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Abstract—The difficulties faced by existing Multi-objective problem. While this recognition is growing, it is alarming
Evolutionary Algorithms (MOEAs) in handling many-objective  that the search ability of some of the most well known
problems relate to the inefficiency of selection operators, high MOEAs severely deteriorates when more than three objective

computational cost and difficulty in visualization of objective . ived [11=31. Thi k uti bieet
space. While many approaches aim to counter these difficulties are involved [1][3]. This makes evolutionary many-objee

by increasing the fidelity of the standard selection operators, the Optimization one of the most challenging research areasen t
objective reduction approach attempts to eliminate objectiveshat  field of evolutionary optimization and explains the growing

are not essential to describe the Pareto-optimal Front (POF). research emphasis in this direction. The main difficulties
If the number of essential objectives are found to be two or ,osqciated with many-objective problems relate to:

three, the problem could be solved by the existing MOEAs. 1) Hiah tati | t If ti lti-obieeti
It implies that objective reduction could make an otherwise ) High computational cost: If a continuous multi-objeetiv

unsolvable (many-objective) problem solvable. Even when the Optimization problem (with\/ objectives) meets the regularity
essential objectives are four or more, the reduced represeation  property, the dimensionality of its Pareto-optimal froRQF)

of the problem will have favorable impact on the search efficiency, can beM — 1 [4]. Therefore, the number of points needed
computational cost and decision-making. Hence, development for approximating the whole POF increase exponentialljwit

of generic and robust objective reduction approaches becomesM Th h Iso be ob din di t
important. This paper presents a Principal Component Analysis - e same phenomenon can aiso be observed In discrete

and Maximum Variance Unfolding based framework for linear ~Problems.

and nonlinear objective reduction algorithms, respectively. The 2) Poor scalability of most existing MOEAs: With an increase
major contribution of this paper includes: (a) the enhancements jn )/, almost the entire population acquires the same-rank
in the core components of the framework for higher robustness t on_gomination. This makes the Pareto-dominance based
in terms of—applicability to a range of problems with disparate . . . .

degree of redundancy; mechanisms to handle an input data prlmary selection meffgcnve and th.e role of secondary se-
that is mis-representative of the true POF; and dependence on l€ction based on diversity preservation becomes crucia¢ T
fewer parameters to minimize the variability in performance, density based MOEAs (such as NSGA-Il [5], SPEA2 [6]
(b) proposition of an error measure to assess the quality of and PESA [7]) worsen the situation by favoring the remote
results, (c) sensitivity analysis of the proposed algorithms for and boundary solutions, implying that the best diversitisge

the parameters involved and on the quality of the input data, . g . . ;
and (d) study of the performance of the proposed algorithms associated with poorly converged solutions. This expl#ies

vis-a-vis dominance relation preservation based algorithms, on a Performance deterioration reported in [1]-[3]. The moreerg
wide range of test problems (scaled up t&0 objectives) and two MOEA/D [8], [9] and indicator based MOEAs [10], [11] are

real-world problems. found to cope better with an increase Mi. For example, in
Keywords: Evolutionary Multi-objective Optimization, Many- SMS-EMOA [11], the problems faced by the density based

objective Optimization, Principal Component Analysis,Ma MOEAS are countered by the use SFmetric [12] based
imum Variance Unfolding and Kernels. secondary selection. However, the utility of such MOEAs is

limited by the fact that their running times increase expone
tially with M [13]-[15].
3) Difficulty in visualization of a POF for problems with
Optimization problems involving four or more conflictingas > 4, which in turn makes the task of decision making more
objectives are typically referred to amany-objectiveprob- difficult. Although techniques such as decision maps [16] an
lems. With the multiple conflicting demands faced by theelf-organizing maps [17] exist to aid in visualizationgyh
industry today for superior quality, low cost and higheresaf require a large number of solutions.
etc., competitive edge could only be established by designi |n the context of many-objective problems, the above diffi-
the products and processes that account for as many pergQjities are often referred to as tlarse of dimensionality
mance objectives as possible. It implies that many objestivHere, it is important to discriminate between the curse of
need to be simultaneously dealt with, in an optimizatiogimensionality caused by: (i) the difficulties inherent et
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Department, Craynfield University, Cranfield, U.K (emgdl:saxena, j.a.duro, with complicated shapes [18], and (i) the poor scalabidity
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problem in itself does not have the curse of dimensionality,
yet most of the existing MOEAs may suffer from it.

The approaches for dealing with many-objective problems
can be broadly categorized as:
1) Preference-orderingpproaches: These approaches assume)
that no objective in the given problem is redundant and aim to
counter the low selection pressure for convergence by induc
ing a preference ordering over the non-dominated solutions
Some of these approaches include: reducing the number of
non-dominated points [19]; assigning different ranks tm-no
dominated points [20]-[23]; using scalarizing functiora f
fitness evaluation [2], [24]; using indicator functions J[a 1],
[25]; or using decision maker’s preference information]{26
[29]. While more details can be found in [30], it may be noted
that most of these approaches either aim for only a part of the
POF, report an improvement in convergence with the loss in
diversity, or their computational time increases expoiaint
with the number of objectives.
2) Objective reductionapproaches: These approaches [31]-
[35] assume the existence of redundant objectives in a given of the previous versions of this work, in terms of the
M-objective problem. Operating on the objective vectors of  computational complexity, is clarified.
the non-dominated solutions obtained from an MOEA, theseThiS paper is organized as follows: The fundamental is-
approaches aim to identify a smallest set/of(m < M) syes in objective reduction and the existing approaches are
conflicting objectives which: (i) generates the same POR@s {iscussed in Section I1. Section Il presents the ratioriate
original problem, or (i) alternatively, preserves the doamce viewing of objective reduction as a machine learning proble
relations of the original problem. Sueh objectives are termed \hile Section IV presents the proposed framework. The test-
as essentialand the remaining ones adundant If m < 3, syite and the experimental settings are defined in Section V.
an OtherWise UnSOIVable problem W|” become SOIVabIe. Equhe Working Of the proposed a|gorithms is demonstrated in
if 4 < m < M, objective reduction will contribute to section VI, while Section VIl presents the experimentalitiss
higher search efficiency, lower computational cost and eagg the considered test-suite. The proposed and the aftezna
in visualization and decision-making. objective reduction algorithms are compared in Sectior, VII

This paper builds upon [34], [35] and presents a framewogiile the real-world problems are covered in Section IX. The
for both linear and nonlinear objective reduction algarith naner concludes with Section X.

namely, L-PCA and NL-MVU-PCA. The distinctive contribu-
tion of this paper relates to:
1) The four goals that the framework pursues:

o Generality: The scope of [34], [35] was limited to o ) o . o
highly redundant problems, where < M. The scope Objectlvt_a reduction refers to finding assentialobjective
of the proposed framework is broadened to includet for a given problem. In that:
problems with moderaten{ < M) and negligible An essential objective set is defined as the smallest
(m =~ M) redundancy. This is significant because the set of conflicting objectivesAr, | Fr| = m) which can
core components of the framework need to adapt to generate the same POF as that by the original problem,

the algorithms less robust.

« Proposition of an error measure: An error measure
has been proposed (not in [34], [35]) that allows an
assessment of the quality of the obtained results.
Extensive simulations and results: The results predente
in this paper are new and are based 100 simu-
lationg performed on30 versions of7 test problems
and two real-world problems. In this, the sensitivity of
the proposed algorithms on: (i) the randomness, (ii) the
parameters involved, and (iii) the size and the quality of
the underlying non-dominated sets, is discussed.

3) Performance comparison: Here, the performance of
the proposed algorithms visvis dominance relation
preservation [31] based algorithms is studied, with re-
ference to their general strengths and limitations. It is
established that while the scope of the latter is limited
to linear objective reduction, the proposed NL-MVU-
PCA efficiently performsionlinear objective reduction.
Besides this, the misinterpretation by peer researchers

[l. OBJECTIVE REDUCTION DEFINITION, USEFULNESS
SALIENT ISSUES AND EXISTINGAPPROACHES

~
~

conflicting goals while handling the above cases with
different degree of redundancy.

« De-noising of the input data: Unlike [34], [35], the
proposed framework accounts for the fact that the inpute
data, namely, the non-dominated solutions obtained from
an MOEA is mis-representative of the true POF (noisy).
Towards it, an eigenvalue based dynamic interpretation
of the strength of correlation between objective vec-
tors of the non-dominated solutions is proposed, which

given by Fo = {f1, fa, .-, fm }-

The dimensionalityof the problem refers to the number
of essential objectivés(m, m < M).

The redundant objective set associated with afi
(Frean = Fo \ Fr) refers to the set of objectives, elim-
ination of which does not affect the POF of the given
problem. Notably, an objective could be redundant if
it is non-conflicting (or correlated) with some other
objectives.

serves to negate the effect of noise in the data.

« Parameter reduction: The number of parameters i 1Each of the proposed L-PCA and NL-MVU-PCA has been appliedfo
p cases. For every test case, the populations obtained 20 runs each

. N t
volved in the proposed framework have been mm'm'ZQaSNSGA-II and e-MOEA are used, resulting i2560 simulations. These
as much as possible, so that the variability in the resultiwlations are repeated for four different algorithm-par@meettings and
Corresponding to different parameter settings is min?_lszo for domlnan(_:e reIatlgr_1 preservation bas_ec_i obje(?tlda_ata)n apprgach.
. L. L - Under regularity condition [4], forn conflicting objectives, the dimen-
mized. This is a S|gn|f|cant shift in approach from [34]sionality of the POF isn — 1. However, in the current context, it is meant
[35], where a lot of parameters were involved, making refer to the number of essential objectives.



The usefulness of objective reduction is illustrated below F+ were known, NSGA-II would have converged to the
in the context of the non-dominated solutions obtained from true POF.
NSGA-Il (denoted by,Nxs) for two problems, namely, « Even if4 < m < M: the benefits of objective reduction
DTLZ5(3,5) and DTLZ52,3). While these problems are could be realized in the form of relatively higher search
instances of the DTLZH, M) problem introduced later, here efficiency, lower computational cost and ease in visual-

it is sufficient to note that: ization and decision-making.

. DTLZ5(2,3) is a 3-objective problem, where (if;—f» « Objective reduction could play a complimentary role for
are positively correlated, and (ii) the essential objectiv  the preference-ordering approaches. If the latter were to
set: Fr = {fo, f3} with m = 2. be applied to the reduced representation of the original

« DTLZ5(3,5) is a5-objective problem, where (if;—f>— problem, higher gains can be expected.
f3 are positively correlated, and (i) the essential objectiv * Besides the above, the benefits of the gain in knowledge
set: Fr = {fs, fu, fs} With m = 3. about the problem itself, can not be discounted in real-

world problems. This is significant because quite often,
there is a tendency among practitioners to account for all
the performance indicators as objectives, while it may not
be intuitive if some of them are correlated.
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0 f2 07 It is important to highlight some salient issues around ob-

(a) DTLZ5(2, 3): True POF (b) DTLZ5(2, 3): Nns jective reduction, before introducing the existing apotues.
s Firstly, that all these approaches operate on the objectice
a5 True POF == tors of the non-dominated solutions obtained from an MOEA.

Non-dominated solutione Secondly, that objective reduction can be performed during
an MOEA run 6nline reduction) to simplify the search or it
can be performed post MOEA rupffline reduction) to assist
in the decision making. Thirdly, that aessentialobjective
set may be expressed as a subset of the original problem or
its elements may be expressed as a linear combination of the
original objectives. While the former approach is referred t
as featureselection the latter, as featurextraction It may be
(c) DTLZ5(3,5): ObtainedN /s vis-a-vis the true POF noted that all the existing objective reduction approaghes
Fig. 1. lllustrating that the presence of redundant objestican hinder the sue featureselectiontowards the ease in subsequent decision
search efficiency of an MOEA. Th&/xrs corresponds to a population sizemaking.
of 200 and 2000 generations (one run). Finally, objective reduction approaches can also be distin
guished adinear and nonlinear reduction approaches. These
NSGA-Il is known to perform well for problems with two twg refer to identification of aressentialobjective set when
or three ConﬂiCting ObjeCtiveS. ThIS iS a.fﬁrmed in the Casme under'ying non-dominated front is linear andn"near"
of DTLZ5(2,3), where the obtained/y s (Figure 1a) can be regpectively. Here, it is important to discriminate betwéiee
seen to conform with the true POF (Figure 1b). Ironicallyinearity and nonlinearity of the non-dominated front ahditt
in the case of DTLZE3, 5) which has three conflicting objec- of the objective functions. While the latter depends on how an
tives, Figure 1c shows that NSGA-II could not converge to thehjective varies across the search space, the former depend
true POF. This can be attributed to the presence of redundgRthow the given objectives covary. In that:
objectives, as explained below. In tté- subspace shown in 1) \while linear objectives (Figures 2a) ensure a linear non-
Figure 1c, solution A dominates B. However, B qualifies as @minated front (Figure 2c), even two nonlinear objectives
non-dominated solution by being better than A in one of tl"(rfzigure 2b) can lead to a linear non-dominated front (Fig-
redundant objectives, namelff, or f». This illustrates how the e 2c) provided the degree of nonlinearity of both the
presence of redundant objectives hindered the searcteeffici objectives is the same (identically nonlinear).
of the NSGA-II, resulting in its poor convergence to the trugy |f the objectives have different degree of nonlinearftyr (
POF. If NSGA-II were allowed to run for infinitely many example, if one objective is linear and the other is nonlijea
generations, the spurious solutions like B would die outted then the resulting non-dominated front can only be nontinea
population would converge to the true POF. However, withfhis is evident from Figures 3a and 3b.
reasonable number of generations, the spurious solutidhs w | g important to recognize that an objective reduction
prevail. This example illustrates the importance of olyect approach would need to rely on some form of a distance
reduction. In that: measure while evaluating the non-dominated solutions: Fig
« If the problem could be reduced ta < 3: an otherwise ure 3b highlights that a distance measure based on either
unsolvable problem could be solved using any of ther L, norm will be inadequate to account for nonlinearity, as
existing MOEAs. For example, in the above problem, iboth of these, do not account for the distribution of sohsio
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o I 2 N\ Nor-dominated is retained apd the neigh.b.ors are e'Iimi.nated.. This process i
8 g repeated until a pre-specified criterion is achieved. Based
g § | o this, two algorithms have been proposed to deal VAiiOSS
S o andk-EMOSS problems, respectively. However, the role of the
o o i1 0’ - parameter on the performance of the technique and the issue
O Variable () * O Variable () 0 fl of how to adaptively reducq needs to be investigated.

