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Abstract Estimation of the nadir objective vector is an importankiamarticularly
for multi-objective optimization problems having more thiavo conflicting objec-
tives. Along with the ideal point, nadir point can be used tonmalize the objec-
tives so that multi-objective optimization algorithms daused more reliably. The
knowledge of the nadir point is also a pre-requisite to mamtiple criteria deci-
sion making methodologies. Moreover, nadir point is usifuln aid in interactive
methodologies and visualization softwares catered fotirobjective optimization.
However, the computation of exact nadir point for more thvem dbjectives is not an
easy matter, simply because nadir point demands the knge/leidextreme Pareto-
optimal solutions. In the past few years, researchers hawgoged several nadir
point estimation procedures using evolutionary optimaratmethodologies. In this
paper, we review the past studies and reveal an intereshiranicle of events in
this direction. To make the estimation procedure companatiy faster and more
accurate, the methodologies were refined one after the bthenainly focusing
on increasingly lower dimensional subset of Pareto-ogdtsnéutions. Simulation
results on a number of numerical test problems demonstettertefficacy of the
approach which aims to find only the extreme Pareto-optimetp compared to its
higher-dimensional counterparts.

Kalyanmoy Deb

Department of Mechanical Engineering, Indian Institutde¢hnology Kanpur, PIN 208016, In-
dia, e-mail: deb@iitk.ac.in

Also Finland Distinguished Professor, Helsinki School ebEomics, Finland

Kaisa Miettinen
Department of Mathematical Information Technology, P.0xB5 (Agora), FI-40014 University
of Jyvaskyla, Finland, e-mail: kaisa.miettinen@jyu.fi



2 Kalyanmoy Deb and Kaisa Miettinen

1 Introduction

A reliable and accurate estimation of the nadir point in ireltfjective optimization
is an important task from a number of reasons. First, alorh thie ideal objective
vector, the nadir objective vector can be useddomalize objective functions [14],
a matter often desired for an adequate functioning of naldjective optimization
algorithms in the presence of objective functions withefiént magnitudes. Second,
the nadir objective vector is a pre-requisite for findingfpreed Pareto-optimal so-
lutions in different interactive algorithms, such as tuess method [3] (where the
idea is to maximize the minimum weighted deviation from tlaglin objective vec-
tor), or it is otherwise an integral part of an interactivethoa like the NIMBUS
method [14, 15]. Third, the knowledge of nadir and ideal otije values helps the
decision-maker in adjusting her/his expectations on astialevel by providing
the range of each objective and can then be used to aid infgipgcpreference
information in interactive methods in order to focus on aiggbsregion.

Despite the long-term efforts by researchers, estimatfaradir point is still an
open matter for research. Recently, researchers have steggeifferent ways to
employ an evolutionary multi-objective optimization (ENI@rocedure for this pur-
pose. Since an EMO methodology works with a number of pomesaich iteration,
its operators can be designed to focus its search towardsaenof Pareto-optimal
solutions simultaneously in a single simulation. This félkly makes an EMO pro-
cedure a potential tool for arriving at important Paretaiol points for estimating
the nadir point. In this paper, we review the existing EMO meelologies from the
point of view of dimensionality of the target solutions andaliss advantages and
disadvantages of these methodologies. We argue that an Edi@dhof finding the
extreme Pareto-optimal points (instead of intermediatet®soptimal points) is a
computationally faster approach and the modification c&wlgd extreme points by
a local search may provide accuracy in the estimation of #urpoint.

Motivations for estimating the nadir point led the MCDM rasehers dealing
with methodologies to suggest procedures for approxirgatie nadir point using
a so-calledpayoff table [1], since 1971. This involves computing the individual op-
timum solutions, constructing a payoff table by evaluatitizer objective values at
these optimal solutions, and estimating the nadir poinhftibe worst objective val-
ues from the table. This procedure may not guarantee a ttineat®n of the nadir
point for more than two objectives. Moreover, the estimatadir point can be either
an over-estimation or an under-estimation of the true naalint. For example, Is-
erman and Steuer [11] have demonstrated these difficutirdgding a nadir point
using the payoff table method even for linear problems anpresized the need of
using a better method. Among others, Dessouky et al. [8] sstgd three heuristic
methods and Korhonen et al. [13] another heuristic methodhis purpose. Let
us point out that all these methods suggested have beerogeddor linear multi-
objective problems where all objectives and constraingsliaear functions of the
variables.

