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Abstract

Many real-world problem solving tasks, including
CFD problems, involve posing and solving opti-
mization problems, which are usually non-linear,
non-differentiable, multi-dimensional, multi-modal,
stochastic, and computationally time-consuming. In
this paper, we discuss a number of such practical
problems which are, in essence, optimization prob-
lems and review the classical optimization methods
to show that they are not adequate in solving such
demanding tasks. On the other hand, in the past
couple of decades, new yet practical optimization
methods, based on natural evolutionary techniques,
are increasingly found to be useful in meeting the
challenges. These methods are population based,
stochastic, and flexible, thereby providing an ideal
platform to modify them to suit to solve most opti-
mization problems. The remainder of the paper illus-
trates the working principles of such evolutionary op-
timization methods and presents some results in sup-
port of their efficacy. The breadth of their applica-
tion domain and ease and efficiency of their working
make evolutionary optimization methods promising
for taking up the challenges offered by the vagaries
of various practical optimization problems.

1 INTRODUCTION

Optimization is an activity which does not belong to
any particular discipline and is routinely used in al-
most all fields of science, engineering and commerce.
Chambers dictionary describes optimization as an act
of ‘making the most or best of anything’. Theoret-
ically speaking, performing an optimization task in
a problem means finding the most or best suitable
solution of the problem. Mathematical optimization
studies spend a great deal of effort in trying to de-
scribe the properties of such an ideal solution. Engi-
neering or practical optimization studies, on the other
hand, thrive to look for a solution which is as sim-
ilar to such an ideal solution as possible. Although
the ideal optimal solution is desired, the restrictions
on computing power and time often make the prac-
titioners happy with an approrimate solution.
Serious studies on practical optimization begun as
early as the second World war, when the need for effi-
cient deployment and resource allocation of military
personnel and accessories became important. Most
development in the so-called ‘classical’ optimization
field was made by developing step-by-step procedures
for solving a particular type of an optimization prob-
lem. Often fundamental ideas from geometry and
calculus were borrowed to reach the optimum in an
iterative manner. Such optimization procedures have



enjoyed a good 50 years of research and applica-
tions and are still going strong. However, around the
middle of eighties, completely unorthodox and less-
mathematical yet intriguing optimization procedures
have been suggested mostly by computer scientists.
It is not surprising because these ‘non-traditional’ op-
timization methods exploit the fast and distributed
computing machines which are getting increasingly
available and affordable like slide-rules of sixties.

In this paper, we focus on one such non-traditional
optimization method which takes the lion’s share of
all non-traditional optimization methods. This so-
called ‘evolutionary optimization (EO)’ mimics the
natural evolutionary principles on randomly-picked
solutions from the search space of the problem and it-
eratively progresses towards the optimum point. Na-
ture’s ruthless selective advantage to fittest individ-
uals and creation of new and more fit individuals
using recombinative and mutative genetic process-
ing with generations is well-mimicked artificially in
a computer algorithm to be played on a search space
where good and bad solutions to the underlying prob-
lem coexist. The task of an evolutionary optimiza-
tion algorithm is then to avoid the bad solutions in
the search space, take clues from good solutions and
eventually reach close to the best solution, similar to
the genetic processing in natural systems.

Like the existence of various natural evolutionary
principles applied to lower and higher level species,
researchers have developed different kinds of evolu-
tionary plans resulting in a gamut of evolutionary
algorithms (EAs) — some emphasizing the recombina-
tion procedure, some emphasizing the mutation op-
eration and some using a niching strategy, whereas
some using a mating restriction strategy. In this ar-
ticle, we only give a description of a popular approach
— genetic algorithm (GA). Other approaches are also
well-established and can be found from the EA liter-
ature [42, 1, 19, 29, 44, 27].

In the remainder of the paper, we describe an op-
timization problem and cite a number of commonly-
used practical problems, including a number of CFD
problems, which are in essence optimization prob-
lems. A clear look at the properties of such prac-
tical optimization problems and a description of the
working principles of classical optimization methods

reveal that completely different optimization proce-
dures are in order for such problem solving. There-
after, the evolutionary optimization procedure is de-
scribed and its suitability in meeting the challenges
offered by various practical optimization problems is
demonstrated. The final section concludes the study.

2 AN OPTIMIZATION
PROBLEM AND ITS NO-
TATIONS

Throughout this paper, we describe procedures for
finding the optimum solution of a problem of the fol-
lowing type:

Minimize f(x),
Subject to  g;j(x) > 0, (1)
D, (X) =0,

Here, f(x) is the objective function (of n variables)
which is to be minimized. A maximization problem
can be converted to a minimization problem by multi-
plying the function by —1. The inequality constraints
g and equality constraints A demand a solution x to
be feasible only if all constraints are satisfied. Many
problems also require that the search is restricted
within a prescribed hypervolume defined by lower
and upper bound on each variable. This region is
called the search space and the set of all feasible so-
lutions is called feasible space. Usually, there exists
at least one solution x* in the feasible space which
corresponds to the minimum objective value. This
solution is called the optimum solution.

Thus, the task in an optimization process is to start
from one or a few random solutions in the search
space and utilize the function and constraint func-
tions to drive its search towards the feasible region
and finally reach near the optimum solution by ex-
ploring as small as a set of solutions as possible.



3 SCOPE OF OPTIMIZA-
TION IN PRACTICE

Many researchers and practitioners may not know,
but they often either use or required to use an op-
timization method. For example, in fitting a linear
relationship y = mx 4 ¢ between an input parameter
x and output parameter y through a set of n data
points, we often almost blindly use the following re-
lationships:

ny a*—(x)?’
2y-—myz

n

(3)

It is interesting to know that the above relation-
ship has been derived by solving a unconstrained
quadratic optimization problem of minimizing the
overall vertical error between the actual and the pre-
dicted output values. In this section, we briefly dis-
cuss different practical problem solving tasks in which
an optimization procedure is usually used.