@fi=xandfo = (b) f1 =x*andfz = (C) Non-dominated 3) Pareto Corner SearchA Pareto corner search evolu-
I-z 12 front for (a) and (b) tionary algorithm (PCSEA) has been proposed in [33], which
Fig. 2. lllustration: (a) Two linear objectives, and (b) Twidentically instead of aiming for the complete POF, searches for only the
nonlinear objectives, resulting in (c)limear non-dominated frontz € [0,1]. corners of the POF. The solutions so obtained are assumed to
appropriately capture the dependency of the POF on differen
objectives. Then objective reduction is based on the pemis
that omitting aredundantand anessentialobjective will have

1

o 08F

% 0.6l negligible and substantial effect, respectively, on thenber
204 of non-dominated solutions in the population.

4) Machine Learning based objective reductionhis ap-

Off ey proach [34], [35] utilizes the machine learning techniqliles
Variable (x) Principal Component Analysis (PCA) and Maximum Variance
@ fi=zandfo=1—25 (b) Non-dominated front Unfolding (MVU) to remove the second- and higher-order

Fig. 3. llustration: (a) Two objectives with different deg of nonlinearity erendenmes in the non-dominated SO|Ut|0nS_- As .thIS appro

resulting in (b) anonlinearnon-dominated front, where use bi or L, norm  lies at the heart of the framework proposed in this paper, the

will be inadequate to account for nonlinearity.c [0,1]. basic concepts are discussed below.

0.2t

between any two solutions of interest. For example, sincl!- M ACHINE LEARNING BASED OBJECTIVE REDUCTION
Li(a,b) = Li(e, f) = D, the distribution of intermediate so- This approach is based on the premise that itignsic
lutions will be assumed to be identical for both the SO|UtiO§[ructureof agarb|ed high-dimensiona| data can be revealed
pairs. The same will hold for the solution paifs,b) and by transforming it such that the effect nbiseandredundancy
(c,d), in the case of, norm, sinceLs(a,b) = La(c,d) = D.  (dependencies) is minimized. PCA [37] achieves this goal
To summarize, the scope of an objective reduction approag projecting the given dat& on the eigenvectors of the
relying either onL; or L, norm will be limited tolinear ob- correlation matrix ofX.

jeCtive reduction (unIeSS used in clusters—where the Mkt}a Notab|y, PCA is based on removing tsecond order de-
of solutions in each cluster is linear; or used after unfuydi pendenciesn the given data. Hence, PCA is likely to be inef-

the data—as discussed later). fective in capturing the structure of data sets with multeral
Gaussian or non-Gaussian distributions [37], as in Fig(ag 4
B. The existing objective reduction approaches Several nonlinear dimensionality reduction methods, sagh
With the background established above, the existing objdéemel PCA [38] and Graph-based methods [39], exist for
tive reduction approaches are presented below. removing thehigher order dependenciesn that, the former

1) Dominance Relation Preservation (DRPJhe objective nonlinearly transform; the da.ta by using a standard kernel
reduction approach proposed in [31] is based on preserviWCt'On aqd then applies PCA in thetransformed/kernectspa
the dominance relations in the given non-dominated saiatio However, its success depends on iori chosen kernel.
For a given objective seF, if the dominance relations amongThe latter does away with this limitation by deriving “data-
the objective vectors remains unchanged when an objectif@Pendent” kernels.

f € F is removed, thery is considered to be non-conflicting Maximum Variance Unfolding (MVU) [40] is a graph-based
with the other objectives inF. Based on this criterion, an Method that computes the low-dimensional representajon b
exact and a greedy algorithm is proposed to addfee©SS explicitly attempting to ‘unfold’ the high-dimensional @a
(finding the minimum objective subset corresponding to @anifold, as in Figure 4. The unfolding is achieved by maxi-
given error§) and k-EMOSS (finding an objective subset ofmizing the Euclidean distances between the data pointsswhil
size k with minimum possible error) problems. However, duéocally preserving the distances and angles betweesrby

to the underlying assumptions [36], this approach is lithie points. Mathematically, this can be posed as a semidefinite
linear objective reduction and equally distributed solutions iRrogramming (SDP) problem [40], the output of which is the
the objective space (discussed in Section VIII). kernel matrix (sayK) representing the kernel space to which

2) Unsupervised Feature Selectiorithis approach [32] PCA can be applied.
utilizes the correlation between objectives and treatstthee ~ The discussion below presents the rationale for viewing of
distant objectives as more conflicting ones. In this: (i) thi&e objective reduction in many-objective optimization as
objective set is divided into neighborhoods of sigaround Machine learning problem:
each objective (whergy is reduced during the search), and « The intrinsic structureof the POF refers to its intrinsic
(ii) the most compact neighborhood is selected, whose cente dimensionality {n) and the essential componenfE).
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Fig. 4. Maximum Variance Unfolding (taken from [40] and editeThe use
of Ly norm based PCA will be erroneous in (a) but appropriate in (g)

tion algorithms, namely, L-PCA and NL-MVU-PCA, respec-
tively. Presented as Framework 1, it aims to findemsential
objective set for a given probleroffline To achieve this aim,

the framework assumes that the non-dominated solution set
obtained from an MOEA is representative of the true POF, and
adopts the following steps: (i) treats the objective vectol

the non-dominated solutions as the input data, (ii) deteesi
the directions of significant variance in the data, (iii)ritiées

the conflicting objectives along these significant direttiand

composes a set of such objectives, and (iv) finally elimmate
the identically correlated objectives in the above set.

« The garbled high-dimensional data set refers to the

non-dominated solutions (denoted by) obtained from Framework 1: The proposed framework for linear and
an MOEA. It has previously been mentioned that thehonlinear objective reduction algorithms

objective reduction approaches operate on the objectivelnput:

vectors of\ to identify anessentiabbjective set. Hence,

t=0 and./—:t = {fl,fg,...

)

an important pre-requisite for accurate objective reduncti 1 begin

is that the given\ should be representative of the true2
POF. However, as has been discussed in Sections | and I,
the N obtained from most of the existing MOEAs fail
on this requirement owing to poor convergence and goad
diversity in areas of poor convergence. This explains the
usage of the term garbled fav'.

« Unnoised signatefers to those non-dominated solutions
which are exact optimal solutions. For example, the
Nys for DTLZ5(2,3) (Figure 1b) representsnnoised 5
signal Similarly, the fraction ofAy s for DTLZ5(3,5)
which conformed with the true POF (solutions like A iné
Figure 1c) represents thennoised signal

« Noised signalrefers to those non-dominated solutions
which are not optimal. For example, the fraction/'df;s
for DTLZ5(3,5) which did not conform with the true 7
POF (solutions like B in Figure 1c) represents ttaésed
signal Noiserefers to the departure in the characteristics
of the noisedsignal and those of thennoisedsignal, 8
for example, the difference in the dimensionality)(of 9
unnoisedsignal and that of thaoisedsignal (which could 10
be greater tham). 11

« Redundancyefers to the presence of objectives which
are non-conflicting (or correlated) with some other oB2
jectives. Based on discussions in Section Il, it can B
inferred thatredundancymay contribute t@arbled data 14

Such a conformance in the definitions and terminology, just?

Obtain a set of non-dominated solutions by running
an MOEA corresponding td&;, for N, generations
with a population size ofV.
Compute a positive semi-definite matrik:
(Equation 1) orK (Equation 2), for L-PCA and
NL-MVU-PCA, respectively.
Compute the eigenvalues and eigenvectorair K
as the case may be (Section IV-B).
Perform the Eigenvalue Analysis (Section IV-C) to
identify the set of important objectives, C F;.
Perform the Reduced Correlation Matrix Analysis
(Section IV-D) to identify the identically correlated
subsets &) in F.. If there is no such subset,
Fs = Fe.
Apply the selection scheme (Section IV-E) to identify
the most significant objective in each to arrive at
Fs, such thatF, C F, C F;.
Compute and storé; (Equation 6).
if F; = F; then
Stop and declargF; as the essential objective set;
SetT =t and compute the total errdiy
(Equation 7).
end
else
| sett=t+1, F; = F,, and go to Step 2.
end

fies the viewing of objective reduction as a machine learnit end

problem. It also needs to be recognized that MOEAs are

stochastic methods, hence, they can be considered as Bgmpli\yhjje the preliminary proof-of-concept of this approach can
methods. Depending on the characteristics of different MOE ¢ tound in [34], [35], this paper is novel in multiple ways, a
and the different properties of the problems, the Solutiongmmarized in Section I. In that, besides the extensivesrahg
sampled in objective space may have a uniform, Gaussilyts and their analysis, the proposed framework disiily
(more solutions close to the midrange than the extremgﬁrsueS the four goals gfenerality de-noisingof input data,

or non-Gaussian (say, more solutions close to the some
extremes than midrange) distributions.

rameter reductionand proposition of an error measure
These goals are achieved through conceptual enhancements

which are highlighted in the description of the framework’s

IV. PROPOSEDFRAMEWORK FORLINEAR AND
NONLINEAR OBJECTIVE REDUCTION

steps below, and also summarized in Section IV-G.
As can be seen in Framework 1, it is designed to perform

In the wake of the above background, this section proposalgjective reduction iteratively, until the objective sdeduced
the framework for both linear and nonlinear objective reduas essential-in two successive iterations, remain the .sasne



the framework’s steps are identical for every iteratioeytare Towards it, the most constrained case of= M —1 is

described below with reference to the first iteration. recommended and usedThe rationale for this choice of
g is the following: (i) the number of unknown elements in
A. Construction of a Positive Semi-definite Matrix K equals toM (M +1)/2 (accounting for symmetry), (ii)

Equations 2(b) and (c) jointly represent two constraints] a
(iii) for q= M — 1, Equations 2(a) leads ta/(M —1)/2
constraints. Hence, even witth= M — 1, the matrix K is

. : : . ... not fully specified by the constraints and sufficient degree
solutions are obtained by running an MOEA with the |n|t|aEf freedom Z(M +1)/2 — M(M —1)/2 —2 — M — ) is

objective setFo = {f1,..., fu}, corresponding to a popula- i\ o e unfolding process, while ensuring that th

tion size of N. For each objective vector in the non—dominateﬁ ) . :
ocal isometry is retained.

‘ N o :
set,f; € R, let the mean and standard deviation be given by It may be noted that: (i) this SDP is convex for which
wy, andoy,, respectively, and lef; = (f; — py,)/oy,. Then, | ial i # the-shelf sol h .
the input dataX, an M x N matrix, can be composed as >~ om'd time off-the-shelf solvers, such as SeDuMi [41]
Y - [f' P fo ’]T ' and CSDP [42] toolbox in MATLAB, are available in public
13 Ct)nét}ﬁ;:tilgn 6f correlation matrix for linear ob'ectivedomam' and (if) computational complexity for solving sger
) SDPs [42] isO(M? + ¢*) wherec = Maq, represents the

reduction (L-PCA):For a given.X, the correlation matrix? umber of constraints. In this paper, Sedumi has been used
is defined by Equation 1. It may be noted that L-PCA will! ' paper, .

be based on de-correlation & i.e., removal of second-order

dependencies itX. Hence, the scope of L-PCA will IargerB' Computation of Eigenvalues and Eigenvectors _
be limited tolinear objective reduction. Once R or K are computed (each, al x M matrix),

their eigenvalues and eigenvectors are determined. Le¢ the
re LxxT o given by: \; > Ao ... > Ay and Vi, Vo, ... V), respectively.
M To lay the background for discussions ahead, it is important
to note the following:
2) Construction of kernel matrix for nonlinear objective re (g) |f e; = \;/ 24{1 i, thenzj-‘{l e; = 1.
duction (NL-MVU-PCA):It may be noted that NL-MVU-PCA ) The ith component ofi** principal component, sayi;,

This step describes the construction of the correlatiBh (
and the kernel ) matrix, to be used for linear and nonlin-
ear objective reduction, respectively. First, the non-thated

will be based on de-correlation of the kernel matfix i.e., reflects on the contribution of; towardsV; € RM.
removal of higher-order dependenciesn(due to unfolding  (¢) From orthonormality of eigenvectors, it follows that:
by MVU). This will allow for nonlinear objective reduction. V;| = Z?Vil fA=1VYj=1,..., M.

K can belearnt from the SDP formulatioh presented in (d) The con;ﬁbutijon off; for all Vj's can be given by
Equation 2. M = Z;w:l e; 12] WhereZ?i1 M =1,

(K —2K+Kj)

Maximize trace(K) = 3_; 537 C. Eigenvalue Analysis
subject to the following constraints

(a)Kii — 2K;5 + Kj; = Rii — 2Ri; + Rj;,V mi; =1 ) This step aims to identify the conflicting objectives ()
()3 Kij =0 along thesignificantprincipal componentsl{;s), as follows:
(e)K is positive-semidefinite L . .
where: R;; is the (4, j)t" element of the correlation matrik 1) Thzs numberd,) of significantV;s are determined using
Y- ¢j > 0, where the variance threshofde [0, 1] is

The neighborhood relation;; in Equation 2 is governed by
the parameteq. For each input featuref( € RY), q represents
the number of neighbors with respect to which the local
isometry is to be retained during the unfolding, as in Figure 4.
While a high value ofj ensures better retention of isometry, it
delays the unfolding process (say, incremental unfoldiogf

an algorithm parameter. In this study= 0.997 is use{.

2) EachsignificantV; is interpreted as follow's
(i) Let Ft= {fz|fzg > O} and F~ = {fl‘flj < 0}
Also, let f, and f,, be the objectives with the highest
magnitudes inF+ and F~, respectively.