In [9], an algorithm for deriving the nadir point is proposedsed on subprob-
lems. In other words, in order to find the nadir point for ldrobjective problem,
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Pareto-optimal solutions of a(l“é') bi-objective optimization problems must first
be found. Such a requirement may make the algorithm conipatdly impractical
beyond three objectives, although Szczepanski and Wiekiz[ii6] implemented
the above idea using EAs and showed applications up to tmedoar objective
linear optimization problems. It must be emphasized thihalgh the determina-
tion of the nadir point depends on finding the worst objectiakies in the set of
Pareto-optimal solutions, even for linear problems, thia difficult task [2].

Since an estimation of the nadir objective vector necdssitaformation about
the whole Pareto-optimal surface, any procedure of estgdhis point should in-
volve finding Pareto-optimal solutions. This makes the taske difficult compared
to finding the ideal point [13]. Since EMO algorithms are potal for finding an
approximate set of the entire or a part of the Pareto-optsuehce, they stand as
viable candidates for this task. A couple of recent studie4§] have demonstrated
a promise in this direction. Another motivation for usingEMO procedure is that
nadir point estimation is to be made only once in a problenoifgebeginning the
actual decision making process. So, even if the proposeztdroe uses somewhat
large computational effort (one of the criticisms made wfigainst an evolutionary
optimization method), a reliable and accurate methodofoggstimating the nadir
point is desired.

2 Dimensional Decomposition of Nadir Point Estimation
Procedures

In this section, we review the existing evolutionary optiation based nadir point
estimation procedures from a point of view of the dimensiityaf the target set for
the evolutionary optimization procedure. The nadir poant be estimated from any
of the following scenarios: (i) the entire Pareto-optimaiface is known, (ii) the
critical edges of the Pareto-optimal surface (boundaries of Pareto-adtsurface
responsible for locating the nadir point) are known, o)) @inly thecritical extreme
Pareto-optimal points (extreme points of the Pareto-ogitsurface responsible for
locating the nadir point) are known. Interestingly, at te@se procedure is already
suggested for each of the above tasks and we describe them her

2.1 *Surface-to-Nadir’: Computing Solutions from Entire
Pareto-optimal Surface

A naive and simple-minded idea comes from finding a represgieetset of the en-
tire Pareto-optimal surface with an EMO approach. Althotlghidea is intuitive,
the difficulties of this method are many: (i) it needs an exgrally higher number
of points to cover the entire Pareto-optimal surface as thmber of objectives in-
crease, (i) to estimate the nadir point accurately, it nfinstextreme Pareto-optimal
points accurately, thereby deserving special attentiothf® search of the extreme
points, (iii) it often requires a diversity parameter sgigicig the minimum desirable
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distance between any two obtained points, hence makingtieegure sensitive to
a parameter. An earlier study [16] has shown the effect ofdikiersity parameter
on the obtained accuracy of the estimated nadir point. EgrBEMO methodologies
have shown to not work well in finding a well-distributed sésolutions on the en-
tire Pareto-optimal surface for more than four objectiv8s thereby making EMO
methodologies difficult to apply in practical scenarios.

2.2 ‘Edge-to-Nadir’: Computing Edge Solutions of Pareto-optimal
Surface

Since intermediate (non-extreme) Pareto-optimal sahstan not usually contribute
in determining the location of the nadir point, one may tryima only critical edges
(boundaries responsible for a true estimate of the nadirtpof the Pareto-optimal
surface. One way to do this would be to so(\VLb) pair-wise objective combinations
and collect the corresponding solutions together by comguhe missing objec-
tives [9, 16]. The dominated points can then be deleted amadldir point can be
estimated. However, although this procedure requiresivelg smaller computa-
tional effort than that in the ‘Surface-to-Nadir’ approattere are still some diffi-
culties: (i) the accuracy of the procedure depends on thersity parameter used to
find a distributed set of solutions on the critical edges efRareto-optimal surface,
(ii) many pair-wise optimizations may find the same boundarya part of them)
repeatedly, thereby wasting computational efforts, iiigh a technique may require
to find multi-modal Pareto-optimal solutions (solutionsing identical efficientf;-

f; solutions but differing in at least one other objective,d@ample) and may need
to employ a lexicographic procedure to find the true extrearet®-optimal points.