Optimal design: Instead of arriving at a solution
which is simply a functionally satisfactory one,
an optimization technique can be used to find
an optimal design which will minimize or maxi-
mize a design goal. This activity of optimization
probably takes the lion’s share of all optimiza-
tion activities and is most routinely used. Here
the decision variables can be dimensions, shapes,
materials etc., which describe a design and ob-
jective function can be cost of production, en-
ergy consumption, drag, lift, reliability, stability
margin etc. For example, in the optimal design
of an airfoil shape for minimum drag (objective
function), the shape of an airfoil can be repre-
sented by a few control parameters which can
be considered as the decision variables. A mini-
mum limit on the lift can be kept as a constraint
and the airfoil area can be bounded within cer-
tain limits. Such a task will not only produce an
airfoil shape providing the minimum desired lift
and area, but will also cause as small a drag as
possible.

Optimal control: In this activity, control param-
eters, as functions of time, distance, etc., are
decision variables. The objective functions are
usually some estimates computed at the end of
process, such as the quality of end-product, time-
averaged drag or lift, and stability or some other
performance measure across the entire process.
For example, in the design of a varying nozzle
shape for achieving minimum average drag from
launch to full throttle, parameters describing the
shape of the nozzle as a function of time are the
decision variables. To evaluate a particular solu-
tion, the CFD system must have to be solved in
a time sequence from launch to full throttle and
the drag experienced at every time step must
have to be recorded for the computation of the
average drag coefficient for the entire flight. Sta-
bility or other performance indicators must also
be computed and recorded at every time step for
checking if the system is safe and perform satis-
factorily over the entire flight.

Modeling: Often in practice, systems involve com-
plex processes which are difficult to express by
using exact mathematical relationships. How-
ever, in such cases, either through pilot case
studies or through actual plant operation, nu-
merous input-output data are available. To
understand the system better and to improve
the system, it is necessary to find the relation-
ships between input and output parameters in
a process known as ‘modeling’. Such an op-
timization task involves minimizing the error
between the predicted output obtained by the
developed model and actual output. To com-
pute the predicted output, a mathematical pa-
rameterized model can be assumed based on
some information about the system, such as
y = aj exp(—aqx), where a; and ag are the pa-
rameters to be optimized for modeling the ex-
ponential relationship between the input x and
output y. If a mathematical relationship is not
known at all, a relationship can be found by a
sophisticated optimization method (such as ge-
netic programming method [29]) or by using an
artificial neural network.



Scheduling: Many practical problems involve find-

ing a permutation which causes certain objec-
tives optimum. In these problems, the sequence
of operations are of importance such as the ab-
solute location of the operation on the permu-
tation. For example, in a machining sequenc-
ing problem, it is important to know in what
order a job will flow from one machine to the
next, instead of knowing when exactly a job has
to be made on a particular machine. Such op-
timization tasks appear in time-tabling, plan-
ning, resource allocation problems and others,
and are usually known as combinatorial opti-
mization problems.

Prediction and forecasting: Many time-varying

real-world problems are often periodic and pre-
dictable. Past data for such problems can be
analyzed for finding the nature of periodicity so
that a better understanding of the problem can
be achieved. Using such a model, future fore-
casts can also be made judiciously. Although
such applications are plenty in financial domain,
periodicities in fluidic systems, such as repeated
wake formation of a particular type and its pre-
diction of where and when will it reappear, are
also of importance.

Data mining: A major task in any real-world

problem solving today is to analyze multi-
dimensional data and discover the hidden use-
ful information they carry. This is by no means
is an easy task, simply because it is not known
what kind of information they would carry and
in most problems it is not even known what kind
of information one should look for. A major
task in such problems is to cluster functionally
similar data together and functionally dissimilar
data in separate clusters. Once the entire data
set is clustered, useful properties of iso-cluster
data can be deciphered for a better understand-

smallest size classifiers which would be able cor-
rectly classify most samples of the data set into
various classes. Such problems often arise in bio-
informatics problems [15] and can also be preva-
lent in other data-driven engineering tasks. In
a CFD problem such a classification task should
be able to find classifiers by which an investiga-
tion of a flow pattern should reveal the type of
flow (laminar or turbulent) or type of fluid or
kind of geometry associated with the problem.

Machine learning: In the age of automation, many

real-world systems are equipped with automated
and intelligent subsystems which can make de-
cisions and adjust the system optimally, as and
when an unforeseen scenario happens. In the
design of such intelligent subsystems, often ma-
chine learning techniques involving different soft-
computing techniques and artificial intelligence
techniques are combined. To make such a sys-
tem operate with a minimum change or with
minimum energy requirement, an optimization
procedure is needed. Since such subsystems are
to be used on-line and since on-line optimization
is a difficult proposition due to time restrictions,
such problems are often posed as an offline opti-
mization problem and solved by trying them on
a number of synthetic (or real) scenarios [32, 33].
In such optimization tasks, an optimal rule base
is learned which works the best on the chosen
test scenarios. It is then hypothesized that such
an optimal rule base will also work well in real
scenarios. To make the optimal rule base reliable
in real scenarios, such an optimization procedure
can be used repeatedly with the new scenarios
and new optimal rule base can be learned.

3.1 Properties of Practical Optimiza-

tion Problems

Based on the above discussion, we observe that the
practical optimization problems usually have the fol-
lowing properties:

ing of the problem. The clustering task is an op-
timization problem in which the objective is usu-
ally to maximize inter-cluster distance between
any pair of clusters and simultaneously minimize
their intra-cluster distances. Another task often
required to be performed is the identification of

1. They are non-smooth problems having their ob-
jectives and constraints are most likely to be
non-differentiable and discontinuous.



2. Often, the decision variables are discrete making
the search space discrete as well.

3. The problems may have mixed types (real, dis-
crete, Boolean, permutation, etc.) of variables.

4. They may have highly non-linear objective and
constraint functions due to complicated relation-
ships and equations which the decision variables
must form and satisfy. This makes the problems
non-linear optimization problems.

5. There are uncertainties associated with decision
variables, due to which the the true optimum
solution may not of much importance to a prac-
titioner.

6. The objective and constraint functions may also
be noisy and non-deterministic.

7. The evaluation of objective and constraint func-
tions is computationally expensive.

8. The problems give rise to multiple optimal solu-
tions, of which some are globally best and many
others are locally optimal.

9. The problems involve multiple conflicting objec-
tives, for which no one solution is best with re-
spect to all chosen objectives.

