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Abstract. This paper describes a technique for model-based object
recognition in a noisy and cluttered environment, by extending the work
presented in an earlier study by the authors. In order to accurately model
small irregularly shaped objects, the model and the image are represented
by their binary edge maps, rather then approximating them with straight
line segments. The problem is then formulated as that of finding the best
describing match between a hypothesized object and the image. A special
form of template matching is used to deal with the noisy environment,
where the templates are generated on-line by a Genetic Algorithm. For
experiments, two complex test images have been considered and the re-
sults when compared with standard techniques indicate the scope for
further research in this direction.

1 Introduction

Finding the best transformation that maps an object model into the image of
a scene is a central issue in object recognition. There are several approaches
to this problem which explicitly rely on results from computational geometry.
Among them are geometric hashing [17], alignment [14] and voting [2]. The
Hough transform [22], which is recognized as a powerful tool for curve as well as
object detection falls into the third category. A different line of approach involves
the development of cost functions for measuring the difference between two sets
of points or line segments under various transformations. Such cost functions
based on the Hausdorff distance have been extensively investigated in both com-
putational geometry [1, 3, 12] and computer vision [13, 24] literatures. Although
these methods give good results in the presence of small amounts of noise and
occlusion, they do not scale well when applied to complex cluttered scenes, and
in the presence of a lot of noise. For example, in a study on the noise sensitiv-
ity of the generalized Hough transform by Grimson and Huttenlocher [9], it was
concluded that even for moderate amounts of noise and occlusion, these methods
can hypothesize many false solutions, and their effectiveness is dramatically re-
duced. Similar conclusions were made by Sarachik [25] for the geometric hashing
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paradigm applied to 2-D object recognition. So these techniques are reliable only
for relatively simple tasks in the absence of excessive noise and clutter, where
the image data corresponding to correct solutions is a large fraction of the total
data. In an effort to address this problem, in [6] we proposed a scheme for de-
tecting analytic curves using a Genetic Algorithm (GA) [7] in combination with
the Randomized Hough transform [27]. The present paper extends that work to
consider the detection of any binary object model in a binary edge map of a scene
image. There exists a large volume of literature on detecting curves and objects
in noisy as well as cluttered images. But most of them assume a predefined er-
ror model, either uniform bounded for feature displacement or a 2D Gaussian.
Additionally, several approaches also assume the presence of the model in the
image and the worst case search time in the presence of noise is exponential in
the problem size [10]. The proposed method in this paper is flexible, and does
not assume any error model. It is particularly effective in the case of complex
images where the number of pixels belonging to the object being searched for
is a very small fraction of the total number of edge pixels. In image processing
literature there is a mathematical distinction between clutter and noise. The
former might refer to all features or points that come from something different
than the model, where as noise usually refers to the phenomenon in which the
identified locations of the image points are slightly displaced from where they
should be. Coupled with these, there might be several spurious data points in
the image arising out of various sources, for example, edge points arising out of
brightness discontinuities and imperfect edge detection. For the purpose of this
paper it is not required to distinguish between these different errors and we will
refer to all such points jointly as false attractors.

The concept of using GA for curve extraction has been explored in the past
[11, 23]. But the problems of noise or clutter were not considered. Object recog-
nition in a complex image using GA has also been attempted [26]. The method
that we present is more flexible in terms of the allowable similarity between the
model and the object in the scene image. This has important advantages for suc-
cessful recognition of real life images, since it results in a flexibility in evaluating
an hypothesis about the occurrence of the object in the scene. We illustrate this
through examples presented in Section 4.

There has been an enormous amount of research in automatic object recog-
nition. But despite this fact the problem remains largely unsolved. A compre-
hensive overview of this subject from a variety of perspectives can be found in
[21]. We believe that the use of GA can help in dealing with the uncertainties
that arise in any practical object recognition system. Further, since such a task
involves a very large search space, a suitably designed GA approach can reduce
the search time by several orders of magnitude with respect to an exhaustive
search.