2.3 ‘Extreme-point-to-Nadir’: Computing Objective-wise \Wor st
Pareto-optimal Points

It is also intuitive to realize that even most of the interna¢el edge points do not
help in estimating the nadir point. It is then quite temptioglevelop a procedure
which will find only the extreme Pareto-optimal points, sattthe nadir point can be
constructed from these points. A couple of recent studiesgbsuggested such pro-
cedures using an EMO approach and showed their potentighéopurpose. How-
ever, evolutionary optimization algorithms are not guéead to find the exact op-
timal solutions. Hence, an EMO designed to find the extremet&aptimal points
may not be able to exactly locate the extreme points, thereliing only an approx-
imate estimation of the nadir point. A recent study [6] sugigd the use of a local
search procedure based on the reference point approactifiidn the approximate
extreme solutions obtained by the modified NSGA-I11 proceds}. This study used
a heuristic weight fixation scheme which may face difficuliie certain problems.
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This is because the task of a local search ian
locating an extreme Pareto-optimal pointis
more involved than the usual task of find-
ing a locally optimal solution in single-
objective optimization. Consider Figure 1,
in which the outcome of a typical EMO
procedure is usually a near-extreme solu-
tion, zemo (the figure may indicate an ex-
aggeration of an actual EMO outcome).
Usually, such a solution need not even be
a Pareto-optimal solution. The task of the
local search isnot to find any arbitrary
Pareto-optimal point (sagp) close to the
EMO point, but to find the true extreme
Pareto-optimal pointz) corresponding to £
the objective functionf; for which the !

_EMO point \_Nas found to be the worst. I_tFig. 1 The local search procedure is illus-
is not a straightforward task to get the thigaeq.

point (zg) from the EMO point ¢gmo) di-

rectly in every scenario using a single-level

heuristic optimization.

In this study, we replace the heuristic local search promthy using a two-
level reference point based approach to improve the acguwilocating extreme
points. In the outer-level optimization task, a combinatad a reference pointzj
and a weight vectony) is the set of decision variables and the objective function
evaluation involves another (lower-level) optimizatiask. For the lower-level opti-
mization, original variable vectok] is the variable and the augmented achievement
scaralizing function with suppliedz{ w) by the outer-level solution is optimized.
The starting solution is the EMO solutiorglyp) for this optimization task. At the
optimal solution Xp, which corresponds to the efficient vectss) to this task, the
value of the critical objective functiom;(x5) is computed and is used as the ob-
jective value of £, w) solution of the upper-level optimization problem. Thusg t
outer-level optimization searches f@r,w) for which the above-computed objec-
tive function has its maximum value, thereby finding the &sextreme point. The
starting solution for the outer-level optimization can (2emo,Wo), wherewy is a
vector with all entries equal to/M (M is the number of objectives). During the op-
timization,zis restricted to lie within a hyperbox around the EMO poirgy{o) and
w is restricted to lie within the range [0.001, 1] in each dirsien. In the following,
we present the overall procedure:

Pareto—optima
surface

Step 1: Compute ideal and worst objective vectors by minimgizand maximiz-
ing each function individually. They are needed in compmitine termination
criterion for the EMO procedure.

Step 2. Apply extremized-crowded NSGA-II approach [5] tadfa set of non-
dominated extreme points. Iterations are continued tilrantnation criterion is
met. Say, at the end of this simulatidA,non-dominated near-extreme points
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(xg'“),,o forj=1,2,...,P) are found. Identify the best and worst objective vectors
f™" andf™® from theseP solutions. .
Step 3:  Apply a local search procedure from each near-eﬂrmﬂutionxg,\),,o

(having objective vectoifzj,g,lo) by using the two-level reference point approach
(described below) to find the corresponding extreme soit;ﬁéj). A pointx(EJ,\),Io
is used for local search if at least one of its objective val{sayk-th objective)
matches to that in the maximum objective vedtt?™ and the point is declared
as a critical extreme point. The outer-level optimizatiaesl a combination of
reference point and weight vect@, w) as the decision variable vector and max-
imizes an objective function which is computed by an inmsel optimization
(given in equation 2):