4 CLASSICAL OPTIMIZA-
TION METHODS

Most classical point-by-point algorithms use a deter-
ministic procedure for approaching the optimum so-
lution. Such algorithms start from a random guess
solution. Thereafter, based on a pre-specified transi-
tion rule, the algorithm suggests a search direction,
which is often arrived at by considering local infor-
mation. A one-dimensional search is then performed
along the search direction to find the best solution.
This best solution becomes the new solution and the
above procedure is continued for a number of times.
Figure 1 illustrates this procedure. Algorithms vary
mostly in the way the search directions are defined
at each intermediate solution.

Feasible Search Space

= Constraints

Figure 1: Most classical methods use a point-by-point
approach.

Classical search and optimization methods can be
classified into two distinct groups mostly in the way
the directions are chosen: Direct and gradient-based
methods [6, 35, 38]. In direct methods, only objec-
tive function and constraints are used to guide the
search strategy, whereas gradient-based methods use
the first and/or second-order derivatives of the objec-
tive function and/or constraints to guide the search
process. Since derivative information is not used,
the direct search methods are usually slow, requiring
many function evaluations for convergence. For the
same reason, they can be applied to many problems
without a major change of the algorithm. On the
other hand, gradient-based methods quickly converge
to an optimal solution, but are not efficient in non-
differentiable or discontinuous problems. In addition,
there are some common difficulties with most of the
traditional direct and gradient-based techniques:

e Convergence to an optimal solution depends on
the chosen initial solution.

e Most algorithms are prone to get stuck to a sub-
optimal solution.

e An algorithm efficient in solving one problem



may not be efficient in solving a different prob-
lem.

e Algorithms are not efficient in handling prob-
lems having discrete variables or highly non-
linear and many constraints.

e Algorithms cannot be efficiently used on a par-
allel computer.

5 MOTIVATION FROM NA-
TURE AND EVOLUTION-
ARY OPTIMIZATION

It is commonly believed that the main driving prin-
ciple behind the natural evolutionary process is the
Darwin’s survival-of-the-fittest principle [3, 18]. In
most scenarios, nature ruthlessly follows two simple
principles:

1. If by genetic processing an above-average off-
spring is created, it usually survives longer than
an average individual and thus have more oppor-
tunities to produce offspring having some of its
traits than an average individual.

2. If, on the other hand, a below-average offspring
is created, it usually does not survive longer and
thus gets eliminated quickly from the popula-
tion.

The principle of emphasizing good solutions and elim-
inating bad solutions seems to dovetail well with de-
sired properties of a good optimization algorithm.
But one may wonder about the real connection be-
tween an optimization procedure and natural evo-
lution! Has the natural evolutionary process tried
to maximize a utility function of some sort? Truly
speaking, one can imagine a number of such functions
which the nature may have been thriving to maxi-
mize: life span of a species, quality of life of a species,
physical growth, and others. However, any of these
functions is non-stationary in nature and largely de-
pends on the evolution of other related species. Thus,
in essence, the nature has been optimizing a much

more complicated objective function by means of nat-
ural genetics and natural selection than the search
and optimization problems we are interested in solv-
ing in practice. Thus, it is not surprising that the
computerized evolutionary optimization (EO) algo-
rithm is not as complex as the natural genetics and
selection procedures, rather it is an abstraction of
the complex natural evolutionary process. Although
an EO is a simple abstraction, it is robust and has
been found to solve various search and optimization
problems of science, engineering, and commerce.

5.1 Evolutionary Optimization

The idea of using evolutionary principles to consti-
tute a computerized optimization algorithm was sug-
gested by a number of researchers located in geo-
graphically distant places across the globe. The field
now known as ‘genetic algorithms’ was originated by
John Holland of University of Michigan [24], a con-
temporary field ‘evolution strategy’ was originated by
Ingo Rechenberg and Hans-Paul Schwefel of Techni-
cal University of Berlin [37, 41], the field of ‘evolu-
tionary programming’ was originated by Larry Fogel
[20], and others. Figure 2 provides an overview of
computational intelligence and its components. Also,
different subfields of evolutionary computing are also
shown. In this paper, we mainly discuss the prin-
ciples of a genetic algorithm and its use in different
optimization problem solving.

Genetic algorithm (GA) is an iterative optimiza-
tion procedure. Instead of working with a single so-
lution in each iteration, a GA works with a number of
solutions (collectively known as a population) in each
iteration. A flowchart of the working principle of a
simple GA is shown in Figure 3. In the absence of
any knowledge of the problem domain, a GA begins
its search from a random population of solutions. If
a termination criterion is not satisfied, three differ-
ent operators — reproduction and variation operators
(crossover and mutation, and others) — are applied to
update the population of solutions. One iteration of
these operators is known as a generation in the par-
lance of GAs. Since the representation of a solution
in a GA is similar to a natural chromosome and GA
operators are similar to genetic operators, the above
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Figure 2: Computational intelligence and evolution-
ary computation.

procedure is called a genetic algorithm.

5.1.1 Step 1: Representation of a solution

Representation of a solution describing the problem
is an important first step in a GA. The solution vec-
tor x can be represented as a vector of real numbers,
discrete numbers, a permutation of entities or oth-
ers or a combination, as suitable to the underlying
problem. If a problem demands mixed real and dis-
crete variables, a GA allows such a representation of
a solution.

5.1.2 Step 2: Initialization of a population of
solutions

Usually, a set of random solutions (of size N) are ini-

tialized in a pre-defined search space (ng) <z <
xEU)). However, it is not necessary that the subse-
quent GA operations are confined to create solutions
in the above range. To make sure that initial popu-
lation is well-distributed, any space-filling or Latin-
hypercube method can also be used. It is also not
necessary that the initial population is created ran-
domly on the search space. If some problem infor-
mation is available (such as knowledge about good
solutions), a biased distribution can be created in

Step L: v
[Repr&eentati on scheme]
Step 2: *

[I nitialize Popul ation}

Step 4:

Step 5:
Variation

Figure 3: A flowchart of working principle of a genetic
algorithm.

any suitable portion of the search space. In diffi-
cult problems with a known good solutions, the pop-
ulation can be created around the good solution by
randomly perturbing it [5].