(a) to (b), in Figure 4). In contrast, a low value @bffers fast o if [fp[ = [/fn], then f, and all the objectives i~
unfolding (say, direct unfolding from (a) to (g), in Figurg 4 are picked as conflicting objectives.
but at the risk of distorting the isometry. Given this traufe- o if [fp| <[fnl, then f, and all the objectives itF*
proper selection of] is crucial. Whileq = 4 is mostly used in are picked as conflicting objectives.

literature [40], e,Xpe”mentS were conducted in [35] to tifgn SExperiments are also performed with= [v/M] and the results are
the g as a function ofM andq = [+ M| was found to offer presented in the supplementary file provided with this paper
accurate results. 6This is an enhancement over [34], [35], to make the interpogtatcheme

This paper aims to propose a robust framework for objecti\Vé"e robust in terms of its ability to handle problems with moteerar
€gligible redundancy wherein more principal components neyeluired

reduction which relies on as few parameters, as possibi€identify the conflicting objectives. This value is simplgosen in analogy
with Gaussian distributions where it accounts fe80. It does not imply that
3This is the novel implementation of the original MVU, as progsén [35] the scope of the framework is limited to Gaussian distribution
4Two data set§z; }2 | and{y;}} , that are in one-to-one correspondence ’This is an enhancement over [34], [35] wherein a maximum of two

are said to bep-locally isometricif: for every pointg;, there exists a rotation objectives per principal component were picked as conflictdepending on
and translation that mapg; and its q nearest neighbordz;i,...x;q}  several parameters. The interpretation scheme proposedsheseameterless
precisely ontap; and{y;1,...yiq}. In other words, the distances and anglesnd also allows for more objectives per principal componerietgicked as
betweennearbyinputs are preserved. conflicting. These two factors contribute to the goal(i) iyl of framework.



(i) f F© =0 or F~ = 0, then the objectives with the It can be realized that for a highly redundant problem where
highest and the second highest magnitudes are picked. will be very high, andM-, will be small compared td/,
T.. will have a small value. In contrast, for a problem with
Let Mg denote the number of objectives deduced as importd@tv redundancye; will be low, and M5, will be comparable
after the above eigenvalue analysis and let the correspgndio M, T., Will have a very high value.

set be referred ag.. Clearly, 7. C Fp.
E. Selection Scheme for Final Reduction based on RCM

D. Reduced Correlation Matrix (RCM) Analysis Analysis

This step aims to identify the subsetsidéntically corre- ~ Once the subsets of identically correlated objectivestin
lated objectives withir, . If such subsets exist, then the mos@'e identified by the RCM analysis, the goal is to identify
significant objective in each subset can be retained whie tANd retain the most significant objective in each subsgt (
rest could be discarded, allowing for further reductionfof and eliminate the remaining ones. This is achieved by: (i)
Towards it, the following steps are proposed: attnbu_tmg a selec_’qon sgd_r‘éfor each_ ob!ectlv_e, as given by

1) Construction of a Reduced Correlation Matrix (RCM)!Equatlon 5 apd_ (||)_reta|n|ng the objective with highestn
RCM is the same a® except that the columns corre—eaChS and eliminating the rest.
sponding to the objectives iy, \ F., are not include®l ci =30 eslfijl (5)

2) ldentification ofidentically correlated subset for each
objective in F.: For eachf; € F., all f; € F. which
satisfy the conditions ofdentical correlation given by
Equation 3, constitute aidentically correlated subsef.

Doing so, will reduceF, to F, which becomes apssential
objective set, after one iteration of the proposed framkwor

F. Computation of Error

E;ﬁf}%@’;ﬁ,;c;'rgeﬁ‘;ﬁgg);hfe;(};&---)7M (3  This section proposes a measure for the error incurred in
' one iteration of the proposed framework. The error measure

Equation 3(i) ensures that correlation between objectlgesproposed here aims to compute the variance that is left

interpreted as a set—b_ased property. Equation 3(ii) adsdon unaccounted when objectives constitutitigea, = Fo \ Fs
Fhe fact the noq—domlnated set based on whfith; computed are discarded, as given below:

is garbled(Section Ill) and hence the correlations evident from

R may not represent the true correlations on the POF. In a ¢,

> cMao- %%__f{éij'Rij})

sense, Equation 3(ii) serves to havdexnoisingeffect, while where: i€Fredn
interpreting a matrix based ogabled data, to minimize the M M e f ©)
chances of inaccurate identification &f . " 'it £, &nd £, are identically correlated

The following description is on the determination Bf,,.. i3 ~ 1 0, otherwise

There exist a few guidelines on interpreting the strength of ~ £i; = strength of correlation betwegnandf;

correlation, one of which is the Cohen scale [43]. It intetpr The rationale for the proposed measure can be realized from
a correlation strength of 0.1 to 0.3 ageak 0.3 to 0.5 as the following: (i) whenf; € F,..q, is not identically correlated
moderateand 0.5 to 1.0 astrong However, in the current with any f; € F,: §,; = 0 and the variance left unaccounted
context, a rigid interpretation of the correlation stréngtill by elimination of f; is ¢, and (i) when f; € Frcan is

not be helpful becausd,. needs to adapt to conflictingidentically correlated with somg; € F,: the variance left
goals depending on the problem being solved. In that, umaccounted by elimination of; reduces by a factor aR;;

low and a highT,,, is desired while solving problems withas this is already accounted for, fy. Equation 6 generalizes
high and negligible redundancy, respectively. Towardshis this argument.

paper proposes a dynamic computation ‘Bf, based on  Suppose, for a given problem, the framework terminates
the spectrum of the eigenvalues for a specific problem. Thraster T' iterations. While the errof; (Equation 6) represents
is based on the understanding that with an increase in tie error incurred in each iteration, the total error inedrby
redundancy of a problem: (i) the first eigenvakiebecomes the framework ini" iterations can be given by Equation 7, the
predominantly higher, and (ii) fewer principal componesuts rationale for which is the following. For the first iteratiotie
required to account for a certain variance threshold. Faveng error &, is the variance that will be left unaccounted if the
M -objective problem, lef\/s, denote the number of principal objectives inF,.q4, were to be eliminated. Hence, the error
components required to account for 95.4% varidntieen the &, in the second iteration will only be with respect te- &
proposedl,,, is given by Equation 4. variance of the original problem. This argument is geneeali

Toor = 1.0 — e1(1.0 — May /M) @ in Equation 7.
e Er =&+ &1~ &) ™
This is an enhancement over [34], [35], where both the rowscahamnns

corresponding to the objectived, \ F. were eliminated fromR. It

acknowledges that correlation is a set based property,ehang inference

on whether or not two objectives i, are correlated, should be based on 1°This is based on capturing an o%ective’s contribution t® ghynificant

the entire set of objectives for whicR is computed, namelyFy. principal components, given by, = ijvl e ffj (Section 1V-B). However,
SThis is simply chosen in analogy with Gaussian distributiorieere it e; and f;; being individually less than one, may lead to indiscrimingin

accounts for+20 but here it is recommended for all purposes. small values forc;. A remedial form is proposed in Equation 5.



TABLE |
SUMMARY OF THE ENHANCEMENTS IN THE PROPOSED FRAMEWORKOVER [34], [35]

Proposed  Status Classification of proposed enhancements flicBog settings for problems with:
Steps in [34], [35] Adaptation Correction Addition Parametduction m <K M m =~ M
A). g A parameter O
Suitable for A
C). 0 m< M ad Low High
Parameter Few objectives per More objectives per
F dependent, 0 0 principal component  principal component
€ suitable for so that: so that:
m< M |Fel < |Fol | Fel = | Fol
D). RCM Erroneoud U
Eq. 3(i) O
Eq. 3(ii) Absent O Low High
E). Eq. 5 Abserft a
F). Eq. 6  Absent ]

@ The manner is which the reduced correlation matrix (RCM) wasstracted, did not allow for correlation to be treated astdbased property.
b |t was pursued on an ad hoc basis.

G. On the generality and efficiency of the framework For the sake of generality, the proposed framework assumes

This section summarizes the enhancements over [34], [Stg]at noa priori information about the nature of the problem

and reflects on the broader issues of generality and eff'yaieﬂ% available. In that, it .adopts a high vaIL_Jeébhnd a uniform
of the proposed framework. approach of composing., but dynamically assigng..,

Table | shows, that while the basic steps of the proposglgsji c;nstgrir;:]rgr?;eer: tlﬂrao;rgs\t/lgndir;\;ﬁsa;?:nts)y the eigensalue
framework overlap with those in the previous versions, ¢hes 9 '
steps are implemented differently in the wake of the four Emiciency

goals that the framework pursues. In that, the steps in [34], 1 Ao coud be e aeritms could be
[35] have either beeadaptedto cater to the requirements of highly redundant non-redundant
problems with disparate degree of redundarmyrrectedfor 100 ”’i’"ems proplems

their anomalies; incorporated witlidditional features to de-
noise the input data or compute the error; or made more robust
through parameter reductiorwhich helps in minimizing the
variability in performance.

Table | also details the facts that the requirements of the S Gl

proposed framework for handling problems with contrasting 0 ] } }

T T T
Highly Moderately Non-redundant

v

degree of redundancy, are opposite in nature. It could be redundant redundant oroblems
inferred from this table, that the algorithms (resultingnfr problems problems

. . Ex: DTLZ5(2,50) Ex: DTLZ5(3,5) Ex: DTLZ2(15)
the proposed framework) could be customized to offer higher N
efficiency for different problems. For example, for probkem Scope of Application

wherem < M (as in [34], [35]): (i) a lowd, (ii) composition
of F by picking only a few objectives as conflicting, per
principal component, and (iii) a lowl,,., may be used.
Similarly, for problems wheren ~ M or m = M, the step of
eigenvalue analysis may be skipped and RCM analysis may ] o ]
directly be performed o, with a high value ofT.,,. It The test suite used in this paper gons,lsts of both redundant
is important to recognize that while doing so will improvetnd non-redundant problems, described below.
the efficiency of the algorithms on the problems they are
customized for, it will come at the loss of generality. IntthaA. Redundant Problems
an algorithm customized for the caseraf< M will perform In the DTLZ test suite [44], DTLZ5 and DTLZ6 were
poorly for the case ofn &~ M or m = M, and vice-vers&.  gesigned to degenerate o= 2 for any givenl. However,
it has been reported in [45] that whéd > 4, these problems

in relative terms, the efficiency of an algorithm customizedifo< M, fail to degenerate ten = 2. For DTLZ5, this issue has been
when applied ton ~ M orm = M will be lower than the reverse case. This . T .
because, in the former case, the requirement of the lattet fhat~ | Fo| is addressed in the form of DTLZ5, M). While its formulation

likely to be violated, leaving no room for accurate deduwsioHowever, in is presented in Table Il, it may be noted that:

the reverse casé¢F.| would just be over-sized than desired far < M but . . .
it could still be reduced toFy- based orfT..,. This explains why the right ~ ® FOr anyM, the dimension of the POF (characterized by

tail of the left curve in Figure 5 is lower than the left tail thfe right curve. parametery = 0) is I < M,

Fig. 5. Highlighting the scope and efficiency of the propofaghework.

V. TESTSUITE AND EXPERIMENTAL SETTINGS



« All objectives within {f1,..., f;—r4+1} are positively results in incomparable solutions). Hence, the total nurobe
correlated, while each objective ififps_r41o,..., fum} variables in a given problem is equal to the sumxaoénd p.
is conflicting with every other objective in the problem,For an M/ -objective version of the problems considered in this
o Fr=A{fk,fv—1+42,...,fum} defines the true POF, paper, while|p| = M — 1 is used, the values used farare
wherek € {1,..., M — I + 1}. Notably, among the pos- reported in Table III.
sible indices fork, the variance offy_p;—r+1 is the
highest. Given that the PCA based dimensionality reduc- TABLE Il
. . . . TEST PROBLEMS VARIABLE-SETTINGS AND QUALITY INDICATORS
tion is based on the assumption that large variances have
important dynamics:

Quiality Indicators for POF

Fr ={fm-1+1,---,fm} (For L-PCA and NL-MVU-PCA) Name Obj |5
DTLZ5(I, M) © 9(X) D2
DTLZ1(M) From 5 0 0.25M
DTLZ2(M) i 10 0 M
TABLE I DTLZ3(M) fim 10 0 M
DESCRIPTION OFDTLZ5(I, M). M DENOTES THE NUMBER OF DTLZA(M) fim 10 0 M
OBJECTIVES ANDJ DENOTES THE DIMENSIONALITY OF THEPOF. ALL DTLZ5(I, M)  fi.m 10 0 Noté
OBJECTIVES ARE TO BE MINIMIZED. ALL z; € [0, 1]. AS AN EXAMPLE, DTLZ7(M) fim—1 - 1 M_14¢2 Note
max?
THE COMPOSITION OFF 7 IS DERIVED FORDTLZ5(4,5)® Im 20
WFEG3(M) Fron 20 NA NA
f = (14g) 0.5 I} cos(0:) 2 While g(X) values are picked from [44], the derivations B2- can be
Feo:M—1 =(1+g) H{‘i;mcos(ei) sin(Opr—m+1) found in the supplementarx file provided with this paper.
fu = (14 g) sin(01) I RN Ve () R S
— vM+k— =
9 =S @i - 0.5)2 ¢t =M1 ai(1 + sin(3m2;)) andtmas A~ 0.8594009(M — 1).
Oi=1:1—1 =7z B
91‘:{:1%4 = aar (4 + 29551}) ,
sm:}bject toM — T +1 constramtsf].: ffwij +2Pif2 > 1
wheret=1,...,M — I + 1, and: . .
Pi=1 B M — 1+ D. Experimental Settings for the MOEAs used
pizaMoryt Z(M—-T+2) -4 To enable a study on the effect of the underlyikigon the

a Substituting = 5, I = 4 andg = 0, leads to following Equations: ~ ODbjective reduction algorithms, two MOEAS, namely, NSGA-
i. cos(01) cos(02) cos(03) = V2f1 = V2fa idii. cos(61)sin(02) = fa || and -MOEA [46] have been used. The obtained non-
. cos(Bn) cos(bo) sin(s) = f5 w. sin(01) = f5 dominated sets are referred A§ s, and N, respectively.
g}*gi‘:‘r}% i”?zaid}ggz'z?“;“g}‘li '+'tf°32“’+' r}g"‘ffgef':”i.the POF as The choice of these algorithms is driven by the fact that evhil
Hence, - = {fi. f3. fa. fs}: k € {1,2). 7 the quality of\Vy s is known to deteriorate with an increase in

M, N, is likely to be better because the underlying notion of

Another redundant problem considered in this paper ¢sdominance [47] has been shown to simultaneously preserve
WFG3 [45], in which the POF degenerates into a linear hypdhe convergence and diversity properties.
plane, such that (ig}_, f,, = 1, and (ii) all incomparable so-  For both these algorithms, the following settings are used
lutions evolve out of the conflict between only two objecsive for experiments: the probability of crossover and mutaasn
fu and any one of the rest. Henc&r = {fx, far}, where, 0.9 and0.1, respectively; the distribution index for crossover
k€ {1,...,M —1}. Notably, among all possible indices forand mutation a$ and 20, respectively; and, the population
k, the variance off,—,_1 is the highest, hence, based on th&ize (V) and the number of generationsVy) as 200 and
above argument: 2000, respectively. For each test problem, experiments are
performed for 20 different runs (evenly spaced seeds in the
range betweeri0, 1]). In case ofe-MOEA, different values
such asg = 0.1,0.2 and0.3 were experimented with. However,
for the test problems used in this paper, the qualityVpfdid

not significantly change witkh. Hence,e = 0.3 was arbitrarily
B. Non-redundant Problems chosen for use in this paper.