Maximizeyy f&V(z,w),

subjectto  w e [0.0011]1, (1)

z e fU) 4 [-0.5,1.5)(fmax_ fmin)

wherel is vector of ones. The optimal objective vallqp“)(z,w) depends on
the current reference poiatand weight vectow and is the optimal objective
function values to the following inner-level optimizatipnoblem involving the

augmented achievement scalarizing function:

inimize,. (fiy")—z M fm(y')) ~zm
Minimize ), mf';l){"'zlw, (W) +P 2 m=1Wm (W) © ()
subjectto  y e.7,

where.” is the feasible variable space restricted by the originaktaints and
variable bounds. To this problem, search is performed inattiginal decision
variable space. The solutigri'/) to this inner-level optimization problem deter-
mines the optimal objective vectdg“), which is used in the outer-level opti-
mization problem. The outer-level optimization is initdd with the EMO so-

lutionzq) = fgh),lo andw g = (1/M)1. The inner-level optimization is initialized
with the EMO solutioryE(J); = x(EJ,\),lo. Resulting optimal solution for the two-level

local search igf_‘g with an objective vectcﬂf_js) and corresponding reference point
and weight vectors areg andwg, respectively. Step 3 is repeated for Bll
EMO solutions.

Step 4:  Finally, construct the nadir point from the worsteattive values of ex-
treme Pareto-optimal pointsﬁf_@), j=1,2,...,P) obtained by the local search

procedure.

The use of augmented achievement scalarizing functionmmteslow the inner-
level optimization to converge to a weak Pareto-optimalioh. But, in certain
problems, the approach may only allow to find an extrgamaper Pareto-optimal
solution [14] depending on the value of the parameteAlternatively, it is possi-
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ble to use a lexicographic formulation of the achievemeatasizing function to
guarantee Pareto optimality [14].

3 Resultson Numerical Test Problems

In this section, we present simulation results of ‘Extrepo#at-to-Nadir’ approach
and compare its performance with the other two procedure#/fich results are
borrowed from the original study [16]. For all simulationsing the ‘Extreme-point-
to-Nadir’ approach, we have used the following parametéwneg Details of this
procedure are given in [5]. Population si2¢) {s proportional to number of variables
(n), asN = 20n. Crossover and mutation probabilities are 0.9 ajid, tespectively.
The distribution index for simulated binary crossover @er (SBX) [4] is 10 and
the same for polynomial mutation operator [4] is 50. The NSIBArocedure is
terminated when the change in normalized distance mewimfuted a§NDmax —
NDmin)/NDayg) is less than 0.0001. The quantiti®®max, NDmin, andNDayg are
maximum, minimum and average normalized distai¢B)(metric value (defined
below) over the past 50 generations:

1M <z|est_ z > 2
ND= | =S (Z—2) . (3)
$ v\ 7z
wherez! 2, z* are the estimated nadir point, worst objective point andligeint,
respectively. The parametgrfor the augmented scalarizing function is set to 10

3.1 Problem S7z1

We borrow the first two problems from a recent study [16] whégiplied the first
two nadir point estimation methodologies (‘Surface-todaand ‘Edge-to-Nadir’
approaches). The first problem is as follows:

fl(X) = —(100— 7X1 — 20X2 — 9X3),
Minimize ¢ f2(x) = —(4x1 + 5X2 + 3x3),
f3(x) = —xs, @)
subject to Bx; +xp+13x3 < 9,
X1+ 2%2+ %3 < 10,
x>0 i=123

The previous study [16] reported the true nadir point ta#€ = (—3.63640,0)".
Figure 2 shows a sketch of the feasible objective space amddiresponding
Pareto-optimal surface (shaded region). The ‘SurfacRad#’ approach first finds
a set of well-distributed points on the entire Pareto-optisurface and then con-
structs the nadir point from the obtained points. After D2solution evaluations
(total number of solutions evaluated by the during the erdjstimization process),
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0r .4 g 0.94 Terminated at 108 generations|
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Generation Number

Fig. 3 Normalized distance metric for
Fig. 2 Feasible objective space and Pareto- problem SZ1.
optimal surface for problem SZ1.

the point(—5.06,0,0)" was declared as an estimate of the nadir point in [16]. The
'Edge-to-Nadir’ approach finds the Pareto-optimal edgesesponding to pair-wise
minimizations of objectives. In this problem, all three gadf objectives will find
representative points on the edges shown with a thick lihe. fadir point is then
estimated to bé—4.78,0,0)" [16]. Even after 360,000 solution evaluations, the
resulting estimate using the ‘Edge-to-Nadir’ approach ag.36,0,0)", having
20% higher value in the first objective from the true valuethaligh the problem
is linear and has only three variables, the above two evaiaty methodologies
seem to have faced difficulties in finding the true nadir painthis problem. We
now employ the ‘Extreme-point-to-Nadir’ approach with f@posed local search
procedure.