5.1.3 Step 3: Evaluation of a solution

In this step, every solution is evaluated and a fitness
value is assigned to the solution. This is where the so-
lution is checked for its feasibility (by computing and
checking constraint functions g; and hy). By simply
assigning a suitable fitness measure, a feasible can be
given more importance over an infeasible solution or a
better feasible solution can be given more importance
over a worse feasible solution. This is also the place
where a single-objective GA dealing with a single ob-
jective function can be converted to a multi-objective
GA in which multiple conflicting objectives can be
dealt with. In most practical optimization problems,
this is also the most time-consuming step. Hence,



any effort to complete this step quickly (either by us-
ing distributed computers or approximately) would
provide a substantial saving in the overall procedure.

The evaluation step requires to first decipher
the solution vector from the chosen representation
scheme. If the variables are represented directly as
real or discrete numbers, they are already directly
available. However, if a binary substring is used to
represent some discrete variables, first the exact vari-
able value must be computed from the substring. For
example, the following is a string, representing n vari-
ables:

11010 1001001 010 ... 0010
——— —— ——
T T2 T3 Tn

The i-th problem variable is coded in a binary sub-
string of length ¢;, so that the total number of al-
ternatives allowed in that variable is 2%. The lower
bound solution z" is represented by the solution
(00...0) and the upper bound solution z}*** is repre-
sented by the solution (11...1). Any other substring

s; decodes to a solution z; as follows:

7 = a4 T DV(s)), (4)

where DV(s;) is the decoded value of the substring
s;. Such a representation of discrete variables (even
real-parameter variables) has a traditional root and
also nature root. A binary string resembles a chro-
mosome comprising of a number of genes taking one
of two values — one or zero. Treating these strings
as individuals, we can then think of mimicking natu-
ral crossover and mutation operators similar to their
natural counterparts.

To represent a permutation (of n integers), an
innovative coded representation procedure can be
adopted so that simple genetic operators can be ap-
plied on the coding. In the proposed representation
[13], at the i-th position from the left of the string, an
integer between zero and (i—1) is allowed. The string
is decoded to obtain the permutation as follows. The
i-th position denotes the placement of component 4
in the permutation. The decoding starts from the
left-most position and proceeds serially towards right.
While decoding the i-th position, the first (¢—1) com-
ponents are already placed, thereby providing with

place-holders to position the ¢-th component. We il-
lustrate this coding procedure by using an example
having six components (a to f) using six integers (0
to 5). Let us say that we have a string

(002132)

and would like to decipher the corresponding permu-
tation. The second component (i = 2) has two places
to be positioned — (i) before the component a or (ii)
after the component a. The first case is denoted by a
0 and the second case is denoted by a 1 in the string.
Since the place-holder value for ¢ = 2 (component b)
is zero in the above string, the component b appears
before the component a. Similarly, with the first two
components placed as (b a), there are three place-
holders for the component ¢ — (i) before b (with a
value 0), (ii) between b and a (with a value 1), and
(iii) after a (with a value 2). Since the string has
a value 2 in the third place, component c is placed
after a. Continuing in this fashion, we obtain the
permutation
(bd f aec)

corresponding to the above string representation.
The advantage of this coding is that simple crossover
and mutation operators (to be discussed later) can be
applied on the coding to create valid permutations.

5.1.4 Step 4: Reproduction operator

Reproduction (or selection) is usually the first op-
erator applied to the population. Reproduction se-
lects good strings in a population and forms a mat-
ing pool. The essential idea is to emphasize above-
average strings in the population. The so-called bi-
nary tournament reproduction operator picks two so-
lutions at random from the population and the better
of the two is chosen according to its fitness value. Al-
though a deterministic procedure can be chosen for
this purpose (for example, the best 50% population
members can be duplicated), usually a stochastic pro-
cedure is adopted in an EA to reduce the chance of
getting trapped into a local optimal solution.



5.1.5 Step 5: Variation operators

During the selection operator, good population mem-
bers are emphasized at the expense of bad popula-
tion members, but no new solution is created. The
purpose of variation operators is just to create new
and hopefully improved solutions by using the mat-
ing pool. A number of successive operations can be
used here. However, there are two main operators
which are mostly used.

In a crossover operator, two solutions are picked
from the mating pool at random and an informa-
tion exchange is made between the solutions to cre-
ate one or more offspring solutions. In a single-point
crossover operator applied to binary strings, both
strings are cut at an arbitrary place and the right-
side portion of both strings are swapped among them-
selves to create two new strings:

0 0(0 0 O N 0 0 1 1 1
1 1)1 1 1 1 1 0 0 O
It is true that every crossover between any two so-
lutions from the new population is not likely to find
offspring better than both parent solutions, but the
chance of creating better solutions is far better than
random [21]. This is because the parent strings be-
ing crossed are not any two arbitrary random strings.
These strings have survived tournaments played with
other solutions during the earlier reproduction phase.
Thus, they are expected to have some good bit com-
binations in their string representations. Since, a
single-point crossover on a pair of parent strings can
only create ¢ different string pairs (instead of all 2¢~!
possible string-pairs) with bit combinations from ei-
ther strings, the created offspring are also likely to be
good strings. To reduce the chance of losing too many
good strings by this process, usually a pair of solu-
tions are participated in a crossover operator with
a crossover probability, p.. Usually, a large value
within [0.7,1] is chosen for this parameter. A value
of p. = 0.8 means that 80% population members par-
ticipate in crossovers to create new offspring and the
20% parents are directly accepted as offspring.

The mutation operator perturbs a solution to its
vicinity with a small mutation probability, p,,. For
example, in a binary string of length ¢, a 1 is changed

to a 0 and vice versa, as happened in the fourth bit
of the following example:

0 06111 = 001 01

Usually, a small value of p,, = 1/£ or 1/n (n is the
number of variables) is used. Once again, the muta-
tion operation uses random numbers but it is not an
entirely random process, as from a particular string
it is not possible to move to any other string in one
mutation event. Mutation uses a biased distribution
to be able to move to a solution close to the original
solution. The basic difference between the crossover
and mutation operations is that in the former more
than one parent solutions are needed, whereas in the
later only one solution is used directly or indirectly.