Among the non-redundant problems in the scalable DTLZ
suite: the DTLZ1 to DTLZ4, and the DTLZ7 problems are
considered. This is because in each of these, the degre€EofQuality Indicators for the Non-dominated Solution Sets
convergence is explicitly quantified by a problem parameter The quality ofAx-s and\, for each for the DTLZ problems
This will enable the study of the impact of the quality (inex including DTLZ5Z, M) will be assessed in terms of (i)
of convergence and diversity) of the non-dominated saluti¢onvergence: measured by thex), and (i) diversity: mea-
set on the performance of the objective reduction algosthnsyred by the normalized maximum spread indicator denoted
by I, [48]. As the name suggest$; normalizes the actual
C. Variable-settings and Properties for the Test Problems dispersal of solutions in the obtained non-dominated sst, (s
The authors in [45] have categorized the variables as &itheP 4) by the dispersal of solutions on the true POF (S2y);
‘distance’ variable (say;: changing which results in compara-i.e., Iy = D 4/D+. The g(X) and D for the test problems
ble solutions) or a ‘position’ variable (say; changing which considered (wherever applicable) are reported in Table Il

Fr ={fu-1.fu} (For L-PCAand NL-MVU-PCA) g
WFG3(M)
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TABLE IV
DTLZ5(3,5): THE R AND THE K MATRIX WITH THEIR CORRESPONDING EIGENVALUES AND EIGENVECDRS, FORA \rs (ONE RUN)

(a) Correlation matrix R) (b) Kernel matrix ()

f1 f2 fa fa fs f1 f2 fa fa fs

f1 1.0000 0.7391 0.8291 -0.3985 -0.3653 f;  3.2335 1.1500 3.2519 -3.8127 -3.8228
f2 0.7391 1.0000 0.8761 -0.4357 -0.3226 f»  1.1500 2.5984 3.3141 -3.9315 -3.1310
f3 0.8291 0.8761 1.0000 -0.3410 -0.2537 f3  3.2519 3.3141 16.3678  -12.3313 -10.6025
fa -0.3985 -0.4357 -0.3410 1.0000 -0.4598 f4 -3.8127 -3.9315 -12.3313 23.3217 -3.2461
fs -0.3653 -0.3226 -0.2537 -0.4598 1.0000 fs -3.8228 -3.1310 -10.6025 -3.2461 20.8026

(c) Eigenvalues and eigenvectors Bf (d) Eigenvalues and eigenvectors &f

€1=0.5893 €2=0.2913 €3=0.0604 €4=0.0501 e5=0.0087 €1=0.5492 €2=0.3773 €3=0.0481 e4=0.0252 e5=0.0000

i Va V3 Va Vs 141 Va Vs \Z1 Vs
0.535 -0.054 0.366 -0.652 -0.390 0.184 -0.045 0.665 -0.567 0.447
0.545 -0.008 -0.260 0.609 -0.514 0.176 -0.018 0.339 0.809 0.447
0.548 -0.021 -0.540 -0.212 0.602 0.640 -0.100 -0.601 -0.137 0.447
-0.281 -0.672 -0.531 -0.269 -0.339 -0.613 -0.616 -0.208 -0.041 0.447
-0.196 0.738 -0.475 -0.293 -0.326 -0.387 0.780 -0.195 -0.064 0.447

f3 Non-dominated s¢

120961 ¢3=0.038 3 ~ 0 NsGa-ll  eigenvalues obtained fromR are presented in Figure 6a, and

also plotted in Figure 6b via-vis the underlyingVys.

Vi V2 Vs Notably, theV; accounts for96.1% variance and while
8-222 8-288 %77%77 27 the contribution of bothf; and f, towards it is positive in
-0.565 0825 0.000 sign (fi1 = fo1 = 0.583), the contribution off; is negative

(fs1 = —0.565). These facts are reflected in: (i) Figure 6¢
where bothf; and f, can be seen to simultaneously increase
or decrease, from any point 81 to another, and (ii) Figure 6d

(a) The principal components (b) The non-dominated set and the
principal components

1 1 where an increase/decrease filh and f2 corresponds to a
osl S 05l decrease/increase ify. These observations imply that either
‘ S f1 or fy is redundant and also demonstrate the basis for PCA
o o @ of based feature selection in many-objective context.
In the above problem: (i) theV\rs fully conformed with
050 Yy 05r ¢ the true POF (nonoise Section lIl), and (ii) visualization
o ‘ ‘ ‘ 5 ‘ ‘ ‘ of the 3-dimensional objective space was possible. Hence,
SLoes e 05 s 0L, the redundancy of eithef, or f, was evident directly from
(c) Positive correlation between(d) Conflict betweenfs and f; Figure 6b, without requiring any analysis of the principal
f1 and f captured alongs  or f> captured alondg/; components. However, this may not be possible in the case of

Fig. 6. Use of PCA for feature selection: Demonstrated on DE[pz3). ~many-objective problems where not only the visualizatien i
difficult but the underlying data is predominantly charaizted
by noise This is evident for the DTLZ8,5) problem in

V1. WORKING OF THEPROPOSEDALGORITHMS Figure 1c, where the redundancy ¢f and f, cannot be

This section first demonstrates the basis on which tfgduced visu.ally. This justifies the. need for.an analytical
proposed algorithms pursue the feataedectionapproach for &PProach, which the proposed algorithms provide.
objective reduction. Then, the working demonstration eflth
PCA and NL-MVU-PCA on the DTLZB3,5) problem, based B inear (L-PCA) and Nonlinear (NL-MVU-PCA) Objective
on both Nys and N, is presented. The DTLZ3,5) with  Reduction for DTLZE3, 5) based on\Vys
moderate degree of redundancy is chosen for demons:tration_rhe correlation matrixz and the kernel matrisc based on
to highlight the absence of any bias in the proposed alguosth

for a particular class of problems (discussed in Sectio®)V- Nis, and also the _correspondlng eigenvalues and eigenvec-
tors, are presented in Table IV.

) _ 1) L-PCA based onVjrs: L-PCA is based on the eigen-
A. Feature selection by the proposed algorithms values/eigenvectors aoR. Table Va shows that all the prin-
The proposed framework infers the objectives as conflictimijpal components together, meg¢t= 0.997, to give F, =

or non-conflicting, depending on whether their contribagio {f1, fo, f5, f4, f5}. Towards the RCM analysis (Table VER,
along any principal components are with the same-signs iarTable IVa shows that the signs of correlation between
opposite-signs. This is demonstrated on DTLZS) problem and all the remaining objectives are the same as thosg of
for which the principal components and the corresponding f3. In other words{ f1, f2, f3} satisfies the Equation 3(i).
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TABLE V

DTLZ5-(3,5): ITERATION 1 OF L-PCA WITH Ny-s more significant objective in botl§; and S,. To summarize,
NL-MVU-PCA identifies Fs = {fs, f4, f5}, which coincides
(a) Eigenvalue Analysis with F7. Given thatF,..q., = {f1, f2}, the error computation
PCA  Variance  Cumulative Objectives Selected based on Equation 6 is as follows:
NV % %
(N") (%) (%) Ji. fo  fs  fa fs & = Y MA0— maz {6, Ri;})
1 58.93 58.93 fs  f1 fs ie{T2) JE{3,4,5)
2 29.13 88.06 f1 fo f3s fa f =cM(1.0 — Ri3) + ) (1.0 — Ra3)
3 06.04 94.10 f f3 = 0.0131804 or 1.3%
4 05.01 99.11 fi  fo since:
5 00.87 998 fi  fo fs fa fs M =M e f?, = 0.048754 and Ry = 0.8291
e =30 erf3, = 0.039178 and Ra3 = 0.8761
(b) RCM Analysis
1) Corr. over whole set Eq 3() Spossivie = {f1, f2, f3} TABLE VII
2) Corr. thresholdT.,» Eq 4 1.0-0.5893(1.0-4/5) = 0.8821 DTLZ5(3,5): THE R AND THE K MATRIX WITH THEIR CORRESPONDING
3) Corr. meetingl cor Eq3(i) S=0 EIGENVALUES AND EIGENVECTORS FORN. (ONE RUN)

(a) Correlation matrix R)

TABLE VI N h f2 f3 fa fs
DTLZ5-(3,5): ITERATION 1 OF NL-MVU-PCA WITH Njrs F, 10000 09875 09736 -04310 -0.3384

, _ ¥» 09875 1.0000 0.9644 -0.4496 -0.3040
(a) Eigenvalue Analysis f5 09736 009644 1.0000 -0.4689 -0.3229
fi 04310 -0.4496 -0.4689 1.0000 -0.5136

PCA  Variance Cumulative Objectives Selected ¥s -0.3384 -03040 -0.3229 -0.5136 1.0000
(N*) (%) (%) i f2 fs  fa fs
1 54.92 54.92 fs  fa s (b) Kernel matrix ()
2 37.73 9265 fi  fa f3s fr fs
3 04.81 97.46  fy fa £ fs fi f2 f3 fa 5
4 02.52 9998 fi fo f3  fa fs fi 24039 24928 41692 -4.4405 -4.6255
fo 24928 27527 4.4084 -5.0861 -4.5678
(b) RCM Analysis fs 41692 44084 81727 -9.0340 -7.7163
fs -4.4405 -50861 -9.0340 27.0187 -8.4579
1) Corr. over whole set Eq 3() Spossivie = {f1, f2, f3} fs -4.6255 -45678 -7.7163 -8.4579 25.3677
2) Corr. thresholdT,.,, Eq 4 1.0-0.5492(1.0-3/5) = 0.7803
3) Corr. meetindlor Eq3(i) Si={f1,f3}, Sa={f2 f3} (c) Eigenvalues and eigenvectors Bf
(C) Selection scheme 61:0.6567 €2=0.3007 63:0.0333 €4=0.0069 65:0.0021
€1=0.5492 =0.3773 ¢5=0.0481 €,=0.0252 Vi V2 Va Va Vs
" Vi v Vi ’ 0.546 -0.056 -0.219 0.225 -0.775
! 2 3 4 0.544 -0.030 -0.274 0.505 0.610
f 0.184 -0.045 0.665 -0.567 0.1642 0.545 -0.030 -0.059 -0.820 0.165
fa 0.176 -0.018 0.339 0.809 0.1401 -0.285 -0.660 -0.686 -0.114 0.007
f3 0.640 -0.100 -0.601 -0.137 0.4219 -0.166 0.748 -0.635 -0.097 -0.020
(d) Eigenvalues and eigenvectors &f
€1=0.5322 €3=0.4608 ¢3=0.0057 €4=0.0011 e5=0.0000
However, the condition imposed by Equation 3(ii) is viothte Vi Va Vs Vi Vs
as .R12 - 07391, R13 :. 08291 a.nd R23 - 08761, 0.059 0.269 -0.376 -0.764 -0.447
while T,,, = 0.8821. It implies that{f1, f2, f3} can not be 0.076 0.282 -0.553 0.639 -0.447
considered as an identically correlated set. This eliremat %%‘;21 %293(; gzgg g-ggg '8-33?
the need for the last step of the algorithm (Section IV-E) 545 -0.704 0.091 0.011 0447

and F;, = F., which does not coincide witl¥;. Clearly,
as Frean = 0, & = 0 based on Equation 6.

2) NL-MVU-PCA based oW s: NL-MVU-PCA is based
the eigenvalues/eigenvectors af (Tables IVb and 1Vd). It ) ) o
can be seen that Table Vla deducBs= {f1, f, f3, f1, fs }- C. Llngar (L-PCA) and Nonlinear (NL-MVU-PCA) Objective
Further, based o in Table IVa, {fi, f», f;} satisfies Equa- Reduction for DTLZE, 5) based on\V
tion 3(i) and is the potential set of identically correlated The correlation matrix? and the kernel matrixx” based on
objectives. However, as®;» = 0.7391, Ri;3 = 0.8291, N, and also the corresponding eigenvalues and eigenvectors,
Ro3 = 0.8761 and T,,. = 0.7803, Equation 3(ii) is vio- are presented in Table VII.
lated by the pair off; and f,. Hence,S; = {f1, fs} and 1) L-PCA based onV.: From Table VI, it follows that
So = {f2, f3} become the identically correlated sets. Finallyfs = {f1, f4, f5}. Hence, the corresponding error is:
the selection scheme shown in Table Vic identiffgsas the & = (1.0 — Ra1) + ¢} (1.0 — R31) = 0.007766 or 0.77%.



