
Model-Based Object Recognition from aComplex Binary Imagery using GeneticAlgorithmSamarjit Chakraborty1, Sudipta De2 and Kalyanmoy Deb?31 Institut TIK, Eidgen�ossische Technische Hochschule, Z�urich, Switzerland.2 KanGAL, Indian Institute of Technology Kanpur, India.3 Department of Computer Science, University of Dortmund, Germany.Abstract. This paper describes a technique for model-based objectrecognition in a noisy and cluttered environment, by extending the workpresented in an earlier study by the authors. In order to accurately modelsmall irregularly shaped objects, the model and the image are representedby their binary edge maps, rather then approximating them with straightline segments. The problem is then formulated as that of �nding the bestdescribing match between a hypothesized object and the image. A specialform of template matching is used to deal with the noisy environment,where the templates are generated on-line by a Genetic Algorithm. Forexperiments, two complex test images have been considered and the re-sults when compared with standard techniques indicate the scope forfurther research in this direction.1 IntroductionFinding the best transformation that maps an object model into the image ofa scene is a central issue in object recognition. There are several approachesto this problem which explicitly rely on results from computational geometry.Among them are geometric hashing [17], alignment [14] and voting [2]. TheHough transform [22], which is recognized as a powerful tool for curve as well asobject detection falls into the third category. A di�erent line of approach involvesthe development of cost functions for measuring the di�erence between two setsof points or line segments under various transformations. Such cost functionsbased on the Hausdor� distance have been extensively investigated in both com-putational geometry [1, 3, 12] and computer vision [13, 24] literatures. Althoughthese methods give good results in the presence of small amounts of noise andocclusion, they do not scale well when applied to complex cluttered scenes, andin the presence of a lot of noise. For example, in a study on the noise sensitiv-ity of the generalized Hough transform by Grimson and Huttenlocher [9], it wasconcluded that even for moderate amounts of noise and occlusion, these methodscan hypothesize many false solutions, and their e�ectiveness is dramatically re-duced. Similar conclusions were made by Sarachik [25] for the geometric hashing? Author to whom all correspondence should be directed.e-mail: deb@ls11.informatik.uni-dortmund.de



paradigm applied to 2-D object recognition. So these techniques are reliable onlyfor relatively simple tasks in the absence of excessive noise and clutter, wherethe image data corresponding to correct solutions is a large fraction of the totaldata. In an e�ort to address this problem, in [6] we proposed a scheme for de-tecting analytic curves using a Genetic Algorithm (GA) [7] in combination withthe Randomized Hough transform [27]. The present paper extends that work toconsider the detection of any binary object model in a binary edge map of a sceneimage. There exists a large volume of literature on detecting curves and objectsin noisy as well as cluttered images. But most of them assume a prede�ned er-ror model, either uniform bounded for feature displacement or a 2D Gaussian.Additionally, several approaches also assume the presence of the model in theimage and the worst case search time in the presence of noise is exponential inthe problem size [10]. The proposed method in this paper is exible, and doesnot assume any error model. It is particularly e�ective in the case of compleximages where the number of pixels belonging to the object being searched foris a very small fraction of the total number of edge pixels. In image processingliterature there is a mathematical distinction between clutter and noise. Theformer might refer to all features or points that come from something di�erentthan the model, where as noise usually refers to the phenomenon in which theidenti�ed locations of the image points are slightly displaced from where theyshould be. Coupled with these, there might be several spurious data points inthe image arising out of various sources, for example, edge points arising out ofbrightness discontinuities and imperfect edge detection. For the purpose of thispaper it is not required to distinguish between these di�erent errors and we willrefer to all such points jointly as false attractors.The concept of using GA for curve extraction has been explored in the past[11, 23]. But the problems of noise or clutter were not considered. Object recog-nition in a complex image using GA has also been attempted [26]. The methodthat we present is more exible in terms of the allowable similarity between themodel and the object in the scene image. This has important advantages for suc-cessful recognition of real life images, since it results in a exibility in evaluatingan hypothesis about the occurrence of the object in the scene. We illustrate thisthrough examples presented in Section 4.There has been an enormous amount of research in automatic object recog-nition. But despite this fact the problem remains largely unsolved. A compre-hensive overview of this subject from a variety of perspectives can be found in[21]. We believe that the use of GA can help in dealing with the uncertaintiesthat arise in any practical object recognition system. Further, since such a taskinvolves a very large search space, a suitably designed GA approach can reducethe search time by several orders of magnitude with respect to an exhaustivesearch.In this paper, the object recognition task is performed by representing themodel and the image in the form of their binary edge pixels. This representationhas a number of bene�ts. Edge pixels are robust to changes in sensing conditionsand edge-based techniques can be used with many imaging modalities. Several