After reproduction and variation operators are ap-
plied to the whole population, one generation of a
GA is completed. These operators are simple and
straightforward. Reproduction operator selects good
strings and crossover operator recombines good sub-
strings from two good strings together to hopefully
form a better substring. Mutation operator alters a
string locally to hopefully create a better string. Even
though none of these claims are guaranteed and/or
tested while creating a new population of strings, it
is expected that if bad strings are created they will be
eliminated by the reproduction operator in the next
generation and if good strings are created, they will
be retained and emphasized.

Although the above illustrative discussion on the
working of a genetic algorithm may seem to be a
computer-savvy, nature-hacker’s game-play, there ex-
ists rigorous mathematical studies where a complete
processing of a finite population of solutions under
GA operators is modeled by using Markov chains [45],
using statistical mechanics approaches [34], and us-
ing approximate analysis [22]. On different classes of
functions, the recent dynamical systems analysis [46]
treating a GA as a random heuristic search reveals
the complex dynamical behavior of a binary-coded
GA with many meta-stable attractors. The interest-
ing outcome is the effect of population size on the
degree of meta-stability. In the statistical mechanics
approach, instead of considering microscopic details
of the evolving system, several macroscopic variables



describing the system, such as mean, standard devia-
tion, skewness and kurtosis of the fitness distribution,
are modeled. Analyzing different GA implementa-
tions with the help of these cumulants provides inter-
esting insights into the complex interactions among
GA operators [39]. Rudolph has shown that a sim-
ple GA with an elite-preserving operator and non-
zero mutation probability converges to the global
optimum solution to any optimization problem [40].
Leaving the details of the theoretical studies (which
can be found from the growing EA literature), here
we shall illustrate the robustness (combined breadth
and efficiency) of a GA-based optimization strategy
in solving different types of optimization problems
commonly encountered in practice.

5.2 Real-Parameter Genetic

rithms

Algo-

When decision variables in an optimization problem
are real-valued, they can be directly represented in a
GA as mentioned above, instead of a binary repre-
sentation. Such real-parameter GAs came to light
in nineties, when engineering applications of GAs
gained prominence. Although the GA flowchart re-
mains the same, the crossover and mutation opera-
tions suitable to real-valued parameters were needed
to be developed.

Most studies used variable-wise crossover and mu-
tation operators in the past. Recently, vector-wise
operators are suggested. Mutation operator perturbs
a parent solution in its vicinity by using a Gaussian-
like probability distribution. However, sophisticated
crossover operators are also suggested. We proposed
a parent-centric crossover (PCX) operator [9] which
uses three or more parents and construct a probabil-
ity distribution for creating offspring solutions. The
interesting feature of the probability distribution is
that it is defined based on the vector-difference of
parent solutions, instead of parent solutions them-
selves. Figure 4 shows the distribution of offspring
around parents under the PCX operator.

Since offspring solutions result in a diversity pro-
portional to that in parent population, such a
crossover operator introduces a self-adaptive feature,
which allows a broad search early on and a focused
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Figure 4: Offspring created using the PCX operator.

search later in an automatic manner. Such a property
is desired in an efficient optimization procedure and
is present in other real-parameter EAs, such as evolu-
tion strategy (ES) [42], differential evolution [44] and
particle swarm optimization [27].

On a 20-variable non-linear unconstrained mini-
mization problem

n—1

Z (100(27 — 2i1)? + (2 — 1)?),

=1

a GA with the PCX operator [9] is reported to find
the optimum solution with an error of 10~2" in func-
tion value in the smallest number of function evalua-
tions compared to a number of other real-parameter
EAs ((u, A)-ES, CMA-ES [23] and differential evolu-
tion (DE)) and the classical quasi-Newton (BFGS)
approach (which got stuck to a solution having f =
6.077(10717)).

f() (5)

Method Best Median Worst,
GA+PCX | 16,508 21,452 25,520
(1,10)-ES | 591,400 803,800 997,500
CMA-ES 29,208 33,048 41,076
DE 243,800 587,920 942,040
BFGS 26,000




In the following sections, we discuss a few practical
optimization problems and how their (approximate)
solution can be made easier with an evolutionary op-
timization strategy.

6 NON-SMOOTH OPTI-
MIZATION PROBLEMS

Many practical problems are non-smooth in nature,
introducing non-differentiabilities and discontinuities
in the objective and constraint functions. In such
special points of non-smoothness, the exact deriva-
tives do not usually exist. Although numerical gra-
dients can be computed, they can often be meaning-
less, particularly if such non-smoothness occurs on or
near optimum points. Thus, it becomes difficult for
gradient-based optimization methods to work well in
such scenarios. In a GA, such non-smoothness is not
a matter, as a GA does not use any gradient infor-
mation during its search towards the optimum. As
shown in Figure 5, as long as a descent information
is provided by the function values (by the way of
comparing function values of two solutions), a GA is
ready to work its way towards the optimum.

f(x) f(x)

\ Di scontinuity /'/

Discrete

[1]
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X

000 001

Figure 5: Discontinuous
search space.

Figure 6: Discrete search
space.

In many problems, variables take discrete values,
thereby providing no meaningful way of comput-
ing gradients and using the gradient-based classical
methods. Once again, the sole purpose of arriving
at descent information using function value compar-
isons allows a GA to be used in such discrete search
space as well (Figure 6).
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6.1 MIXED (REAL AND DIS-
CRETE) OPTIMIZATION
PROBLEMS

In an EO, decision variables can be coded in either
binary strings or directly depending on the type of
the variable. A zero-one variable can be coded us-
ing a single bit (0 or 1). A discrete variable can be
coded in either a binary string or directly (if the to-
tal number of permissible choices for the variable is
not 2%, where k is an integer). A continuous variable
can be coded directly. This coding allows a natu-
ral way to code different variables, as depicted in the
following solution representing a complete design of
a cantilever beam having four design variables:

((1)

The first variable represents the shape of the cross-
section of the beam. There are two options—circular
(a 1) or square (a 0). Thus, its a zero-one variable.
The second variable represents the diameter of the
circular section if the first variable is a 1 or the side
of the square if the first variable is a 0. This variable
takes only one of a few pre-specified values. Thus,
this variable is a discrete variable coded directly. The
third variable represents the length of the cantilever
beam, which can take any real value. Thus, it is a
continuous variable. The fourth variable is a discrete
variable representing the material of the cantilever
beam. This material takes one of 16 pre-specified
materials. Thus, a four-bit substring is required to
code this variable. The above solution represent the
12th material from a pre-specified list. Thus, the
above string represents a cantilever beam made of
the 12th material from a prescribed list of 16 mate-
rials having a circular cross-section with a diameter
15 mm and having a length of 23.457 mm. With
the above coding, any combination of cross sectional
shape and size, material specifications, and length of
the cantilever beam can be represented. This flexi-
bility in the representation of a design solution is not
possible with traditional optimization methods. This
flexibility makes an EO efficient to be used in many
engineering design problems [11, 16], including CFD
problems involving shapes etc.