2) NL-MVU-PCA based oW.: From Table IX, it follows

that 7, = {fs, f4, f5}. Hence, the corresponding error is:
& = cM(1.0 — Ri3) + (1.0 — Ra3) = 0.002455 or 0.24%

TABLE VIII
DTLZ5-(3,5): ITERATION 1 OF L-PCA WITH N

(a) Eigenvalue Analysis

Objective Values

Objective Number

(a) Nars: Parallel coordinate plot

Objective Values

12

Objective Number

(b) Ne: Parallel coordinate plot

PCA Variance Cumulative Objectives Selected " N
Fig. 7. DTLZ5+3,5): Parallel coordinate plots f and one run).
V) o) & A B2 s S s 9 18:5) Plats fakfavs andAfe (one fin)
1 65.67 65.67  fi fa  fs TABLE X
2 30.07 95.74 f1 fa fa fa fs CONVERGENCE ANDDIVERSITY: FOR THE REDUNDANTDTLZ5(1,M)
3 03.33 99.07 fa fs AND NON-REDUNDANT DTLZ PROBLEMS THE MEAN (1) AND STANDARD
4 00.69 99.76 f1 fo fs DEVIATION (o) ARE AVERAGED OVER20 RUNS
(b) RCM Analysis Problems Convergendg) Diversity (Is)
: DTLZ5 N, Vs c Nys
1) Corr. over whole set Eq 3() Spossibls = {f17f27f3} M (/L:I:O’) (,LL:I:O’) (/.L:‘:O’) (,LL:l:G’)
2) Corr. thresholdT,.,, Eq 4 1.0-0.6567(1.0-2/5) = 0.6059 05 0152000 0451063 193100l 1201017
3) Corr. meetin Eq 3(i) S={f1,/f, : : ‘ : : : : :
) dleor a3 U, fo, fa} 210 0.19+0.09 1.64+0.75 1.99+0.05 6.58+0.13
) 220 0.204+007 2104058 1.91+0.02 8.06=+0.17
(c) Selection scheme 230 0224008 2244047 1.98+003 8.40+0.17
— — — — 250 0.234+0.08 2344034 1994002 8.18+0.22
€170.6567 €,=0.3007 ¢3=0.0333 €4=0.0069 305 008+0.04 0.70+0.61 1.48+0.00 3.54+0.02
i Va V3 Vi 310 0.15+0.07 1.83+0.59 1.57+0.00 5.62=+0.03
320 0.174+007 2254003 1594002 6.67=+0.01
f1 0.546 -0.056 -0.219 0.225 0.3859 510 0.1440.07 2.06+0.34 1.3840.02 4.29+0.02
f2 0.544 -0.030 -0.274 0.505 0.3805 520 0154007 225+0.31 1.37+0.00 5.00+0.01
f3 0.545 -0.030 -0.059 -0.820  0.3749 710 0164007 1.9940.38 1.27+0.01 3.3040.01
720 0.16+0.08 217+0.38 1.28+0.00 3.94 =+ 0.02
DTLZ M
105 170+£129 410+ 141 480 + 0 539 + 6
TABLE IX 115 313+154 948 £ 165 321 +4 507 + 2
DTLZ5-(3,5): ITERATION 1 OF NL-MVU-PCA WITH N, 125 346+£152 944207  269+1 331+ 6
205 0.094+005 0.114+0.06 1.16+0.00 1.08+0.02
(a) Eigenvalue Analysis 215 0.234+0.11 2.08+0.45 0.99+0.01 2.41+0.00
9 Yy 225 0.224+011 2124049 0.77+0.01 2.10 =+ 0.00
. - — 305 7094223 07384220 1168+5 1047 + 18
PCA  Variance Cumulative Objectives Selected 315 903 4L 295 1733 £ 356 0880 & 7 1358 £ 08
(NV) (%) (%) fi fo f3 fa fs 325 90841220 1808 +400 0669 +4 1187 +13
405 0124006 0.134+0.06 1.134+0.05 1.1440.00
; ig-gg gg-gg }01 }02 }03 fa ;5 415 0224009 2204015 1.21+000 2.80+0.01
5 00,57 9987 1o J2 U3 5 425 0.294+0.13 21840.15 1.244+0.01 2.63+0.00
: : i 2 s 705 1.24+010 1.17+0.07 1774003 2.09+0.02
715 5.04+057 2944072 3.61+0.05 5.50=+0.02
(b) RCM Analysis 725 5444056 3.124+0.66 3.62+0.04 5.28+0.12
1) Corr. over whole set  Eq 3(i) Spossible = {f1, f2, f3}
2) Corr. threshold T, Eq 4 1.0-0.5322(1.0-2/5) = 0.6806 ) ]
3) Corr. meetinglzor Eq 3(i) S ={f1, f2 f3} 1) The POF is characterized kyX) = 0 and I, = 1.0:

(c) Selection scheme

e1=0.5322 e2=0.4608 e3=0.0057 o
T
|4 Va Vs 2)
fi 0.059 0.269 -0.376 0.1580
f2 0.076 0.282 -0.553 0.1743
f3 0.142 0.490 0.730 0.3054

D. Discussion: Effect of the quality of the non-dominated
solutions on the performance of L-PCA and NL-MVU-PCA

This section revisits the performance of the proposed algo-
rithms vis+-vis the underlying data set, to highlight some key
issues. For the DTLZS, 5) problem:

Given this,\. is better thanV, s in terms of the quality
indicators, because Table X shows that:

o For N.: g(X)=0.0840.04 and I, = 1.48 +0.00,

o ForNys: g(X) = 0.7040.61 andI, = 3.5440.02.
Fr={fs,fs,fs} and fi—fo—f3 are non-
conflicting (correlated) among themselves, where,
Ris = ng = R23 = 1.0. However:

o Nys (Table 1Va) reportsRis = 0.73, Ry3 = 0.82

and Ro3 = 0.87.

e N, (Table Vlla) reportsRis = 0.98, Ri3 = 0.97

and Rs3 = 0.96.
This highlights the superiority ofV. over Ns in
capturing the inter-relationships of the objective vestor
on the true POF. The same is also evident in Figure 7a
for Nis, where compared td/, (Figure 7b), more solu-
tions are wrongly in conflict with respect {gf1, f2, f5}-
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TABLE XI
PERFORMANCE OF DIFFERENT OBJECTIVE REDUCTION ALGORITHMS OREDUNDANT TEST PROBLEMS CORRESPONDING TQVArs AND N¢ AND
6 = 0.997. THE NUMBERS IN THE TABLE INDICATE THE FREQUENCY OF SUCCESS INDENTIFYING THE TRUE I AND F7, OUT OF 20 RUNS. THE DASHES
(-) REPLACEOQ TO IMPLY INCONSEQUENTIAL ENTRIES WHEREVER THE PREREQUISE OF ACCURATEI IS NOT MET. THE TABLE'S FOOTNOTE REPORTS
THE PROBLEMS THAT REQUIRE MULTIPLE ITERATIONS OF THE ALGORIHM TO OBTAIN ACCURATE RESULTS AS: P—AR(BI), IMPLYING THAT FOR THE
PROBLEMP, A RUNS OUT OF20, REQUIRED BITERATIONS EACH

Dominance relation preservation [31], [36]:

Proposed approaches §-MOSS, 0% Error
Test problems NL-MVU-PCA L-PCA Greedy Approach Exact Appioa
DTLZ5(1, M) Ne Nys Ne Nns Ne Nns Ne Nns
I M r Fr ° Fr ° Fr I Fr I Fr I Fr I Fr I Fr
2 5 20 20 20 20 20 14 20 1 0 - 0 - 0 - 0 -
2 10 20 20 11 11 20 7 0 - 0 - 0 - 0 - 0 -
2 20 20 20 7 7 20 2 0 - 0 - 0 - 0 - 0 -
2 30 20 20 14 14 20 1 0 - 0 - 0 - 0 - 0 -
2 50 20 20 14 14 20 0 10 - 0 - 0 - 0 - 0 -
3 5 20 20 18 18 20 9 0 0 0 - 0 - 0 - 0 -
3 10 20 20 0 - 20 2 0 - 0 - 0 - 0 - 0 -
3 20 20 20 0 - 20 1 0 - 0 - 0 - 0 - 0 -
5 10 19 19 0 - 19 3 0 - 0 - 0 - 0 - 0 -
5 20 19 19 0 - 18 3 0 - 0 - 0 - 0 - 0 -
7 10 19 19 0 - 20 6 0 - 0 - 0 - 0 - 0 -
7 20 16 16 0 - 13 3 0 - 0 - 0 - 0 - 0 -
5 20 20 20 20 20 19 20 4 0 - 0 - 0 - 0 -
WFG3 15 15 15 20 20 10 1 19 0 0 - 0 - 0 - 0 -
25 9 9 20 20 6 0 20 0 0 - 0 - 0 - 0 -

a The tabulated results are obtained using the source codbgmt/www.tik.ee.ethz.ch/sop/download/supplemeyitdnjectiveReduction/. The same codes
are used for the results presented later in Tables XII andl.XVI

b DTLZ5(2, 30)—1R(2l); DTLZ5(5,10)—3R(2l); DTLZ5(5,20)—8R(2l); DTLZ5(7,10)—7R(2l); DTLZ5(7,20)—9R(2l) and 1R(4l); WFGRL5)—
6R(21) and 3R(3l); WFGR5)—5R(21), 1R(3) and 1R(4l).

¢ DTLZ5(2, 10)—11R (21), 5R(3l) and 2R(4l); DTLZE, 20)—7R(2]) iterations, 2R(4l), 2R(51), 1R(6) and 1R(71); DZE(2, 30)—3R(21), 3R(3I), 4R(4l)
and 4R(51); DTLZ52, 50)—8R(2l) and 2R(3l); DTLZ5§, 5)—9R(2).

d For DTLZ5(5, 20)—1R(2l); DTLZ5(7, 10)—3R(2l); DTLZ5(7, 20)—1R(2l); WFG35)—11R(2l); WFGZ15)—1R(2I).

The superiority ofA/, over Ny s is reflected in the following: E. Benefit of objective reduction

1) Higher accuracy for L-PCA corresponding A4 L-PCA ¢ is worth highlighting here the benefit that objective
based onVjys could not even identify the true dimension of ey ction offers. Figure 1c illustrated the poor perforaen
the POF ( = 3), let alone its compositionAy). However, ot NSGA-II as the number of objectives grew to five, and
with N, it accurately identified but notF7-. In this, fi with yhe hoor performance was linked to the hinderance in search
lower variance is erroneously picked as more important thag seq by the presence of redundant objectives. However,
[f3 with higher variance. This relates to the limitations oflam .t NL-MVU-PCA identifying that f, and f, are redundant,
PCA_ approaph discussed in Section IIl. _ an apparently many-objective problem is reduced to a three-
2) Higher efficiency for NL-MVU-PCA corresponding W gpiective problem. The improvement in the quality of the
NL-MVU-PCA correctly identifies/ and F7 in case of both Ns, accompanying this reduction can be assessed from
Ny s and N.. However, the efficiency in latter cas&{ = 3 Figure 8, where\/\s conforms with the true POF.

for A,) is higher than the formerN, = 4, for Ny s).

3) Higher reliability of the reported errors: It can be real
that the reliability of the error measure (Equation 6) dejsen
on the accuracy the three factors, name}y, (contribution of

fi across allv;’s); 6;; (whether or notf; and f; areidentically
correlated); andR;; (strength of correlation betweef) and

f;)- The accuracy of these factors in turn depends on the
interplay of how accurate an algorithm is (controllimg’)

and how well the underlying solutions (controlling; and

R;;) represent the true POF (for whiéh = 0 corresponding Fig. 8. DTLZ5<3,5): lllustrating that theNVxrs (one run) obtained for the
to Fr = {f3 4 f5}) reduced problemFs = {f3, f4, f5}, conforms with the true POF.
- ) ) N

In the wake of the results in Sections VI-B and VI-C
and the observations in Items VI-D (1) and VI-D (2), the
above argument explains why the reliability of the repoed Vll. EXPERIMENTAL RESULTS ON OTHERBENCHMARK
improves in the following order: (i) L-PCAN s, & = 0), PROBLEMS
(i) NL-MVU-PCA (Nys, & = 0.0131), (iii) L-PCA (N, This section presents the experimental results for a wide
& = 0.0077) and (iv) NL-MVU-PCA (N, & = 0.0024). range of redundant and non-redundant problems, in Tables XI
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TABLE Xl
PERFORMANCE OF DIFFERENT OBJECTIVE REDUCTION ALGORITHMS ONON-REDUNDANT TEST PROBLEMS CORRESPONDING TQVvs AND N, AND
6 = 0.997. THE NUMBERS IN THE TABLE INDICATE THE FREQUENCY OF SUCCESS INDENTIFYING THE F7, OUT OF 20 RUNS. THE DASHES(-) DENOTE
CASES WHICH WERE NOT TRIED DUE TO HUGE COMPUTATIONAL TIME

Test problems Proposed approaches Dominance relation yaiear[31], [36]: 6-MOSS, 0% Error
DTLZ(M) NL-MVU-PCA L-PCA Greedy Approach Exact Approach
Name M Ne Nns Ne Nys Ne Nis Ne Nys
DTLZ1 5 20 20 20 20 20 20 20 20
15 6 20 14 20 8 0 7 0
25 0 20 3 20 0 0 - -
DTLZ2 5 20 20 20 20 20 20 20 20
15 20 20 20 20 1 0 0 0
25 16 20 17 20 0 0 - -
DTLZ3 5 20 20 20 20 20 20 20 20
15 11 20 20 20 8 0 2 0
25 0 20 5 20 0 0 - -
DTLZ4 5 20 20 20 20 14 20 20 20
15 20 20 20 20 0 0 0 0
25 20 20 20 20 0 0 - -
DTLZ7 5 20 20 20 20 20 20 20 20
15 19 17 20 20 1 0 0 0
25 20 20 20 20 0 0 - -

and XII, respectively. These results need to be interpreted convergence and diversity measures alone is inadeduoate.
in the wake of: (i) the quality of the underlying/xrs and that, how far the inter-relationships of the objective weston

N. summarized in Table X, and (ii) the resulting errorshe true POF in terms of their conflict and relative variance
associated with NL-MVU-PCA and L-PCA (reported in theare retained in a solution set, is critical. It may be noted
supplementary file provided with the paper). that NL-MVU-PCA when applied to the analytically generated

Reference to the quality indicators for the DTLZ5M) solution set (Figure 9c), accurately solved the problenseBa
problems in Table X, reveals tha{, is superior than\Vy-s. 0N these observations, the poor performance of NL-MVU-PCA
The discussion in Section VI-D on DTLZ3,5) highlighted corresponding toV, could be attributed to the latter's mis-
that\V; is also better than/y s, in terms of capturing the inter- represention of the true POF.
relationships of the objective vectors—on the true POF. The
same trend holds true for the other DTLZ5M!) problems,
and explains the results in Table XI. In that, superior rasul
are obtained by both NL-MVU-PCA and L-PCA in the case
of NV, as againstVys.