In this paper, the object recognition task is performed by representing the
model and the image in the form of their binary edge pixels. This representation
has a number of benefits. Edge pixels are robust to changes in sensing conditions
and edge-based techniques can be used with many imaging modalities. Several



previous approaches have considered modeling objects as a set of straight line
segments, and matching these to the straight line segments extracted from an
image [5, 19]. Our use of the complete edge map to model objects, rather than
approximating them as straight line segments, allows irregularly shaped objects
to be modeled accurately. We specifically address images with a very large frac-
tion of points constituting the false attractors by using a special form of template
matching and compare our results with standard methods. Our templates are
generated on-line, guided by the GA.

In the next section we briefly identify cases where standard methods fail due
to the presence of a large number of false attractors. Towards this we use an
example of straight line detection, following which we describe our method. In
Section 4 we describe test results with two images and compare the performance
with standard methods. Section 5 concludes the paper.

2 Motivation

The various approaches towards searching for the occurrence of an object in a
scene can be roughly classified depending on whether the search is performed in
the correspondence space, transformation space, or both. Correspondence space
is the space of matches, which are sets of pairings between model and image
features or points. Transformation space is the space of possible object poses.

The interpretation tree approach [8] exemplifies those methods that search
entirely in the correspondence space. Its name refers to a search tree of choices
concerning the interpretation of each image feature. Proceeding from the root of
the tree, the match search examines an additional image feature at each level of
the tree. Branches at each level represent different choices among model features
that can be matched to that image feature, plus the choice of matching nothing at
all to it. A complete interpretation of the image, assigning some subset of image
features to corresponding model features, is associated with each of the tree’s
leaves. This method is computationally very costly and is generally exponential
to the number of image and model pixels. Hence in the presence of excessive
number of false attractors, such a method is rendered infeasible.

The generalized Hough transform is an example of a method that searches
the transformation space. An accumulator array indexed by parameters of ob-
ject pose, is first initialized as empty. Then, for each possible match between one
image feature and one model feature, poses consistent with that match are de-
termined and votes are cast in the bins of the accumulator array corresponding
to those poses. The second stage is an exhaustive search for parameters in the
accumulator array which are local maxima. Each such local maximum represents
a candidate match between the model and the image. In this approach, points
on the same object occurring in the image result in points in the parameter
space which are close together, whereas the false attractors result in randomly
distributed points in the parameter space. Thus a large cluster of points in the
parameter space represent a match between the model and an object in the
image. The validity of this assumption, however, depends on there being a low



likelihood that clusters due to false attractors will be comparable or larger in
size than clusters due to points on genuine objects. We believe that in many real
life images, this assumption does not hold. Fig. 1(a) shows two straight lines L,
and Lo, where each line is composed of a small number of disconnected points.
In Fig. 1(b), random noise is superimposed on the line L; (Fig. 4 in Section 4
shows one example where such a situation really arises in practice). Let us call
the lines in Fig. 1(a) as true lines and the line in Fig. 1(b) that corresponds to
line L; of Fig. 1(a), as a pseudo line. Line Lo in this figure still remains a true
line. If our model is a simple straight line, then ideally the recognition algorithm
should detect both Ly and Lo from Fig. 1(a) but only L, from Fig. 1(b). Note
that there are a large number of pseudo lines in the noise region in Fig. 1(b).
Since the number of points on each of these pseudo lines is comparable or more
than than the number of points on the line Ls, it gets masked in the parameter
space by these pseudo lines.

L,

Fig. 1. A binary edge image (a) Two straight lines (b) Noise superimposed on one of
the lines

3 A Genetic Algorithm for Object Recognition

To overcome the effects of noise in curve detection, the Window RHT and Ran-
dom Window RHT due to Kélvidinen et al. [16], randomly place a window on
an edge point and try to locate a curve within the window. Similarly template
matching [4, 28] has been widely used in computer vision for object recognition.
An object in an image is defined to be recognized if it correlates highly with
a template image of the hypothesized object. The template image is usually a
transformed version of the model of the hypothesized object. Our technique is
conceptually similar to this. We place a weighted template on an edge point and
measure the weighted difference between pixels on a real object and the spurious
points surrounding it. The templates are constructed online, guided by the GA.

