short and smadéth. The corresponding solutions are shown in Fig. 10. From
isovists lines from each path cell are taken and the maximuthe solution we observe that in both x and y axes, non-
range of visibility sensor at a point is constrained inside aonotonic paths are obtained. In this problem, there are not
box of dimensionss x 5 cells as shown in Fig. 1. Using many principal paths possible and the obtained ones are the
the dual principle instead of maximizing mean visibilitymost viable ones. Slight variations in paths come to make a
and minimizing path length we have posed our problem asade-off between multiple objectives.
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Fig. 11. Case study IV-E Trade-off front for path length arcdeptial

Fig. 9.
-visibility

Case study IV-D Trade off front for 2 objectives-pdgingth and

learnt, they can be captured using some rule base or by some
other means and used in dynamic path planning problems.
This method can be extended using Non Uniform Rational
Basis Splines (NURBS) and integrating it with such dynamic

path planning methodologies.

28 32 36 40 44 48 52 56 60 64

Fig. 10. Case study IV-E Non monotonic solution paths usirgpBnes
on a64 x 64 grid

V. CONCLUSION
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We have used smooth path representation method using
splines and defined different safety measures of potengs]

tial, hindrance and visibility. Multi-objective analysissing

NSGA-II for path length and each safety measure is done?g]
on test problems. The method gives the robot operator a set
of choices for paths with varied length and safety measures
from which final path can be selected. Besides finding trader,
off paths, an analysis of the obtained paths (their numbers,

principal shapes and their differences) can provide useful

knowledge about how to plan a viable path under certai[r%l]
placement of obstacles. Once such knowledge is gained and
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