15 23.457 (1011))



7 CONSTRAINT OPTIMIZA-
TION

Constraints are inevitable in real-world (practical)
problems. The classical penalty function approach
of penalizing an infeasible solution is sensitive to
a penalty parameter associated with the technique
and often requires a trial-and-error method. In the
penalty function method for handling inequality con-
straints in minimization problems, the fitness func-
tion F(Z) is defined as the sum of the objective func-
tion f(Z) and a penalty term which depends on the
constraint violation (g;(Z)):

J
= f(@) + ) R;lg; ()7

=1

F(Z) (6)

where ( ) denotes the absolute value of the operand,
if the operand is negative and returns a value zero,
otherwise. The parameter R; is the penalty param-
eter of the j-th inequality constraint. The purpose
of a penalty parameter R; is to make the constraint
violation g;(Z) of the same order of magnitude as the
objective function value f(Z). Equality constraints
are usually handled by converting them into inequal-
ity constraints as follows:
grta () = 6 — [ (Z)] = 0,

where § is a small positive value.

In order to investigate the effect of the penalty pa-
rameter R; (or R) on the performance of GAs, we
consider a well-studied welded beam design problem
[38]. The resulting optimization problem has four de-
sign variables & = (h, ¢,t,b) and five inequality con-
straints:

Min.  fu(7) = 1.10471h% 4 0.04811tb(14.0 + ),
s.t.  g1(%) = 13,600 — 7(Z) > 0,
g2(%) = 30,000 — (&) > 0,
g3(Z) =b—h >0,
94(%) = Pe(T) — 6, 000>0,
95(Z) =0.25 — 6(%) >
0.125 < h < 10,
0.1<6,4,b<10
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The terms 7(Z), o(&), P.(Z), and 6(&) are given be-
low:
(@) = V[((@) + (7" (@) +
o7 (@) 7" (%) //0.25(C + (h + t)?)} ,
@) = 504, 000
o(@) = e
P.(Z) = 64,746.022(1 — 0.0282346t)tb°,
L 21952
6((E) - tgb ’
where
/i 6,000
T (m) - \/ih,e )
") 6,000(14 + 0.5¢)1/0.25(¢2 + (h + t)?)
(%) =

2{0.707he(£2/12 + 0.25(h + t)?)}

The optimized solution reported in the literature
[38] is h* = 0.2444, ¢* = 6.2187, t* = 8.2915,
and b* = 0.2444 with a function value equal to
f* =2.38116. Binary GAs are applied on this prob-
lem in an earlier study [4] and the solution & =
(0.2489,6.1730,8.1789,0.2533) with f = 2.43 (within
2% of the above best solution) was obtained with
a population size of 100. However, it was observed
that the performance of GAs largely dependent on
the chosen penalty parameter values, as shown in Ta-
ble 1. With R =1 (small values of R), although 12
out of 50 runs have found a solution within 150% of
the best-known solution, 13 EO runs have not been
able to find a single feasible solution in 40,080 func-
tion evaluations. This happens because with small R
there is not much pressure for the solutions to become
feasible. With larger penalty parameters, the pres-
sure for solutions to become feasible is more and all
50 runs found feasible solutions. However, because of
larger emphasis of solutions to become feasible, when
a particular solution becomes feasible it has a large
selective advantage over other solutions (which are
infeasible) in the population and the EO is unable to
reach near to the true optimal solution.

In the recent past, a parameter-less penalty ap-
proach is suggested by the author [7], which uses the
following fitness function derived from the objective



Table 1: Number of runs (out of 50 runs) converged
within €% of the best-known solution using an EO
with different penalty parameter values and using the
proposed approach on the welded beam design prob-
lem.

€ Optimized f (%)
< > In-

R 150% | 150% | fes. | Best | Med. | Worst
109 12 25 13 2.413 | 7.625 | 483.502
10* 12 38 0 | 3.142 | 4.335 7.455
102 1 49 0 3.382 | 5.971 10.659
10° 0 50 0 3.729 | 5.877 9.424

Prop. 50 0 0 2.381 | 2.383 2.384

and constraint values:
F(x) = { 1),
(8)

In a tournament between two feasible solutions, the
first clause ensures that the one with a better func-
tion value wins. The quantity fnax is the objective
function value of the worst feasible solution in the
population. The addition of these quantity to the
constraint violation ensures that a feasible solution
is always better than any infeasible solution. More-
over, since this quantity is constant in any genera-
tion, between two infeasible solutions the one with
smaller constraint violation is judged better. Since
the objective function value is never compared with
a constraint violation amount, there is no need of any
penalty parameter with such an approach.

When the proposed constraint handling EO is ap-
plied to the welded beam design problem, all 50 sim-
ulations (out of 50 runs) are able to find a solution
very close to the true optimal solution, as shown in
the last row of Table 1. This means that with the pro-
posed GAs, one run is enough to find a satisfactory
solution close to the true optimal solution.

if x is feasible;

Fanax + 31 (g5 (X)) + X hi(x)], else.
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8 ROBUST AND
RELIABILITY-BASED OP-
TIMIZATION

For practical optimization studies, robust and
reliability-based techniques are commonplace and are
getting increasingly popular. Often in practice, the
mathematical optimum solution is not desired, due to
its sensitivity to the parameter fluctuations and inac-
curacy in the formulation of the problem. Consider
Figure 7, in which although the global minimum is at
B, this solution is very sensitive to parameter fluctu-
ations. A small error in implementing solution B will
result in a large deterioration in the function value.
On the other hand, solution A is less sensitive and
more suitable as the desired solution to the problem.
The dashed line is an average of the function around

2
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Figure 7: Although solution B is the global minimum,
it is a robust solution. Solution A is the robust solu-
tion.

a small region near a solution. If the function shown
in dashed line is optimized the robust solution can be
achieved [2, 26, 12].