previous approaches have considered modeling objects as a set of straight linesegments, and matching these to the straight line segments extracted from animage [5, 19]. Our use of the complete edge map to model objects, rather thanapproximating them as straight line segments, allows irregularly shaped objectsto be modeled accurately. We speci�cally address images with a very large frac-tion of points constituting the false attractors by using a special form of templatematching and compare our results with standard methods. Our templates aregenerated on-line, guided by the GA.In the next section we briey identify cases where standard methods fail dueto the presence of a large number of false attractors. Towards this we use anexample of straight line detection, following which we describe our method. InSection 4 we describe test results with two images and compare the performancewith standard methods. Section 5 concludes the paper.2 MotivationThe various approaches towards searching for the occurrence of an object in ascene can be roughly classi�ed depending on whether the search is performed inthe correspondence space, transformation space, or both. Correspondence spaceis the space of matches, which are sets of pairings between model and imagefeatures or points. Transformation space is the space of possible object poses.The interpretation tree approach [8] exempli�es those methods that searchentirely in the correspondence space. Its name refers to a search tree of choicesconcerning the interpretation of each image feature. Proceeding from the root ofthe tree, the match search examines an additional image feature at each level ofthe tree. Branches at each level represent di�erent choices among model featuresthat can be matched to that image feature, plus the choice of matching nothing atall to it. A complete interpretation of the image, assigning some subset of imagefeatures to corresponding model features, is associated with each of the tree'sleaves. This method is computationally very costly and is generally exponentialto the number of image and model pixels. Hence in the presence of excessivenumber of false attractors, such a method is rendered infeasible.The generalized Hough transform is an example of a method that searchesthe transformation space. An accumulator array indexed by parameters of ob-ject pose, is �rst initialized as empty. Then, for each possible match between oneimage feature and one model feature, poses consistent with that match are de-termined and votes are cast in the bins of the accumulator array correspondingto those poses. The second stage is an exhaustive search for parameters in theaccumulator array which are local maxima. Each such local maximum representsa candidate match between the model and the image. In this approach, pointson the same object occurring in the image result in points in the parameterspace which are close together, whereas the false attractors result in randomlydistributed points in the parameter space. Thus a large cluster of points in theparameter space represent a match between the model and an object in theimage. The validity of this assumption, however, depends on there being a low



likelihood that clusters due to false attractors will be comparable or larger insize than clusters due to points on genuine objects. We believe that in many reallife images, this assumption does not hold. Fig. 1(a) shows two straight lines L1and L2, where each line is composed of a small number of disconnected points.In Fig. 1(b), random noise is superimposed on the line L1 (Fig. 4 in Section 4shows one example where such a situation really arises in practice). Let us callthe lines in Fig. 1(a) as true lines and the line in Fig. 1(b) that corresponds toline L1 of Fig. 1(a), as a pseudo line. Line L2 in this �gure still remains a trueline. If our model is a simple straight line, then ideally the recognition algorithmshould detect both L1 and L2 from Fig. 1(a) but only L2 from Fig. 1(b). Notethat there are a large number of pseudo lines in the noise region in Fig. 1(b).Since the number of points on each of these pseudo lines is comparable or morethan than the number of points on the line L2, it gets masked in the parameterspace by these pseudo lines.
Fig. 1. A binary edge image (a) Two straight lines (b) Noise superimposed on one ofthe lines3 A Genetic Algorithm for Object RecognitionTo overcome the e�ects of noise in curve detection, the Window RHT and Ran-dom Window RHT due to K�alvi�ainen et al. [16], randomly place a window onan edge point and try to locate a curve within the window. Similarly templatematching [4, 28] has been widely used in computer vision for object recognition.An object in an image is de�ned to be recognized if it correlates highly witha template image of the hypothesized object. The template image is usually atransformed version of the model of the hypothesized object. Our technique isconceptually similar to this. We place a weighted template on an edge point andmeasure the weighted di�erence between pixels on a real object and the spuriouspoints surrounding it. The templates are constructed online, guided by the GA.A crucial problem with ordinary template matching is the size of the searchspace [20, 18]. An attempt to overcome this is through the randomized versionslike Window RHT and Random Window RHT. We feel that a search guided bya GA is more superior than a simple random search and can reduce the searchtime by orders of magnitude.