In Step 1, we find the ideal point by minimizing each objectiging Matlab’s
f mi ncon() code, which employs the sequential quadratic method witB Bl&as
a unconstrained optimization procedure and cubic searatiias search procedure.
Three minimizations provide* = (—100,—31,-5.625)" as the ideal point, requir-
ing 28, 16, and 16 solution evaluations, respectively. Ve aked the worst point
for terminating Step 2. The poimt¥ = (0,0,0)" is found with 28, 24, 28 solution
evaluations.

In Step 2, we apply the extremized crowded NSGA-II with a pegter setting
as described above. Figure 3 shows the variation of the ria@dedistance metric
with generation. The algorithm is terminated after generat08 and total solution
evaluations needed are &0L09= 6,540. Four solutions are found at the end of the
simulation and are presented in Table 1 and in Figure 2 wamdinds. Notice, how
the modified NSGA-II finds non-dominated near-extreme At B, C, and D) for
the entire Pareto-optimal surface, without finding anyrimediate points. From the
table with four obtained solutions, we observe the worstizsl objective vectors as
fmaX— (-3.78780.00000.0000" andf™" = (—100.0000Q —30.905Q0 —5.6207)7,
respectively. Interesting to note th&®* is already close to the true nadir point
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Table 1 Four solutions found by the extremized crowded NSGA-II fovlilem SZ1. LS’ stands
for results after local search.

U D

J XEmo
1{(-12.4541 —30.9050 —0.0052) " [(4.00652.9727,0.0052 T
2[(—49.3921 —16.8739 —5.6207)"|(0.0029 0.0001 5.6207"
3| (—3.7878 —26.8347, —3.5789 " |(0.04343.18503.5789"
4| (—10000000.00000.0000" |(0.000Q0.000Q0.0000"

IC I o

1| — |No worst objective value -

2| — |No worst objective value -

3| 1{(—3.6364 —26.8182 —3.6364" |(0,3.18183.6364"

4/2,3 (-100,0,0)" (0,0,0)7

z"d— (-3.63640,0)T. Now, we employ the local search procedure from the two
solutions corresponding to the worst objective ve€is.

In Step 3, we observe that solution 1 (point D) and solutioqmdrt B) are not one
of the worst solutions, so we ignore these points from furtdeasideration. In fact,
these two solutions exist in the NSGA-II final population&ese they correspond to
the minimum value of objectivefs and f3, respectively. Solution 3 (point C) corre-
sponds to the worst of objectivig (with k= 1) and hence will be subjected to a local
search in the hope of improving it to reach the true extrenmr ¢ty Pareto-optimal
point corresponding to objectivl. The resulting solution (point O) is shown in
the table. This optimization requires 204 solution evabret. The corresponding

optimal weight vector and reference point are found tm@ =(0.00101,1)7

and z(L?’) = (1405305 —41.9543 —6.3891)7, respectively. It is interesting to ob-

serve fromfg),IO and z,(_%) how the two-level local search procedure finds a large

value of the first objective uf@ by keeping the other two objective values close to
the NSGA-II point and uses a relatively small value of weifgintthe first objective
to allow the search of the achievement scalarizing funcéilomost along the- f1
direction to locate the extreme point.

Next, we consider solution 4 (point A), which correspondsthe worst of
both objectivesf, and f3 (with k = 2 and 3). Thus, we maximize a normal-

ized sum of both these objectiveg?@z%) in the inner-loop of local
i

search method. The same pofﬁg = (—100,0,0)T is found in only 20 solution
evaluations. Corresponding optimal weight vector andregfee point arerv,(_‘g =
(0.33330.00100.0010 " andz¥ = (~1481061 —15.4525 —2.81037, respec-
tively.

In Step 4, we collate these poinf@ andffg) and declare the estimated nadir
point as(—3.63640,0)", which is identical to the exact nadir point. Total number

of solution evaluations needed by all steps of the proceid@®04, of which about
95% evaluations are needed by the EMO procedure alone. Thputation needed
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by this ‘Extreme-point-to-Nadir’ approach is only about @#cthat needed by the
other two approaches and importantly the ‘Extreme-pariadir’ approach also
finds a more accurate result. This study demonstrates howastkeof finding the
nadir point can become computationally faster and accifrttie focus is made in
finding extreme points, rather than on the entire Paretgrabtsurface or on the
edges of the Pareto-optimal surface.