For interpretation of the results for non-redundant protde 100
refer to Tables X and XII. It can be seen that: 50
1) In contrast to the redundant problems, the performance of 0 e I
both NL-MVU-PCA and L-PCA is found to be better with Objective Number Objective Number
Nns as againstV.. For example, all the three versions of (@) Ne () Nas
the DTLZ1 problem are accurately solved in caseNfs.

However, the accuracy witi\, falls as objectives increase 06

from 5, 15 to 25. The explanation lies in the following.
The true POF of DTLZ1(15), as shown in Figure 9c, is
characterized by two main features: (i) all the objectives a
conflicting, and (ii) the variance of all the objectives ore th
true POF is equal. For an accurate analysis, the proposed

algorithms need a solution set that exhibits the above two L e a1

features. Clearly, these features of the POF are betténeeta (c) Analytically generated POF

by Nys (Figure 9b) thanV. (Figure 9a). In that, while the Fig. 9. DTLZ1(15): Parallel coordinate plots fov., Ay s (one run) and
former exhibits conflict between all the objectives, theelat analytically generated POF.

suggests that some of the objectives may be non-conflicting

(such asf; to f4). Hence from the perspective of the proposed 2) In contrast to the redundant problems, the performance
algorithms ANygs is more representative of the true POFof L-PCA based on\,, is better than NL-MVU-PCA. This
than NV, despite the fact that the latter is better in terms osbservation is highlymisleading as explained below. If
convergence and diversity measures (Tables X). N, for DTLZ1(15), shown in Figure 9a, is to be treated

To summarize, from the PCA based objective reducticaas the representative of the true POF, it suggests that: (i)
perspective, the interpretation of the population qudiiaged some objectives may be non-conflicting (such fasto f4),

250
200
150

Objective Values
Objective Values

Objective Values
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TABLE XIlI
EFFECT OF THEVARIANCE THRESHOLD (6 = 0.682) ON THE PERFORMANCE OF THE PROPOSED-PCA AND NL-MVU-PCA ALGORITHMS ON BOTH
REDUNDANT AND NON-REDUNDANT TEST PROBLEMS CORRESPONDING TQV\ss AND Ne. THE NUMBERS IN THE TABLE INDICATE THE FREQUENCY
OF SUCCESS IN IDENTIFYING THE TRUE AND/OR F7-, OUT OF 20 RUNS. THE DASHES(-) REPLACEQ TO IMPLY INCONSEQUENTIAL ENTRIES AS THE
PREREQUISITE] IS NOT MET. THE TABLE'S FOOTNOTE REPORTS THE PROBLEMS THAT REQUIRE MULTIPLE ITERFONS OF THE ALGORITHM TO OBTAIN
ACCURATE RESULTS AS: P—AR(BI), IMPLYING THAT FOR THE PROBLEMP, A RUNS OUT OF20, REQUIRED BITERATIONS EACH

Test problems NL-MVU-PCA L-PCA Test Problems
DTLZ5(I, M) Ne Nys Ne Ny's DTLZ(M) NL-MVU-PCA L-PCA
I M B Fr » Fr Ir Fr M Fr Name M Ne  Nys Ne  Nys
2 5 20 20 20 20 20 1 20 18 DTLZ1 5 17 18 15 19
2 10 20 20 12 12 20 0 7 4 15 6 18 10 20
2 20 20 20 8 8 20 0 2 1 25 0 20 3 20
2 30 20 20 14 14 20 0 10 1 DTLZ2 5 19 18 17 17
2 50 20 20 19 19 20 0 20 2 15 19 19 20 17
3 5 20 20 18 18 20 5 1 1 25 14 20 15 20
3 10 20 20 0 - 20 1 0 - DTLZ3 5 16 17 19 18
3 20 20 20 0 - 20 0 0 - 15 6 20 12 19
5 10 17 17 0 - 18 3 0 - 25 0 20 2 20
5 20 19 19 0 - 10 0 0 - DTLZ4 5 15 20 19 18
7 10 16 15 0 - 18 7 0 - 15 19 20 20 20
7 20 13 13 0 - 9 1 0 - 25 20 20 20 20
5 20 20 20 20 20 14 20 1 DTLZ7 5 20 20 19 20
WFG3 15 15 15 20 20 3 1 20 0 15 19 17 20 20
25 9 9 20 20 0 - 20 0 25 20 20 20 20

a DTLZ5(2, 30)—1R(2l); DTLZ5(, 10)—2R(21); DTLZ5(5, 20)—6R(21); DTLZ5(7, 10)—4R(2l); DTLZ5(7, 20)—5R(21) and 1R(4l); WFG3Y, 10)—
6R(21) and 3R(3l); WFG3Y, 20)—5R(2l), 1R(3I) and 1R(4l).

b DTLZ5(2, 10)—6R(21), 5R(31) and 1R(4l); DTLZ, 20)—1R(2l), 4R(3l), 1R(41), 1R(51) and 1R(71); DTLZ3(30)—4R(2l), 4R(3l), 5R(4l) and 1R(5I);
DTLZ5(2, 50—11R(2l), 2R(31) and 2R(4l); DTLZS, 5)—10R(2l).

¢ DTLZ5(7, 10)—3R(2l); WFG36)—9R(2); WFG3(5)—1R(2l).

d DTLZ5(2, 10)—3R(21) and 1R(3); DTLZ5E, 20)-1R(5l); DTLZ5@, 30)—1R(31); DTLZ5(2, 50)—2R(2l).

(i) different objectives have different degrees of conflic algorithm (such as L-PCA) or a poor data set (suctVass).
and (ii) the variance of the objectives on the POF i8) For non-redundant problems where all objectives arenesse
significantly different. These characteristics imply thtae tial: Reduction ind (smallerN,) implies a lesser chance for all
DTLZ1(15) is a redundant problem, and hence an accurdke objectives to be picked as essential by the eigenvalaie an
objective reduction algorithm should bring out this factysis. Hence, the performance deterioration of the algmstis
That is what NL-MVU-PCA does but L-PCA fails to do.likely to be more significant than that in the case of reduhdan
However, as thisV, is highly mis-representative of the trueproblems.

POF (Figure 9c), the reduction of objectives by NL-MVU- It can be seen that the results presented in Table XIII for
PCA ironically shows up as its inaccuracy in Table XIl§ = 0.682 comply*® with the expected trend discussed above.
Similarly, the inability of L-PCA to reduce the objectives i

a data set like in Figure 9a ironically shows up as its acgurac
B. Effect of Population Size

Acknowledging that the approximation of the entire POF
A. Effect of Threshold Parameter fqr a many_-object.ive 'problgm req.uires a larger population
L ) size (V), this section investigates if the performance of the
To assess the sensitivity of the pvglcéposed algorithms 8Poposed algorithms improves with an increas&inTowards
0, experiments are also performed_ h9 = 0'_682 and it, some of the poor performing cases in Table Xll, such
6 = 0.954. Based on the discussions in Section IV-G, &g the15- and 25-objective versions of DTLZ1 and DTLZ3
reduction iné could 'expe'ctedly have the following effects: problems, corresponding tdV. are solved with increased
1) For_ pr_oblems with high redu_ndancy: Only a few of thw — 400. Figure 10a shows a marked improvement in
top principal components are likely to reveal the essentigly regyits for thei5-objective versions along with a lesser
object|ve.s. I—_|ence, the deterioration in the performandsh Wimprovement in the25-objective instances. The poor results
a reduction ind (s:malleva) should not be too drastic fo_r for these cases, Wity — 200, were earlier explained through
an accurate algorithm (such as NL-MVU-PCA) when appliegiy, e g in the context of the disparity in the convergence
on a data set that approximates the true POF with reasongfl,s of different objectives. Figure 10b shows that with a
accuracy (such a¥). However, the performance deterioration, .roase inn, this disparity has moderated down, leading
may be more significant in the case of either an Inaccurge improved results. The same trend is observed for other

roblems, though not shown for brevity.
12Thjs is in analogy with Gaussian distributions wheter and +20, P 9 y

account for 68.2% and 95.4% variance, respectively. While, results for
# = 0.682 are presented in Table XllI, those with= 0.954 are presented  13The same holds for the results corresponding te 0.954, presented in
in the supplementary file provided with this paper. the supplementary file provided with this paper.
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Problem proach pursues and the fundamental limitations that its im-
(M) NL-MVU-PCA 8 plementation in [31], [36], [49] suffers from. Following eh
DTLZ1 g discussions in Sections Il and lll, it is clear that the non-
15 16 g dominated solutions obtained from most existing MOEAs can
DT2L523 6 8 be viewed as a combination ehnoisedsignal (representing
15 20 | the intrinsic dimensionalityrn) and noisedsignal (which may
25 3 13 Sobjec:ive a2 haye dimensionality higi_ier than). Hence, the DRP approgch
(a) These results indicate the su¢p) Parallel coordinate plot  of which aims at preserving the dominance relations will be
cessful cases in 20 random runsDTLZ1(15), for one run. influenced by the dimension afoisedsignal. This explains
Fig. 10. Sample results fok. with N = 400 and§ = 0.997. why a d-minimum set with = 0 may not coincide with

an Fr. This argument could be realized for DTLZ55)
in Figures 1c and 7a (where some solutions are conflicting
C. Inferences Drawn from the Experimental Results in fi—fo—f3, even though the POF is characterized by non-

1) The accuracy of the proposed algorithms depends 8Epr_caser\{ing t.he dominance reiations I questionable—i th
how closely the given non-dominated solution set repr@lm is to identify anfy for a given problem. However, the

sents the true POF. In that: (i) reference to convergengRF approach could be useful when the optimal solutions are
gyanable (all characterized by the same dimension) and the
e

and diversity indicators alone is inadequate, and (i) ho" ="' N X ! R
far the given solution set is characterized by the inte cision maker is interested in knowing smaller object®ts s

relationships of the objective vectors on the true POF, ﬁi’”‘?spondmg to different degrees of error in th? domiganc
terms of their conflict and relative variance, is critical.relat'ons' While the above argument partly explains the DRP

2) A high value off (§ — 0.997) makes the proposed basgd r%sultsrzeported in ihis pg;;]er, the'othrt]ar ieas,lond beul'
algorithms more robust in terms of their performanc@ttrl uted to the assumptions inherent in the implemeonati

on both the redundant and non-redundant problems. ©f the DRP approach, discussed below.
3) The accuracy of the proposed algorithms increases with
an increase in the size of the non-dominated set. ~ A. On the limitations of the DRP based algorithms

4) The DRP based greedy and exact algorithms, operatingl_he limitations of DRP based algorithms emanate from the

on either\, or Nys, could not accurately identify the assumptions underlying the definition éf error. Consider:
true dimension {) of the POF for the redundant prob—i a certain set 4) of the non-dominated solutionsX{
lems (for reasons discussed in the Section VIII). Evei?)rresponding to the original objective St ie., A C X
in the case of non-rgdundant problems, the performangﬁd (i) 7' C F. Then, s signifies the maixilr’num erior
gL.Egiseba%eb?eﬂgomhms was poor, except for fhe incurred by wrongly assuming that weakly dominatesy
) P ' (Z,y € A) with respect toF’ and is given by Equation 10 [49].

VIIL A D 0 In particular, if §,,.. = 0, it implies that the objectives in
. COMPARATIVE ANALYSIS OF DIFFERENTOBJECTIVE F\ F' are redundant.

REDUCTION ALGORITHMS

The results presented above highlight that the accuracy of  64:(A, F,F) = max {maﬁ_{ f:(@) — fi(g’)}} (10)
both L-PCA and NL-MVU-PCA, in terms of identifying an 7 1€
essentialobjective set, is higher than that of the DRP based &<y
exact and greedy algorithms. In that, the latwgth § = 0: (i) : . . . )
fail to identify the true dimension of the POF for the redumida 1??Su:rtrlgrnalcorc;zsb:ﬁi?eogom?oig'laggn;i)a;sg(r)nrgtlg?z:i:il:ahaii.
DTLZ5(1, M) problems (Table XI), and (ii) over-reduce the ’ P )

is . assumed in [36F thatan error made close to the Pareto-

number of objectives in the non-redundant problems (excec%timal front is of the same importance as the same error

for M = 5) as in Table XIlI. These results conform with thosemade far away from the Pareto-optimal froifor this to hold

p_rese_znted n the original sources for the DRP approach,tzra&e, the solutions on the non-dominated front need to be
highlighted in Table XIV. o . .
equally distributed, else the importance éfin more dense
TABLE XIV regions which in general signify more important regiond) wi
RESULTS FOR THEDRP BASED GREEDY ALGORITHM, AS REPORTED be higher. It implies that th& measure is likely to be erroneous
IN [31], [36], [49], FOR THEIBEA POPULATION (LOOGENERATIONS iy sjtyations where the density of solutions is not equalhsas
in distributions like Gaussian (more midrange solutiorsnth

at extremes) or non-Gaussian (more extreme solutions than

Test problems & M:Population size

5:100 15:200 251300 at midrange). This is corroborated in [36] where it is stated
DTLZ2 0 5 13 18 (not necessarily in the same sequence) Hittations where
DTLZ7 0 5 10 11

the objective function values are not equally distributed a

not considered in the study, for example: (i) situations r&he
The performance of the DRP based algorithms needs to

be interpreted in the wake of the goal that the DRP ap-4n footnote on Page 143.
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the decision maker prefers extremal solutions with maximal
objective function values, or (ii) situations where theusioins N 1
clt_)se to extremal values are more unlikely than ones with 081y Nys: NormalizedNys 0.8
midrange values SN

LinearizedNys

1

i
[iN

gl : fl ]
3 y 10 02 04 06 08 1 0 02 04 06 08 1
8 ] : 2 dp2 9 f2 f2
= 2 ! = _ . _ . . _
8 3 3 ] (a) Nars: Normalized N s. (b) LN nrs: LinearizedNy/s.
o o ] =
(o] o 1 %02 8
L iy 1 1
04 0 ol el Od_a D
0 02040608 1 0 02040608 1 0 02 04 0608 1 0.8 0.8
Variable (x) Variable (x) Variable (x)

0.6 0.6

0.4

@ fi =zandfo = (b) f1 = 22 and fo = (c) f15: z2 and fo = 04

11—z 1— a2 1—=x

Objective Values
Objective Values

02§ 02§

Fig. 11. |lllustration: Unless all the objectives are (aghn, or (b) identically

0

nonlinear, the DRP approach’s assumption of comparabéeross all the 1 2 3 1 2 3
objectives, over the entire non-dominated front will notchdFor all three Objective Number Objective Number

casesx € [0,1]. p; andg; show the variation inf; and f2, respectively, (c) Four solutions fromV/s. (d) The same solutions as in (c) from
over different regions of the front. LN ns.