3.1 Generating Templates from Model ImagesGiven a binary edge map and a model, or possibly a library of models, ourobjective is to identify the occurrence of these models in the image. If a model isrepresented by the set of its edge pixelsM, then a template T is generated fromM by choosing three parameters that describe a transformation of M into T ,along with some additional parameters which determine the quality of allowablematches. The parameters used for transformation are translation, rotation andscaling, and possibly also mirror image about any arbitrary line. We say that themodelM occurs in the given image at the location indicated by the template T ifPx2T Zx � Nmin, where Zx is the gray level of the pixel x (0 or 1 in a binary edgemap) in the binary edge map of the image. The template T is the set of pointsfx : d(x; I(x 0)) � � and x 0 2 Mg, where I is some composition of translation,rotation and scaling, and d(x; I(x 0)) is the Euclidean distance between the pointsx and I(x 0). � is a parameter which describes the width of a strip or band aroundthe transformed model, which allows for certain tolerance. Nmin is the minimumnumber of pixels of the edge detected image that must occur within the templateso that the presence of the hypothesized object corresponding to the model Mcan be ascertained. A relatively large value of � allows objects to be detectedwhich are fuzzy or have a weak similarity with the model M.For images with relatively less or no spurious points such as Fig. 1(a), thisformulation is su�cient and is in fact similar to the Window RHT used for curvedetection, except for the fact that we do not use any transformation mappingfrom the image to the parameter space as is common in Hough transform. Rather,we simply count the number of points lying within the template T . But in thecase of images with a large proportion of false attractors such as Fig. 1(b),whenever the template is placed on a region consisting of such points, a falsealarm in the form of a pseudo object will be raised. To extend this method toinclude such images, we formulate a weighted template rather than the simpleone described above. The response of the template T under this formulation isgiven by R =Px2T WxZx, where Wx is the weight or coe�cient of the pixel x.We shall say that the model M occurs in the image at the location indicated bytemplate T if the response R of the template is greater than a constant Rmin,�xed, depending on the dimensions of the model, template width �, and thecoe�cients Wx. The coe�cients of pixels that lie away from the transformedmodel i.e. I(M), are assigned negative values. So when a lot of spurious pointsare present in the neighborhood of I(M), as in the case of the pseudo lines inFig. 1(b), the positive response due to the points on and near I(M) is o�setby the negative response due to the spurious points surrounding it. As a result,false alarms are avoided.3.2 Parameter Search Space and the use of GAEven if a particular object is known to be present in the image a priori, the spaceof transformations from the model to the image is extremely large. Hence anexhaustive search of this space would take too long to �nd a good match between