A crucial problem with ordinary template matching is the size of the search
space [20, 18]. An attempt to overcome this is through the randomized versions
like Window RHT and Random Window RHT. We feel that a search guided by
a GA is more superior than a simple random search and can reduce the search
time by orders of magnitude.



3.1 Generating Templates from Model Images

Given a binary edge map and a model, or possibly a library of models, our
objective is to identify the occurrence of these models in the image. If a model is
represented by the set of its edge pixels M, then a template T is generated from
M by choosing three parameters that describe a transformation of M into T,
along with some additional parameters which determine the quality of allowable
matches. The parameters used for transformation are translation, rotation and
scaling, and possibly also mirror image about any arbitrary line. We say that the
model M occurs in the given image at the location indicated by the template 7 if
Y we7 Za 2 Nmin, where Z, is the gray level of the pixel z (0 or 1in a binary edge
map) in the binary edge map of the image. The template T is the set of points
{z :d(z,Z(z")) < J and =’ € M}, where T is some composition of translation,
rotation and scaling, and d(z,Z(z ")) is the Euclidean distance between the points
x and Z(z'). 4 is a parameter which describes the width of a strip or band around
the transformed model, which allows for certain tolerance. IN,,;, is the minimum
number of pixels of the edge detected image that must occur within the template
so that the presence of the hypothesized object corresponding to the model M
can be ascertained. A relatively large value of § allows objects to be detected
which are fuzzy or have a weak similarity with the model M.

For images with relatively less or no spurious points such as Fig. 1(a), this
formulation is sufficient and is in fact similar to the Window RHT used for curve
detection, except for the fact that we do not use any transformation mapping
from the image to the parameter space as is common in Hough transform. Rather,
we simply count the number of points lying within the template 7. But in the
case of images with a large proportion of false attractors such as Fig. 1(b),
whenever the template is placed on a region consisting of such points, a false
alarm in the form of a pseudo object will be raised. To extend this method to
include such images, we formulate a weighted template rather than the simple
one described above. The response of the template 7 under this formulation is
given by R = ZmeT WeZ,, where W, is the weight or coefficient of the pixel z.
We shall say that the model M occurs in the image at the location indicated by
template 7T if the response R of the template is greater than a constant R,,;,,
fixed, depending on the dimensions of the model, template width §, and the
coefficients W,. The coefficients of pixels that lie away from the transformed
model i.e. Z(M), are assigned negative values. So when a lot of spurious points
are present in the neighborhood of Z(M), as in the case of the pseudo lines in
Fig. 1(b), the positive response due to the points on and near Z(M) is offset
by the negative response due to the spurious points surrounding it. As a result,
false alarms are avoided.

3.2 Parameter Search Space and the use of GA

Even if a particular object is known to be present in the image a priori, the space
of transformations from the model to the image is extremely large. Hence an
exhaustive search of this space would take too long to find a good match between



templates and images. A random search in the presence of excessive noise and
clutter is also not beneficial. So instead of randomly choosing the transformation
parameters to generate a template, we use a genetic algorithm to search the
parameter space for all instances of objects for which the template response is
greater than R,,;,. For this, each of the parameters - z and y-coordinates of the
translation vector, the rotation angle, and the scaling factor, are coded as fixed
length binary strings. The resulting string, obtained by concatenating all these
strings, gives the chromosomal representation of a solution to the problem. Note
that the domains of each of the parameters may be different and the length of the
string coding a given parameter depends on the required parameter resolution.
The fitness of a solution is taken to be the response of the weighted template,
as described in the previous section.

Since in practical situations an exact match between the model and a hypoth-
esized object is not expected, we construct the template 7 such that points near
the transformed model Z(M) are associated with positive coefficients and points
lying further away have negative coefficients. This, along with a suitably chosen
value of the minimum response R,,;,, offers considerable flexibility regarding the
quality of the resemblance between the model and the detected objects.