For a canonical deterministic optimization task,
the optimum solution usually lies on a constraint sur-
face or at the intersection of more than one constraint
surfaces. However, if the design variables or some
system parameters cannot be achieved exactly and



are uncertain with a known probability distribution
of variation, the so-called deterministic optimum (ly-
ing on one or more constraint surface) will fail to re-
main feasible in many occasions (Figure 8). In such

Rel ati onshi p
Ax_2 \

Determnistic
opti mum

Figure 8: The constrained minimum is not reliable.
With higher desired reliability, the corresponding so-
lutions moves inside the feasible region.

scenarios, a stochastic optimization problem is usu-
ally formed and solved, in which the constraints are
converted into probabilistic constraints meaning that
probability of failures (of being a feasible solution)
is limited to a pre-specified value (say €) [36, 17].
The advantage of using an EO is that a global robust
solution can be obtained and the method can be ex-
tended for finding multi-objective reliable solutions
easily [28].

9 OPTIMIZATION WITH
DISTRIBUTED COMPUT-
ING

One way to beat the difficulties with problems having
computationally expensive evaluation procedures is

a distributed computing environment. This way the
evaluation procedure can be parallelized and over-
all computational time will reduce. There is an ad-
ditional advantage with using an EO. Since an EO
deals with a population of solutions in every gener-
ation and their evaluations are independent to each
other, each population member can be evaluated on a
different processor independently and parallely. Ho-
mogeneous or heterogeneous processors on a master-
slave configuration can be used for such a purpose
equally well to any other arrangements. Since the
computational time for solution evaluation is com-
paratively much more than the time taken by the
genetic operators, a fast input-output processing is
also not a requirement. Thus, a hand-made Beowulf
cluster formed with a number of fast processors can
be used efficiently to run an EO. This feature makes
an EO suitable for parallel processors compared to
their classical counterparts.

Ideally, the evaluation of each solution must also be
parallelized, if deemed necessary. For this purpose,
several clusters can be combined together and a GA
population member can be sent to each cluster for its
efficient evaluation, as shown in Figure 9.

10 COMPUTATIONALLY
DIFFICULT OPTIMIZA-
TION PROBLEMS

Many engineering optimization problems involve ob-
jectives and constraints which require an enormous
computational time. For example, in CFD control
problems involving complicated shapes and geome-
tries, every solution requires mesh generation, auto-
mated node-numbering, and solution of the finite dif-
ference equations. The computational time in such
problems can easily consume a few minutes to days
for evaluating a single solution on a parallel com-
puter, depending the rigor of the problem. Clearly,
optimization of such problems is still out of scope
in its traditional sense and often innovations in us-
ing the optimization methodology must be devised.
Here, we suggest a couple of approaches:

1. Approximate models for evaluation instead of
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Figure 9: A parallel computing environment for an
ideal EO.

exact objective and constraint functions can be
used.

2. For time-varying control problems, a fast yet ap-
proximate optimization principle can be used.

10.1 Approximate Models

In this approach, an approximate model of the ob-
jective and constraint functions are first developed
using a handful of solutions evaluated exactly. In
this venture, a response surface methodology (RSM),
a kriging methodology or an ANN approach can all
be used. Since the model is at best assumed to be
an approximate one, it must be used for a while and
discarded when solutions begins to crowd around the
best region of the approximate model. At this stage,
another approximate model can be developed near
the reduced search region dictated by the current
population. One such coarse-to-fine grained approx-
imate modeling technique (with an ANN approach)
has been recently developed for multi-objective opti-
mization [31] and a number of test problems and two
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practical problems are solved. A saving of 30 to 80%
savings in the computational time has been recorded
by using the proposed approach.

10.2 Approximate Optimization Prin-
ciple

In practical optimal control problems involving time-
varying decision variables, the objective and con-
straint functions need to be computed when the
whole process is simulated for a time period. In CFD
problems, such control problems often arise in which
control parameters such as velocities and shapes need
to be changed over a time period in order to obtain
a minimum drag or a maximum lift or a maximally
stable system. The computation of such objectives
is a non-linear process of solving a system of gov-
erning partial differential equations sequentially from
the initial time to a final time. When such a series
of finite difference equations are solved for a partic-
ular solution describing the system, one evaluation
is over. Often, such an exact evaluation procedure
may take a few hours to a few days. Even if only
a few hundred solutions are needed to be evaluated
to come any where closer to the optimum, this may
take a few months on even a moderately fast par-
allel computer. For such problems, an approximate
optimization procedure can be used as follows [43].
The optimal control strategy for the entire time
span [t;,tf] is divided into K time intervals [tg,ty +
At], such that tg = ¢; and tx = tg_1 + At =t5. At
the k-th time span, the GA is initialized by mutat-
ing the best solution found in (k — 1)-th time span.
Thereafter, the GA is run for 7 generations and the
best solution is recorded. The control strategy corre-
sponding to this best solution is assigned as the over-
all optimized control strategy for this time span. This
is how the optimized control strategy gets formed as
the time span increases from ¢y to ty. This pro-
posed genetic search procedure is fast (O(K) com-
pared to O(K?)) and allows an approximate way to
handle computationally expensive time-varying opti-
mization problems, such as the CFD problem solved
elsewhere [43]. Although the procedure is fast, on the
flip side, the proposed search procedure constitutes
an approximate search and the resulting optimized



solution need not be the true optimum of the optimal
control problem. But with the computing resources
available today, demanding CFD simulations prohibit
the use of a standard optimization algorithm in prac-
tice. The above approximate optimization procedure
allows a viable way to apply optimization algorithms
in computationally demanding CFD problems.