templates and images. A random search in the presence of excessive noise andclutter is also not bene�cial. So instead of randomly choosing the transformationparameters to generate a template, we use a genetic algorithm to search theparameter space for all instances of objects for which the template response isgreater than Rmin. For this, each of the parameters - x and y-coordinates of thetranslation vector, the rotation angle, and the scaling factor, are coded as �xedlength binary strings. The resulting string, obtained by concatenating all thesestrings, gives the chromosomal representation of a solution to the problem. Notethat the domains of each of the parameters may be di�erent and the length of thestring coding a given parameter depends on the required parameter resolution.The �tness of a solution is taken to be the response of the weighted template,as described in the previous section.Since in practical situations an exact match between the model and a hypoth-esized object is not expected, we construct the template T such that points nearthe transformed model I(M) are associated with positive coe�cients and pointslying further away have negative coe�cients. This, along with a suitably chosenvalue of the minimum response Rmin, o�ers considerable exibility regarding thequality of the resemblance between the model and the detected objects.Creation of initial population. In most GA applications, the initial pop-ulation consists of entirely random structures to avoid convergence to a localoptima. However, in this problem, the question is not of �nding the global op-tima, but of �nding all solutions with �tness greater than Rmin. To identifyprospective regions of the search space, the hypothesize and test paradigm com-monly used in visual object recognition might be e�ectively used. In [6] we useda Randomized Hough transform for this purpose. For object recognition, a vari-ation of this method similar to the generalized Hough transform might be usedto generate an initial set of hypotheses. Towards this, pairs of points are ran-domly chosen and possible transformations which map these two points ontopoints in the image are computed, as in the alignment method [14]. However in-stead of explicitly testing such transformations, the count, in the accumulatorsrepresenting the parameter space, corresponding to such transformations are in-cremented by one. After repeating this process for a prede�ned number of times,points in the parameter space with counts exceeding a prede�ned threshold rep-resent candidate hypotheses. The GA searches the entire parameter space witha bias towards these hypotheses. Corresponding to each candidate hypothesis, asuitable number of solutions are introduced into the initial population. Further,a �xed number of random samples from the solution space are also introduced.The total number of solutions is kept �xed over all the generations.It should be noted that the above mentioned method of generating candi-date hypotheses is rendered ine�ective in the presence of excessive clutter andextreme scaling, where this scheme is no better than randomly generating theinitial population. However, for images with even moderate amounts of noiseand clutter, it can lead to a considerable speedup.



Selection. The selection used here falls into the category of dynamic, gener-ational, preservative, elitist selection [27]. Let there be M distinct solutions ina given generation, denoted by S1; S2; : : : ; SM . The probability of selecting asolution Si into the mating pool is given by :P (Si) = F(Si)PMj=1 F(Si)Where F(Si) is the �tness of the solution Si. A �xed number of solutions arecopied into the mating pool according to this rule and a small number of re-maining solutions are randomly generated. In each generation, a �xed numberof best solutions of the previous generation are copied in place of the presentworst solutions, if they happen to be less �t compared to the former. This is aslight modi�cation of the Elitist model where only the best solution is preserved.Crossover and Mutation. Because of the number of parameters involved,it is intuitive that the single point crossover operation may not be useful. Socrossover is applied to each substring corresponding to each of the parameters -x and y-coordinates of the translation vector, the rotation angle, and the scalingfactor, the operation being the usual swapping of all bits from a randomly chosencrossover site of the two parents, chosen randomly from the mating pool [29].Hence this crossover is similar to the standard single-point crossover operator,but operated on substrings of each parameter. Therefore, there are four single-point crossovers taking place between two parent strings.We have used a classical mutation operator in which each bit position of thesolution strings is complemented with a small mutation probability.The overall algorithm. The initial population consisting of a �xed numberof solutions is created as already described. In each generation, the entire pop-ulation is subjected to selection, crossover and mutation. At the end of eachgeneration, edge pixels corresponding to solutions having �tness greater thanRmin are removed from the edge map. After �xed number of generations, theaccumulators corresponding to the parameter space used for generating the can-didate hypotheses are reset and the voting process is repeated to generate afresh set of hypotheses. Candidate solutions corresponding to these are then in-troduced into the population and whole process is once again repeated. Thisiteration is continued until no new curve segments are extracted for a givennumber of generations, which in our experiments was set to 200.4 Test Results and ComparisonsWe have experimented with two di�erent images. For the ease of comparisonwith standard methods, in our �rst experiment the model is a simple straightline. Although this is the simplest possible case, as evident from the previoussections, our algorithm is blind to this fact. For comparing the performanceof our method with Hough transform which is the most popular method forstraight line detection, we used a public domain software package XHoughtool