3.2 Problem Sz2

Next, we consider the second numerical optimization probdé [16]:

9x1 + 19.5% + 7.5x3
TX1 + 20x2 + 9%3
—4Xq — BXp — 3X3 ’
—X3 (5)
subject to 15x; — xo+ 1.6x3 < 9,
X1+ 2%+ X3 < 10,
% >0, i=1,2.3.

Minimize

The true nadir point for this problem 2" = (94.5,96.36360,0)". The ear-
lier study [16] obtained a close poili94.4998 95.8747,0,0)" using the 'Edge-
to-Nadir’ approach. This study required a total of 120,06i8on evaluations. In
the following, we show the results of ‘Extreme-point-toditaapproach on this
problem.

In Step 1 of the procedure, we find the ideal and worst objestivalues:
z* = (0,0,—-31,-5.625" andz" = (97.5,100,0,0)", respectively. This requires
(12+12+24+28)=76 and (28+12+16+16)=72 solution evaduati respectively.

Thereafter, in Step 2, we apply the extremized crowded NSIG#ecedure us-
ing a population size of 60 and initializing the populatiowndx; € [0,10] for
all three variables. The NSGA-II run is terminated at getiera315 with the pre-
scribed termination criterion, thereby requiring a tot&ls0 x 316 or 12,640 so-
lution evaluations. Solutions obtained are tabulated inld&. The minimum and

Table2 Extremized crowded NSGA-II and local search method on rob8Z2.

o Objective vectorfJ), -
(0.00010,5.6249" (42.187950.6249 —16.8752 —5.6249"
(0.00013.18303.6336 T |(89.3219 96.3635 —26.8164 —3.6339
(3.99802.99980.0003 T |(94.481Q 87.9854 —30.992Q —0.0003 "
(0,007 (0,0,0,0)"
w) | 2! Extreme pointf )
No worst objective value
(1.0,1.0,0.7,0.8)7|(1838,1927, 26,8, -3.6)" |(89.3182 96.3636 - 26.8182 —3.6364
(0.3,0.3,0.2,0.3)7| (1890,1844, -310,5.6)" | (945000 88.000Q —31.00000.0000 "
4 0.251,1,1,1)7 (0,0,0,0) (0,0,0,0)

s oNP[—

5 WM =
wl—‘I\JI =
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maximum objective vectors aré"" = (0.000Q0 0.000Q —30.9920 —5.6249 T and
fM — (94.481096.36350.0000 0.0000 ", respectively. Notice that the maximum
vector is close to the true nadir point mentioned above. Wl slow investigate
whether the proposed local search is able to improve thistgoifind the exact
nadir point.

We observe that the objective values of the first solutiorsdus correspond to
any element of "®, Thus, in Step 3, we employ the two-level local search praced
only from the other three solutions. Resulting solutiond aorrespondingg and
W|<_JS> vectors are shown in the table. For solutions 2 and 3, we miagiobjectives;
andfy, respectively. Since solution 4 is worst with respect tchbmitjectivesfs and
f4, we maximize the sum of normalized objectives, as describethe previous
problem. The solution evaluations required till convergeifor each of the three
optimizations are 204, 25 and 20, respectively.

From the obtained local search solutions (last column irtdbée), we estimate
the nadir point a$94.5000 96.3636 0,0) T, which is identical to the true nadir point
for this problem. The total number of solution evaluationd8,037. This is only
about 10% of the total solution evaluations needed in [1&jrédver, our approach
finds the exact nadir point, whereas [16] could not find theceradir point even
with about 10 times more solution evaluations.

3.3 Problem KM

Next, we consider a three-objective optimization problesnich provides difficulty
for the payoff table method to estimate the nadir point. Thisblem was used in
[12]:
—X1—X2+5
Minimize { £(x¢ — 10 +X3 — 4%, +11) 5,
(5—x1)(x2—11)
subjectto & +x2—12<0, (6)
2X1+ % —9<0,
X1+2x%—12<0,
0<x1 <4, 0<x<6.