11 MULTI-MODAL
MIZATION

OPTI-

Many practical optimization problems possess a mul-
titude of optima — some global and some local. In
such problems, it may be desirable to find as many
optima as possible to have a better understanding of
the problem. Due to the population approach, GAs
can be used to find multiple optimal solutions in one
simulation of a single GA run. In one implementa-
tion [10], the fitness of a solution is degraded with its
niche count, an estimate of the number of neighbor-
ing solutions. It has been shown that if the reproduc-
tion operator is performed with the degraded fitness
values, stable subpopulations can be maintained at
various optima of the objective function. Figure 10
shows that a niched-GA can find all five optima (al-
beit a mix of local and global optima) in one single
simulation run.

12 MULTI-OBJECTIVE EVO-
LUTIONARY OPTIMIZA-
TION

Most real-world search and optimization problems
involve multiple conflicting objectives, of which the
user is unable to establish a relative preference. Such
considerations give rise to a set of multiple optimal
solutions, commonly known as the Pareto-optimal
solutions [8]. Classical approaches to solve these
problems concentrate mainly in developing a single
composite objective function from multiple objectives
and in using a single-objective optimizer to find a
particular optimum solution [30]. Such procedures
are subjective to the user, as the optimized solution
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Figure 10: A niched-GA finds multiple optimal solu-
tions.

depends on the chosen scalarization scheme. Once
again, due to the population approach of a GA, mul-
tiple Pareto-optimal solutions are found simultane-
ously in a single simulation run, making it an unique
way to handle multi-objective optimization problems.

To convert a single-objective GA to a multi-
objective optimizer, three aspects are kept in mind:
(i) non-dominated solutions are emphasized for pro-
gressing towards the optimal front, (ii) less-crowded
solutions are emphasized to maintain a diverse set of
solutions, and (iii) elite or best solutions in a popu-
lation are emphasized for a quicker convergence near
the true Pareto-optimal front. In one such implemen-
tation — elitist non-dominated sorting GA or NSGA-
IT (which received the ESI Web of Science’s recog-
nition as the Fast Breaking Paper in Engineering
in February 2004), parent and offspring populations
are combined together and non-dominated solutions
are hierarchically selected starting from the best so-
lutions. A crowding principle is used to select the
remaining solutions from the last front which could
not be selected in total. These operations follow the
above three aspects and the algorithm has been suc-
cessful in solving a wide variety of problems. A sketch



of the algorithm is shown in Figure 11.
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Figure 11: An iteration of the NSGA-II procedure.

On a 18-speed gearbox design problem having 28
mixed decision variables, three objectives, and 101
nonlinear constraints, the NSGA-II is able to find
as many as 300 different trade-off solutions including
individual minimum solutions (Figure 12). It is clear
from the figure that if a large error (¢) in the output
shaft speeds from the ideal is permitted, better non-
dominated solutions are expected. Because of the
mixed nature of variables and multiple objectives, a
previous study [25] based on classical methods had
to divide the problem in two subproblems and even
then it failed to find a wide spectrum of solutions
as found by NSGA-II. Since the number of teeth in
gears are also kept as variables here, a more flexible
search is permitted, thereby obtaining a better set of
non-dominated solutions.

12.1 INNOVIZATION: Understanding
the Optimization Problem Bet-
ter

Besides finding the trade-off optimal solutions, evo-
lutionary multi-objective optimization (EMO) stud-
ies are getting useful for another reason. When a
set of trade-off solutions are found, they can be ana-
lyzed to discover any useful similarities and dissimi-
larities among them. Such information, particularly
the common principles, if any, should provide useful
insight to a designer, user, or a decision-maker.
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Figure 12: NSGA-II solutions are shown to outper-
form a classical approach with two limiting errors in
output speeds.

For example, for the gearbox design problem de-
scribed above, when we analyze all 300 solutions, we
find that the only way these optimal solutions vary
from each other is by having a drastically different
value in only one of the variables (module of the
gear) and all other variables (thickness and number
of teeth of each gear) remain more or less the same
for all solutions. Figure 13 shows how module (m) is
changing with one of the objectives (power delivered
(p) by the gearbox). When a curve is fitted through
these points, the following mathematical relationship
emerges: m = /p. This is an useful information
for a designer to have. What this means is that if
a gearbox is designed today for p = 1 kW power re-
quirement and tomorrow if a gearbox is needed to
be designed for another application requiring p = 4
kW the only change needed in the gearbox is an in-
crease of module by a factor of two. A two-fold in-
crease in module will increase the diameter of gears
and hence the size of the gearbox. Although a com-
plete re-optimization can be performed from scratch
and there may be other ways the original gearbox
can be modified for the new requirement, but such a
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Figure 13: An optimal relationship between module
and power is discovered by the NSGA-II.

simple change in module alone will mean a redesign
of the gearbox for the new requirement in an optimal
manner and importantly not requiring any further
computation [14]. Such a task brings out a ‘recipe’
or ‘blue-print’ of solving the problem optimally. It is
not clear how such useful information can be achieved
by any other means.

13 CONCLUSIONS

In this paper, we have presented a number of
commonly-used practical problems which are, in
essence, optimization problems. A closer look at
these problems has revealed that such optimiza-
tion problems are complex, non-linear, and multi-
dimensional, thereby making the classical optimiza-
tion procedures inadequate to be used with any re-
liability and confidence. We have also presented the
evolutionary optimization procedure — a population-
based iterative procedure mimicking natural evolu-
tion and genetics, which has demonstrated its suit-
ability and immense applicability in solving various
types of optimization problems. A particular imple-
mentation — genetic algorithm (GA) — is different

from classical optimization methods in a number of
ways: (i) it does not use gradient information, (ii)
it works with a set of solutions instead of one solu-
tion in each iteration, (iii) it is a stochastic search
and optimization procedure and (iv) it is highly par-
allelizable.

Besides GAs, there exist a number of other imple-
mentations of the evolutionary idea, such as evolu-
tion strategy [42, 1], evolutionary programming [19],
genetic programming [29], differential evolution [44],
particle swarm optimization [27] and others. Due to
the flexibilities in their search, these evolutionary al-
gorithms are found to be quite useful as a search tool
in studies on artificial neural networks, fuzzy logic
computing, data mining, and other machine learning
activities.
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