Creation of initial population. In most GA applications, the initial pop-
ulation consists of entirely random structures to avoid convergence to a local
optima. However, in this problem, the question is not of finding the global op-
tima, but of finding all solutions with fitness greater than R,,;,. To identify
prospective regions of the search space, the hypothesize and test paradigm com-
monly used in visual object recognition might be effectively used. In [6] we used
a Randomized Hough transform for this purpose. For object recognition, a vari-
ation of this method similar to the generalized Hough transform might be used
to generate an initial set of hypotheses. Towards this, pairs of points are ran-
domly chosen and possible transformations which map these two points onto
points in the image are computed, as in the alignment method [14]. However in-
stead of explicitly testing such transformations, the count, in the accumulators
representing the parameter space, corresponding to such transformations are in-
cremented by one. After repeating this process for a predefined number of times,
points in the parameter space with counts exceeding a predefined threshold rep-
resent candidate hypotheses. The GA searches the entire parameter space with
a bias towards these hypotheses. Corresponding to each candidate hypothesis, a
suitable number of solutions are introduced into the initial population. Further,
a fixed number of random samples from the solution space are also introduced.
The total number of solutions is kept fixed over all the generations.

It should be noted that the above mentioned method of generating candi-
date hypotheses is rendered ineffective in the presence of excessive clutter and
extreme scaling, where this scheme is no better than randomly generating the
initial population. However, for images with even moderate amounts of noise
and clutter, it can lead to a considerable speedup.



Selection. The selection used here falls into the category of dynamic, gener-
ational, preservative, elitist selection [27]. Let there be M distinct solutions in
a given generation, denoted by Sy, Ss,...,Sy. The probability of selecting a
solution S; into the mating pool( is) given by :
F(S;
P(Sl) B Z]]V;1 .7:(5'1')

Where F(S;) is the fitness of the solution S;. A fixed number of solutions are
copied into the mating pool according to this rule and a small number of re-
maining solutions are randomly generated. In each generation, a fixed number
of best solutions of the previous generation are copied in place of the present
worst solutions, if they happen to be less fit compared to the former. This is a
slight modification of the Elitist model where only the best solution is preserved.

Crossover and Mutation. Because of the number of parameters involved,
it is intuitive that the single point crossover operation may not be useful. So
crossover is applied to each substring corresponding to each of the parameters -
x and y-coordinates of the translation vector, the rotation angle, and the scaling
factor, the operation being the usual swapping of all bits from a randomly chosen
crossover site of the two parents, chosen randomly from the mating pool [29].
Hence this crossover is similar to the standard single-point crossover operator,
but operated on substrings of each parameter. Therefore, there are four single-
point crossovers taking place between two parent strings.

We have used a classical mutation operator in which each bit position of the
solution strings is complemented with a small mutation probability.

The overall algorithm. The initial population consisting of a fixed number
of solutions is created as already described. In each generation, the entire pop-
ulation is subjected to selection, crossover and mutation. At the end of each
generation, edge pixels corresponding to solutions having fitness greater than
R.in are removed from the edge map. After fixed number of generations, the
accumulators corresponding to the parameter space used for generating the can-
didate hypotheses are reset and the voting process is repeated to generate a
fresh set of hypotheses. Candidate solutions corresponding to these are then in-
troduced into the population and whole process is once again repeated. This
iteration is continued until no new curve segments are extracted for a given
number of generations, which in our experiments was set to 200.

4 Test Results and Comparisons

We have experimented with two different images. For the ease of comparison
with standard methods, in our first experiment the model is a simple straight
line. Although this is the simplest possible case, as evident from the previous
sections, our algorithm is blind to this fact. For comparing the performance
of our method with Hough transform which is the most popular method for
straight line detection, we used a public domain software package XHoughtool



[15], where a number of non-probabilistic and probabilistic Hough transform
algorithms have been implemented.

As indicated in the previous section, there are various parameters that our
algorithm uses. The parameters related to the template are its width, the coef-
ficients or weights associated with each pixel, and the threshold response R, .
The allowable quality or degree of correspondence between the model and the
objects extracted from the image is determined by the template coefficients and
its width. A wide template with more than one row of positive coefficients will
detect objects whose pixels are spread out along its width compared to the model
in question. Thus, a suitably designed template, along with a proper threshold
value R,,;n, will be able to distinguish between an object having a relatively
weak similarity with the model, and a false attractor. In our first experiment
where the model is a straight line, we have used a template width of 3, to detect
only perfect straight lines. The coefficients of all pixels lying on the straight line
were set to 2 and the others to —1 as shown in Fig. 2. Too low a value, R, n,
of the threshold might detect a pseudo line where as a too high value might
miss a faint, disconnected, but visually detectable line. The results shown in this
section were obtained with R,,;, set to the length of the transformed line, i.e.