Individual minimizations of objectives identify the vects® = (-2, 3.1, —55)7

as the ideal objective vector. This requires a total of (187++39)=64 solution
evaluations. The maximization of the objectives leads évibrst objective vector
7" = (5,4.6,—14.25)T with (12+18+18)=48 solution evaluations. The payoff ta-
ble method find¢5,2.2,—~14.25)" as the wrongly estimated nadir point from these
minimization results. Another study [10] used a grid-sbasttategy (computation-
ally possible due to the presence of only three objectivégreating a number
of feasible solutions systematically and constructingrtadir point from the solu-
tions obtained. The estimated nadir point Was4.6, —14.25)T. We now employ
the ‘Extreme-point-to-Nadir’ approach with the proposeddl search procedure.



12 Kalyanmoy Deb and Kaisa Miettinen

As described above, Step 1 of the approach firids- (—2, 3.1, —55)" and
7" = (5,4.6,—-14.25)T. In Step 2 of the approach, we employ the extremized
crowded NSGA-II and find four non-dominated extreme sohsias shown in the
second column of Table 3. It is interesting to note that thatfosolution is not

Table 3 Extremized crowded NSGA-II and local search method on frokKM.
)

j XEMo Objective vectorf(E’,\),IO k| Extreme pointf(LJS)

1 (0,07 (5,2.2,—55)" 1 (5,2.2,-55)"
2((3.511,1.466)7| (0.023 —3.100,—-14.194" ||3| (0,—-3.1,—14.25)T

3 (067 (—1,4.6,—-25)7 2| (-1,46,-25T
4/(2.007,4.965 T |(—1.973 —0.050,—18.060)" ||-|No worst objective value

needed to estimate the nadir point, but the extremized iptenkeeps this extreme
solution corresponding td; to possibly eliminate spurious solutions which may
otherwise stay in the population and provide a wrong esgroéthe nadir point. The
simulation is terminated after 135 generations, therefuireng 40x 136= 5,440
solution evaluations. At the end of Step 2, the estimatedr naaint is 2" =
(5,4.6,—14.212)T, which seems to disagree somewhat on the third objectiveval
with that found by the grid-search strategy.

To investigate if any further improvement is possible, weqaed to Step 3 and
apply three local searches, each started with one of thetliree solutions pre-
sented in Table 3, as these three solutions correspond tedfs value of one of
the objectives. The minimum and maximum objective vectmmfthese solutions
are:f™" = (-1, -3.1, -55)T andf™® = (5,4.6, -14.194)", respectively. Solution 1
from the table corresponds to the worst value of the firstabje (k= 1). Thus, the
outer optimization run maximizes objectivfig. This optimization took 487 solu-
tion evaluations. The table clearly shows that solution @ioled by NSGA-II was
not a Pareto-optimal point. The local search approachirsgafitom this solution is
able to find a better solutiof0, —3.1,—14.25)", requiring a total of 198 solution
evaluations. This shows the importance of employing thallsearch approach in
obtaining exact extreme points. The third solution could lm®improved any fur-
ther, since it is already the desired extreme point with eespo f, with k = 2, but
the optimization requires 786 solution evaluations to ieate with the prescribed
conditions.

The nadir point estimated by the combination of extremizesvded NSGA-II
and the local searches(5s,4.6,—14.25)T, which is identical to that obtained by the
grid search strategy [10]. Overall, the ‘Extreme-poiniNadir’ approach required
7,023 solution evaluations to estimate the nadir point#xéathis non-linear prob-
lem, for which the EMO procedure required about 77% of thaltcdbmputations.
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4 Conclusions

Recent studies have shown that evolutionary multi-objeatiptimization (EMO)
procedures are potential for the estimation of nadir pdimtthis paper, we have
reviewed three such implementations which seemed to vagrding to the dimen-
sion of the desired target set. By comparing the number aitieol evaluations of
these procedures, we have concluded that the ‘Extreme-pmiNadir’ approach
which directly focuses to find extreme Pareto-optimal poista computationally
faster approach and requires an order of magnitude lesti@olevaluations. The
accuracy of the EMO procedure has also been improved by asiwg-level local
search procedure and with a marginal increase in the cortipuoidh effort. Simi-
lar results are observed on other problems (which we coutcpravide here due
to space restrictions). The local search based ‘Extrenigpe-Nadir' approach
seems to be a promising procedure for making a reliable aodrate estimate of
the nadir point in a multi-objective optimization problem.
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