2) ¢ error is comparable across all the objectives for o, -« Nys Linearized Ny s
any two given solutions fﬁg{;ngj;{fi(f) - L@}y Itis f fa f3 fi fa f3

| Z,y¢ fi
assumed in [36] thatll objective values have the same a 0.053 0.901 0.056 0.074 0.926 0.074
scale and reference point such that the small errérare b 8-%;21 8-31;‘71 8-82(1) 8-3?3 8'35132 g-g??
comparable among the objectivekhis assumption limits the d 0259 0683 0079 0243 0757 0.243

scope of this approach tmear objective reduction, because
it can hold true only when all the objectives are either
linear (Figure 11a) or identically nonlinear (same degrée Big- 12. An example to illustrate that DRP based approachroffeear
nonlinearity, Figure 11b). It can be seen in Figure 11c, whefPiective reduction. The plots are for one NSGA-II run.

the objectives have different degree of nonlinearity, et

0 error across thg objectives is not qomparable, at any redisikp pased algorithms applied £V s identify the presence
of the non-dominated front. This is corroborated in [36}¢ 5 requndant objective. For a deeper understanding of the
where it is stated thain incorporation of nonlinear objective gtect of datainearizationon the DRP based algorithms, four
functions would be extremely useful but remains future work, tions picked fromVy-s and theirlinearized counterparts

) ) in LN s, are shown in Figures 12c, 12d and 12e. It can
An example problem defined by Equation 11, has begp erified that while the dominance relations are violated o
considered below, to demonstrate that the scope of the DR ination of fs in the case of fourNys solutions, they

(e) The objective values for the solutions froNis and LN xrs.

based algorithms is limited ttinear objective reduction. remain preserved in the case of tB&/ s solutions.
f1 2124»1; f2 :7332+x+3; fza=—(f1 «|»f25)7 (11) TABLE XV
wherez € [—2,2] RESULTS FOR THE EXAMPLE PROBLEM INEQUATION 11,

_ _ ~ CORRESPONDING T.20 RUNS OFNSGA-Il. THE ESSENTIAL OBJECTIVE
As the second assumption (above) requires all the objectiveseTs oBTAINED ARE SHOWN WITH THE FREQUENCY OF OCCURRENCE

to have the same scale and reference paitfigs (normalized BELOW

Nys) corresponding to a population size 260 and 2000

generations, shown in Figure 12a, is used. Given the digpara ., Proposed approaches D(;F_e,\';o[e’slé" [35) based

degree of nonlinearity inf;, compared tof; and f,, the NL-MVU-PCA  L-PCA Exact Greedy

assumption that thed across all the objectives, over the _ {f1, f2} {f1, f2}  {fi, fan fsb {f1, fo, f3}

entire non-dominated front is comparable, is violated (s i *° 20 (20) (20) (20)

Figure 11c, but not shown for brevity). N {f1, f2} {f1, f2} {f1, f2} {f1, f2}
This is a single-variable problem, hence, the number of NS (20) (20) (20) (20)

essential objectives should be equal to two (regularityppro

erty [4]). The results in Table XV corresponding 10y s This example establishes that while the dominance relation
show that unlike NL-MVU-PCA and L-PCA, the DRP basegreservation approach is promising, the manner in which it
algorithms fail to identify the redundancy of one objectiVe is implemented in [31], [36], [49] by ignoring the effect of
relate the failure of the latter with its limited scope ofdar nonlinearity leads to erroneous results. This basicafigdito
reduction, theV) s is unfolded orinearizedusing the kernel the use of a distance measure that is inadequate to account
matrix (K) learnt by the MVU principle. Let the linearizedfor nonlinearity (as discussed in Section II-A). The cutren
Nys be referred a A yrs, whereLAN s = KNys. While  implementation relies on the absolute differendg iq the

the LN ns is shown in Figure 12b, Table XV shows that thevalues of two solutions on aarticular objective vector.
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The assumptions stated above basically define the sitgation realize for large problems, which is also the limitation of
(linearity) in which this§ may be valid. the algorithms proposed in this paper.

B. On the computational complexities of different algarith IX. REAL-WORLD PROBLEMS

It is also important to compare the objective reduction This section considers two real-world problems.
approaches based on their computational complexity, summa
rized in Table XVI. Focusing on the DRP approach it cap, Multi-Speed Gearbox Design Problem

be seen that: (i) the exact algorithm is almost impractioal t This is a multi-speed gearbox design problem, comprising

use, si?]ce i.t ishexponentifal L/ an(:)_qua_ldratic 'SV and (i) of three objectives. It does not belong to the many-objectiv
given that, in the case of many-objective problems> M, domain, yet, it is included here for a comparative analy$is o

even the greedy algorithm is likely to be more expensive th:aqe proposed L-PCA and NL-MVU-PCA vis-vis the DRP
- - i 6 i = — . . .
NL-MVU-PCA (worst case bein@(M®), with k = M —1).  paqaqg algorithms. While the problem formulafidrcan be
TABLE XVI found in [52], it may be noted that the three objectives eelat
COMPUTATIONAL COMPLEXITY OF OBJECTIVE REDUCTION ALGORITHM.  tO (i) minimization of (f;) overall volume of gear material
N IS THE SIZE OF THE NONDOMINATED SET; Ng THE GENERATIONS FOR Used (WhICh iS direcﬂy re|ated to the Welght and cost Of the
AN MOEA; M THE NUMBER OF OBJECTIVES . L . .
gearbox), (i) maximization of f;) power delivered by the

Approaches Computational complexity gearbox, and (iii) minimization of f5) the center distance

A. Dom. rel. preservations¢MOSS) between input and output shafts.

(i) Exact Algorithm O(N2M2M)

(i) Greedy Algorithm O(min{N2M3, N*M?})
B. Unsupervised feature selection ~ O(NM?)+ clustering overhead f3 (Min) "
C. Removal of data dependencies ;g %

(i) PCA based reductiéh O(NM? + M?3) 30 g

(i) MVU-PCA based reduction ~ O(M3q?) wheregq is the 10 8

neighborhoodsize® 5000
2 - - X 302520 1510 5 5 0 W
In [32], [50] and [51], the complexity of clustering has noebencluded. f2 (Max) o0 Objective Nurber

Furthermore, the complexity of PCA based reduction is in@blyecited
asO(NM? + M3 + N2MNy). Notably, each of the above approaches
operate on the non-dominated set, hence, their is no ratidoaladding
the computational complexity of obtaining this non-dominased, only Fig. 13. Multi-speed gearbox design problem. The plots spoad to one
to the complexity of PCA based reductio® (N2 M Ng) for NSGA-Il).  run of NSGA-II.

b In the most constrained casg= O(M).

(a) Non-dominated front (b) Parallel-coordinate plot (order of
f2 and f3 is swapped)

The Ny s corresponding to a population size 260 and
To conclude, the following remarks can be made: 2000 generations is as shown in Figure 13a. Here, it can be
« Unlike the NL-MVU-PCA proposed in this paper, theseen thatf; and f; are non-conflicting among themselves,
scope of the DRP based algorithms is limitedliteear while each is in conflict withf,. This is also affirmed
objective reduction aneéqually spaced solutions. Theseby Figure 13b. These observations are physically justgiabl
are major limitations because the real-world problentsecause for a fixed number of gears, the lower the center
may have objectives with different degree of nonlinearityjistance between the input and output shaft3, the smaller
in which case the results based lorear objective reduc- the size of each gear will be, resulting in lower overall vo&u
tion could be misleading. Furthermore, it is unlikely thapf gear material £;). It can be seen from the Table XVII that
the non-dominated solutions obtained from an MOEAvhile L-PCA and NL-MVU-PCA identify the redundancy in
in the case of many-objective problems will kegually the problem, the DRP based exact and greedy algorithms fail
spaced (as seen in Figure 1c). However, any departwgecapture it. This can be explained through Figure 15a. In
from linearity or equally spaced solutions is a matter ofthat, while L-PCA and NL-MVU-PCA exploit the positive
degreeand the performance of the these algorithms wilorrelation betweerf; and f3 for objective reduction, the DRP
depend on the interplay of these two factors. For examplgased algorithms fail owing to the nonlinearity (discussed
these algorithms: (i) could solve ti3eobjective instances detail, in Section VIII).
of the non-redundant problems (Table XII) but not those
with M > 5, and (i) the performance in DTLZ1(15) with g giorm Drainage System Problem
linear POF is better than DTLZ2(15) withonlinearPOF. - . . . . S
« The use of the DRP based exact algorithm which guaran-or'g'r.]aIIy described n [53], this is a f|\(e-object|v§, save
tees a5-minimum objective set (subject to its assumption%onStra'nt,pmblem WhICh' relates to optimal planning for a
holding true) becomes impractical for large problem torm drainage system in an urban area. The results for

owing to its computational complexity. Furthermore, thg:'s e{;obler_g, pt_rese:';]ed in Table XV(IjI, sdhov: ltBh%cth ?rl]l the
greedy algorithm does not guarantee theninimum algorithms identify eitherf, or f; as redundant. Bo ese

objective set for a given problem. In other words, thaets of results are correct because;f(iand f3 are positively

aim of finding theJ-minimum objective set based 0N 1s1pe yersion where the gear thickness, number of teeth, paviemadule
dominance relation preservation is practically difficalt tare all kept as variables.
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TABLE XVII
PERFORMANCE OF OBJECTIVE REDUCTION ALGORITHMS ON TWO REAMWORLD APPLICATION PROBLEMS THESE RESULTS CORRESPOND T20
NSGA-Il RUNS WITH UNIFORMLY DISTRIBUTED SEED$ EACH RUN CORRESPONDING TQR00 POPULATION SIZE AND2000 GENERATIONS

Proposed approaches
NL-MVU-PCA L-PCA

{f1, f2} {f1, f2} {f1, f2, f3} {f1, f2, f3}
{fas f3, fa, f5}3  {f1, fa, fa, f53° {f2, I3, fa, f5} {f2, f3, fa, f5}

aThe error associated with NL-MVU-PCA and L-PCA (s00262 + 0.00035 and 0.00559 + 0.00074, respectively.
b The error associated with NL-MVU-PCA and L-PCA Gs00002 & 0.00001 and 0.00021 + 0.00012, respectively.
¢1n 18 out of the20 runs, L-PCA findsFs = { f1, f2, fa, f5}, While twice it findsFs = {f2, f3, fa, f5}

Dominance relation preservation [B#]], 5-MOSS, 0% Error
Exagtproach

Real-world Problems Greedy Approach

(a) Multi-speed gearbdx
(b) Storm drainage systém

been proposed to assess the obtained results. A comparative

Objective Values
Objective Values

Objective Number Objective Number

(a) Nars with all five objectives (b) f1 reconstructed from\ s ob-
tained with{ f2, f3, f4, f5}

Fig. 14. Storm drainage problem: Parallel coordinate platyrfalized),
corresponding to one run of NSGA-II.

correlated (Figure 15b), and (iiMys obtained with either
{fe, f3, fa, f5} or {f1, f2, fa, f5} conforms with that for the
original problem (for brevity, only the former’s conformam
is shown in Figure 14).

70 3e+0

60 2.5e+0¢

2e+06|

© 40 © 1.5e+0
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20

500000-

000

0 . -
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(a) Nonlinearity in f1—f3 subspace (b) Linearity in f1—f3 subspace of
of gearbox design problem storm drainage problem

Fig. 15. Highlighting the nonlinear and linear charactéss of the two
real-world problems. These plots correspond to one run of N8G

The success of the DRP based algorithms can be attribu
to the linearity of this problem, as evident in Figure 15bn(co
sistent with the inferences from Section VIII). Furthermor
among the positively correlatedy and f3;, NL-MVU-PCA

always picks f3 as important owing to its larger variance

(Figure 14) thanf;—a fact that L-PCA could identify only
twice out of the20 runs.