T(M).

T I S 4|1 |1
2| 2| 2| = 2|21 2
T S T B R RS

Fig. 2. A mask of width 3

For the GA parameters, we used a mutation probability of 0.1 and any pop-
ulation size around 100 was found to work well. In each generation, 25% of the
solutions were randomly created and the rest copied from the mating pool in
accordance with the fitness proportionate selection. Further, the best 10% solu-
tions of the previous generation were copied in place of the worst solutions of
the current generation.

the corresponding gray scale image shown in Fig. 3(a). Our model in this case
consists of a simple straight line. Note the three disconnected, but visible real
lines in the image, two at the center and one the the extreme left end. The
straight lines detected by our algorithm are shown in Fig. 3(c). Altogether seven
different Hough transform algorithms are implemented in the XHoughtool pack-
age. In spite of a serious attempt being made to select the test parameters for
each method as optimally as possible, none of the algorithms gave useful results
because a large number of pseudo lines were detected. A typical result is shown
in Fig. 3(d). Since the number of edge points lying on the real lines are much less
compared to those lying on many of the pseudo lines, no suitable accumulator
threshold value exists which can detect only the real lines. Generally these algo-



rithms work well even in the case of noisy images, where the lines are connected
and the number of edge points lying on these lines are at least comparable to
the number of noise points. It is to be noted in this example that there are
edge detectors which if used for Fig. 3(a) along with proper thresholding, would
eliminate most of the false attractors now appearing in Fig. 3(b). In such a sit-
uation, a simple HT algorithm would suffice. However, we have used the edge
detection algorithm incorporated in zv, the interactive image viewer available
on any X-window system. This, in some way artificial route, was adopted only
to illustrate a situation where the proposed method might be useful. Secondly,
the ‘lines’ detected in Fig. 3(c) are actually edges, with no width. But for the
purpose of this algorithm we do not distinguish between an edge and a line.

(<) (d)

Fig. 3. Test results with the model being a simple straight line (a) A 512 by 512 gray
scale image (b) The corresponding binary edge map obtained after edge detection (c)
Straight lines detected by the proposed method (d) A typical result obtained using a
Hough transform algorithm

Our second example is a synthetic image shown in Fig. 4 consisting of in-
stances of the letters A and Z under various orientations and scaling, along with
random noise. The model is a letter A. Note that there are seven instances of
the letter A in the scene image. In most of the test runs the algorithm could



detect all the seven As and avoid any false alarms. However, it was crucial to
approximately choose the value of the threshold R,,;,. In this case also we used
a template width of three as in the previous example.

Fig. 4. A binary scene image where the model A is to be detected

We should emphasize here that the procedure for generating the initial so-
lutions described in the last section, is much more effective in the case of our
second example where the proportion of false attractors is much less compared
to the first.

5 Summary

The Hough transform and its variants are the most popular methods for de-
tecting analytic curves from binary edge data. However, they do not scale well
when applied to complex environments in the presence of excessive noise and
clutter. In [6] we presented a GA in combination with the Randomized Hough
transform but using a different scoring function, to deal with such environments.
This paper extended that technique to incorporate model based object recogni-
tion. Towards this we used a special form of template matching which offers a
considerable flexibility regarding the quality of the allowable matches. Although
there has been attempts to use simple random search for several computer vision
problems, a search guided by a GA is probably superior in this case.

For future work, further experimentation could be performed using a variety
of different image and model pairs to illustrate the general applicability of this



method. One possible application domain might be automatic target recogni-
tion where, because of its military applications, the goal is to avoid the object
being detected. It should also be possible to utilize other methods than the one
described here for generating the set of hypotheses used for initializing the pop-
ulation. Further, it would be interesting to extend the set of transformations
considered here with shearing for example, to test weak similarities between the
model and the image.
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