[15], where a number of non-probabilistic and probabilistic Hough transformalgorithms have been implemented.As indicated in the previous section, there are various parameters that ouralgorithm uses. The parameters related to the template are its width, the coef-�cients or weights associated with each pixel, and the threshold response Rmin.The allowable quality or degree of correspondence between the model and theobjects extracted from the image is determined by the template coe�cients andits width. A wide template with more than one row of positive coe�cients willdetect objects whose pixels are spread out along its width compared to the modelin question. Thus, a suitably designed template, along with a proper thresholdvalue Rmin, will be able to distinguish between an object having a relativelyweak similarity with the model, and a false attractor. In our �rst experimentwhere the model is a straight line, we have used a template width of 3, to detectonly perfect straight lines. The coe�cients of all pixels lying on the straight linewere set to 2 and the others to �1 as shown in Fig. 2. Too low a value, Rmin,of the threshold might detect a pseudo line where as a too high value mightmiss a faint, disconnected, but visually detectable line. The results shown in thissection were obtained with Rmin set to the length of the transformed line, i.e.I(M).
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.......Fig. 2. A mask of width 3For the GA parameters, we used a mutation probability of 0:1 and any pop-ulation size around 100 was found to work well. In each generation, 25% of thesolutions were randomly created and the rest copied from the mating pool inaccordance with the �tness proportionate selection. Further, the best 10% solu-tions of the previous generation were copied in place of the worst solutions ofthe current generation.Fig. 3(b) shows a 512 by 512 binary image obtained after edge detection ofthe corresponding gray scale image shown in Fig. 3(a). Our model in this caseconsists of a simple straight line. Note the three disconnected, but visible reallines in the image, two at the center and one the the extreme left end. Thestraight lines detected by our algorithm are shown in Fig. 3(c). Altogether sevendi�erent Hough transform algorithms are implemented in the XHoughtool pack-age. In spite of a serious attempt being made to select the test parameters foreach method as optimally as possible, none of the algorithms gave useful resultsbecause a large number of pseudo lines were detected. A typical result is shownin Fig. 3(d). Since the number of edge points lying on the real lines are much lesscompared to those lying on many of the pseudo lines, no suitable accumulatorthreshold value exists which can detect only the real lines. Generally these algo-



rithms work well even in the case of noisy images, where the lines are connectedand the number of edge points lying on these lines are at least comparable tothe number of noise points. It is to be noted in this example that there areedge detectors which if used for Fig. 3(a) along with proper thresholding, wouldeliminate most of the false attractors now appearing in Fig. 3(b). In such a sit-uation, a simple HT algorithm would su�ce. However, we have used the edgedetection algorithm incorporated in xv, the interactive image viewer availableon any X-window system. This, in some way arti�cial route, was adopted onlyto illustrate a situation where the proposed method might be useful. Secondly,the `lines' detected in Fig. 3(c) are actually edges, with no width. But for thepurpose of this algorithm we do not distinguish between an edge and a line.

Fig. 3. Test results with the model being a simple straight line (a) A 512 by 512 grayscale image (b) The corresponding binary edge map obtained after edge detection (c)Straight lines detected by the proposed method (d) A typical result obtained using aHough transform algorithmOur second example is a synthetic image shown in Fig. 4 consisting of in-stances of the letters A and Z under various orientations and scaling, along withrandom noise. The model is a letter A. Note that there are seven instances ofthe letter A in the scene image. In most of the test runs the algorithm could



detect all the seven As and avoid any false alarms. However, it was crucial toapproximately choose the value of the threshold Rmin. In this case also we useda template width of three as in the previous example.

Fig. 4. A binary scene image where the model A is to be detectedWe should emphasize here that the procedure for generating the initial so-lutions described in the last section, is much more e�ective in the case of oursecond example where the proportion of false attractors is much less comparedto the �rst.5 SummaryThe Hough transform and its variants are the most popular methods for de-tecting analytic curves from binary edge data. However, they do not scale wellwhen applied to complex environments in the presence of excessive noise andclutter. In [6] we presented a GA in combination with the Randomized Houghtransform but using a di�erent scoring function, to deal with such environments.This paper extended that technique to incorporate model based object recogni-tion. Towards this we used a special form of template matching which o�ers aconsiderable exibility regarding the quality of the allowable matches. Althoughthere has been attempts to use simple random search for several computer visionproblems, a search guided by a GA is probably superior in this case.For future work, further experimentation could be performed using a varietyof di�erent image and model pairs to illustrate the general applicability of this
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