X. CONCLUSIONS

This paper has proposed a framework for both linear and

nonlinear objective reduction algorithms, namely, L-PG#l a
NL-MVU-PCA, respectively. The performance of these al
gorithms has been studied f8f test instances (from both
redundant and non-redundant problems) and for two reaidwo
problems. The sensitivity of these algorithms on the ailtic
parameters involved and on the quality of the underlying-no
dominated sets has been discussed. An error measure has

analysis of the proposed algorithms visAs the dominance
relation preservation based algorithms, has been donemste
of their scope of application and the computational coniplex
For future work, the endeavor of the authors will be to
demonstrate the application of the proposed algorithms for
online objective reduction,-MOSS problems with differents

and onk-EMOSS problems. The future work will also focus
on testing the framework on more real-world problems and
problems with high-dimensional and complicated Pareto-se
shapes.
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Supplement on Parameter Sensitivity, Data Quality
and Resulting Errors

TABLE |
DERIVATIONS FORD7 (DISPERSAL OF SOLUTIONS ON THE TRUPOF)FOR THE USED TEST PROBLEMSD ALLOWS FOR THE COMPUTATION OF
NORMALIZED MAXIMUM SPREAD INDICATOR (Is = D4 /D)

Problem POF Condition f™%® froin DI =M (fmar  pminy?
DTLZ1 g=0 fi=i vi=1,...,M fi=0,Vi=1,...,M M (1) =0.25M
DTLZ2
DTLZ3 g=0 fi=1,Yi=1,...,.M fi=0,VYi=1,...,.M Mi=M
DTLZ4
-1
— . 1
DTLZ5(1,M) g=0 fi= (%)
1 —I4+2—1i X .
f1:<%) Vi=2,....M—I+1 fi=0 Yi=1,...,M Noté?
fi:1,sz 7I+2 7M
DTLZ7 g=1 fi=1,Vi=1,...,M—1 fi=0,Vi=1,...,M—1
v =2M fm =2M — timae M —1+1¢2 ., Not&
(%)Z\/f I M I+1( )]W I+2— z+z —11
by = E¢—1 z; (1 + sin(37z;)) andt,q. ~ 0.8594009(M — 1)

TABLE Il

ERRORS(E;,) ASSOCIATED WITHNL-MVU-PCA AND L-PCA FORREDUNDANT AND NON-REDUNDANT TEST PROBLEMS, WITH 6 = 0.997. THE MEAN
(1) AND STANDARD DEVIATION (o) IS OBTAINED FOR20 RANDOM RUNS

Test problems NL-MVU-PCA L-PCA
DTLZ5(1,Mm)? Ne Nns Ne Nns
I M (n£o0) (n£o0o) (n£o0o) (n£o0)
2 5 0.00747 4+ 0.00435 0.01541 £ 0.01271 0.05032 4+ 0.02293 0.03306 £ 0.02591
2 10 0.00741 £ 0.00391 0.01813 £ 0.01805 0.05589 4+ 0.02835 0.01387 4+ 0.02214
2 20 0.00956 £ 0.00481 0.02437 £ 0.02425 0.05882 £ 0.02542 0.01173 £ 0.01836
2 30 0.01511 £ 0.00884 0.05226 £ 0.02069 0.07751 £ 0.04151 0.08508 £ 0.03425
2 50 0.01565 £ 0.01095 0.06615 £ 0.02003 0.10391 £ 0.04306 0.21139 £ 0.05023
3 5 0.00113 4+ 0.00085 0.01382 4+ 0.00566 0.00462 4+ 0.00289 0.00000 4 0.00000
3 10 0.00307 £ 0.00202 0.00000 =+ 0.00000 0.03261 £ 0.01764 0.00000 =+ 0.00000
3 20 0.00547 £ 0.00394 0.00020 £ 0.00054 0.05459 £ 0.02273 0.00044 £ 0.00113
5 10 0.00159 =+ 0.00092 0.00000 =£ 0.00000 0.01454 £ 0.00624 0.00000 =£ 0.00000
5 20 0.00258 4+ 0.00127 0.00000 4 0.00000 0.02955 £+ 0.01351 0.00000 =£ 0.00000
7 10 0.00179 4+ 0.00086 0.00000 4 0.00000 0.01052 4+ 0.00465 0.00000 4 0.00000
7 20 0.00218 £ 0.00077 0.00000 =£ 0.00000 0.03391 £ 0.01248 0.00000 =+ 0.00000
WFG3 5 0.00725 £ 0.00114 0.00261 4+ 0.00074 0.09986 4+ 0.04019 0.03722 4+ 0.01396
15 0.00962 £ 0.00296 0.00293 £ 0.00112 0.24881 £ 0.18592 0.21041 £ 0.05908
25 0.01002 £ 0.00511 0.00266 £ 0.00177 0.13044 £ 0.09724 0.19117 £ 0.05063
DTLZ1® 5 0.00000 £ 0.00000 0.00000 4 0.00000 0.00000 £ 0.00000 0.00000 =£ 0.00000
15 0.00058 4+ 0.00070 0.00000 4 0.00000 0.00167 4+ 0.00321 0.00000 4 0.00000
25 0.00140 £ 0.00077 0.00000 =+ 0.00000 0.01728 £ 0.01241 0.00000 =+ 0.00000
DTLZ2 5 0.00000 =£ 0.00000 0.00000 =£ 0.00000 0.00000 =£ 0.00000 0.00000 =£ 0.00000
15 0.00000 =£ 0.00000 0.00000 =£ 0.00000 0.00000 + 0.00000 0.00000 + 0.00000
25 0.00002 4+ 0.00007 0.00000 4 0.00000 0.00044 4+ 0.00107 0.00000 4 0.00000
DTLZ3 5 0.00000 =+ 0.00000 0.00000 =+ 0.00000 0.00000 =+ 0.00000 0.00000 4 0.00000
15 0.00022 £ 0.00033 0.00000 =£ 0.00000 0.00000 =+ 0.00000 0.00000 =£ 0.00000
25 0.00116 £ 0.00045 0.00000 =£ 0.00000 0.01167 £ 0.01102 0.00000 =£ 0.00000
DTLZ4 5 0.00000 =£ 0.00000 0.00000 =£ 0.00000 0.00000 + 0.00000 0.00000 + 0.00000
15 0.00000 =£ 0.00000 0.00000 =£ 0.00000 0.00000 =£ 0.00000 0.00000 =+ 0.00000
25 0.00000 =+ 0.00000 0.00000 =+ 0.00000 0.00000 =+ 0.00000 0.00000 =+ 0.00000
DTLZ7 5 0.00000 =£ 0.00000 0.00000 =£ 0.00000 0.00000 =£ 0.00000 0.00000 =£ 0.00000
15 0.00028 £ 0.00123 0.00236 £ 0.00692 0.00000 =£ 0.00000 0.00000 + 0.00000
25 0.00000 =£ 0.00000 0.00000 =£ 0.00000 0.00000 + 0.00000 0.00000 + 0.00000

2 Redundant Problems: In Section VI.D of the main paper, it has been discussetietieator measures could be reliable only if the following conditions are Isineously
met: (i) the objective reduction algorithm is accurate, and (ii) the solutiorosewhich an algorithm operates is representative of the true POF. In the currenttcémbe
different combinations of accurate/inaccurate algorithms and good/bad soletiare possible. For an accurate—good combination like NL-MVU-PCA operating.orthe
error measures should be reliable. This can be seen to be true above. Other error measuedbaéeidrpreted in the light of algorithm—population combinations ted
results in Table XI.

® Non-Redundant Problems: In Section VII of the main paper, it has been disclmsget .t for these problems is highly mis-representative of the true POF. In thatpits
characteristics of redundant problems, given which NL-MVU-PCA reduces the numbebjedtives, while L-PCA fails to. Ironically, this reflects as the inefficiendy o
NL-MVU-PCA and efficiency of L-PCA in Table XII of the main paper. The above emeasures need to be interpreted in the wake of this fact.



TABLE Il

EFFECT OF THEVARIANCE THRESHOLD (6 = 0.954, WITH g = M — 1) AND NEIGHBORHOOD SIZE(Q = vV M, WITH 6 = 0.997) ON THE PERFORMANCE
OF THE PROPOSEDL-PCA AND NL-MVU-PCA ALGORITHMS ON REDUNDANT TEST PROBLEMS CORRESPONDING TQN s AND N. THE NUMBERS IN
THE TABLE INDICATE THE FREQUENCY OF SUCCESS IN IDENTIFYING IE TRUE I AND F7-, OUT OF 20 RUNS. THE DASHES(-) REPLACEOQ TO IMPLY

INCONSEQUENTIAL ENTRIES AS THE PREREQUISITEl IS NOT MET

6 =0.954 andqg= M — 1 0 = 0.997 andq = VM

Test problems NL-MVU-PCA L-PCA NL-MVU-PCA L-PCA
DTLZS(I,M) N, Nis N Nns N Nns N Nys
I M r Fr " Fr 1 Fr I Fr I Fr ° Fr I Fr I Fr
2 5 20 20 20 20 20 4 20 1 20 20 20 20 20 14 20 1
2 10 20 20 1 1 20 0 0o - 20 20 15 14 20 7 o -
2 20 20 20 77 20 0 o - 20 20 18 16 20 2 o -
2 30 20 20 14 14 20 1 0o - 20 20 17 17 20 1 0o -
2 50 20 20 14 14 20 0 9 0 20 20 18 18 20 0 10 o0
3 5 20 20 18 18 20 8 0o - 20 20 20 20 20 9 0o -
3 10 20 20 o - 20 4 0o - 20 20 1 0 20 2 0o -
3 20 20 20 0o - 20 0 0o - 20 20 0o - 20 1 0o -
5 10 19 19 0o - 20 2 0o - 20 19 0o - 19 3 0o -
5 20 20 20 0o - 19 0 0o - 20 19 0o - 18 0 0o -
7 10 19 19 0o - 17 4 0o - 20 16 0o - 20 6 0o -
7 20 16 16 o - 6 3 o - 16 16 0o - 13 3 0o -
5 20 20 20 20 20 19 20 3 20 20 20 20 20 19 20 5
WFG3 15 15 15 20 20 9 0 19 0 16 16 20 20 10 0 19 0
25 9 9 20 20 4 1 19 o0 1 11 20 20 6 0 20 0

2 DTLZ5(2, 30)—1R (2I); DTLZ5(5, 10)—3R (21); DTLZ5(5, 20)—6R (21); DTLZ5(7, 10)—7R (2l); DTLZ5(7, 20)—8R (2I) and 1R (41); WFG3, 15)—6R (2I) and 3R

(31); WFG3@, 25)—5R (21), 1R (31) and 1R (4]).

b DTLZ5(2, 10)—4R (21), 5R (31) and 3R (41); DTLZ5L, 20)—1R (21), 2R (41), 2R (51), 1R (61), 1R (71); DTLZ(, 30)—3R (21), 3R (3l), 4R (4l) and 4R (5); DTLZ( 50)—

8R (21) and 2R (31); DTLZ5§, 5)—9R (2I).

© DTLZ5(7, 20)—2R (21); WFG36)—11R (21); WFG3(5)—1R (3I).

4 DTLZ5(2,30)—1R (21); DTLZ5(5,10)—3R (2l); DTLZ5(5,20)—8R (2I); DTLZ5(7,16-4R (21); DTLZ5(7,20)—9R (2I) and 1R (4l); WFG3(15)—7R (2I) and 2R (3l);
WFG3(25)—3R (3) and 1R (4l).

© DTLZ5(2,10)—9R (21), 4R (3l) and 1R (41); DTLZ5(2,20)—2R (2I), 7R (3I) and 7R (4l1); XH(2,30)—3R (2I), 5R (3l), 5R (4l), 2R (5I) and 2R (6l); DTLZ5(2,50)—11R
(21), 5R (31), 1R (4l) and 1R (6l).

f DTLZ5(7,10)—2R (2I); DTLZ5(7,20)—1R (2I); WFG3(5)—11R (2R).

TABLE IV

EFFECT OF THEVARIANCE THRESHOLD (6 = 0.954, WITH g = M — 1) AND NEIGHBORHOOD SIZE(q = /M, WITH 6 = 0.997) ON THE PERFORMANCE
OF THE PROPOSEDL-PCA AND NL-MVU-PCA ALGORITHMS ON NON-REDUNDANT TEST PROBLEMS CORRESPONDING TONArs AND Ne. THE
NUMBERS IN THE TABLE INDICATE THE FREQUENCY OF SUCCESS IN IDETIFYING THE F7, OUT OF 20 RUNS. THE DASHES(-) REPLACEOQ TO IMPLY
INCONSEQUENTIAL ENTRIES AS THE PREREQUISITEI IS NOT MET

Test Problems

0 =0.954andg=M — 1

0 = 0.997 andq = VM

DTLZ(M) NL-MVU-PCA L-PCA NL-MVU-PCA L-PCA
Name M N Nys Ne Nys N Nys N Nns
DTLZ1 5 20 18 20 20 20 19 20 20
15 6 20 15 20 4 18 15 20
25 0 20 4 20 0 20 4 20
DTLZ2 5 20 20 19 20 20 20 19 20
15 20 20 20 20 17 18 20 20
25 16 20 16 20 16 17 17 20
DTLZ3 5 19 20 20 20 20 20 20 20
15 11 20 18 20 9 14 18 20
25 0 20 4 20 0 18 4 20
DTLZ4 5 20 20 20 19 20 20 20 20
15 20 20 20 20 19 15 20 20
25 20 20 20 20 19 19 20 20
DTLZ7 5 20 20 20 20 20 4 20 20
15 19 17 20 20 19 17 20 20
25 20 20 20 20 20 20 20 20

Effect of Threshold Parametef)

e The results presented above for both the redundant and the non-redundant probfesasily be interpreted in the wake of the arguments presented in Sections dv.G an
VII.A in the main paper. In that, a lowet is likely to have little effect on the accuracy of the algorithms in the cadeigifly redundant problems, while their accuracy is
likely to fall as the degree of redundancy in the problems reduces. The sathé&rumifor the results presented above.

Effect of Neighborhood sizeg(= v'M)

« The question of how to fix the parametgrwhich controls neighborhood size in MVU, is an open question. Based onrieaipgvidenceq = 4 is most often used in
literature. However, in this paper, one of the goals being control parameteriedurt= M — 1 has been recommended and used. The rationale for this choipéiesf
in giving preference to retention of local isometry. The results presented abovéasain Tables XI and Xl in the main paper show that with the usg ef /M, the
performance in the case of redundant problems marginally improved, while iimatlygdeteriorated for the redundant problems. As the shift in performance israstial
the choice ofy = M — 1 can be justified, as it offers reasonably high accuracy, along with the advantagediaion in one control parameter.



