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Abstract

Genetic algorithms (GAs) are multi-dimensional and stochastic search methods, involving complex in-
teractions among their parameters. For last two decades, researchers have been trying to understand the
mechanics of GA parameter interactions by using various techniques. The methods include careful ‘func-
tional’ decomposition of parameter interactions, empirical studies, and Markov chain analysis. Although
the complex knot of these interactions are getting loose with such analyses, it still remains an open ques-
tion in the mind of a new-comer to the field or to a GA-practitioner as to what values of GA parameters
(such as population size, choice of GA operators, operator probabilities, and others) to use in an arbitrary
problem. In this paper, we investigate the performance of simple tripartite GAs on a number of simple to
complex test problems from a practical standpoint. Since function evaluations are most time-consuming
in a real-world problem, we compare different GAs for a fixed number of function evaluations. Based on
probability calculations and simulation results, it is observed that for solving simple problems (unimodal
or small modality problems) mutation operator plays an important role, although crossover operator can
also solve these problems. However, two operators (when applied alone) have two different working zones
for population size. For complex problems involving massive multimodality and misleadingness (decep-
tion), crossover operator is the key search operator and performs reliably with an adequate population
size. Based on these studies, it is recommended that when in doubt, the use of the crossover operator with
an adequate population size is a reliable approach.

1 Introduction

There exists a plethora of studies investigating the interactions among different genetic algorithm (GA) pa-
rameters for successful application of GAs. This is rightly so, because GA parameters (such as population
size, choice of GA operators, operator probabilities, representation of decision variables, and others) interact
in a complex way. More importantly, their interactions are largely dependent on the function being optimized
(Hart and Belew, 1991). Since these interactions are complex and a complete analysis of all their interactions
is difficult to achieve, researchers have used different analysis tools. Some studies carefully isolated interactions
between two important parameters and understand their pair-wise effect on GA’s performance. These isolated
studies are worthwhile and have given us some guidelines for choosing GA parameters, such as population size
(Goldberg, Deb, and Clark, 1992; Harik et al., 1997) and control maps for operator probabilities (Goldberg,
Deb, and Theirens, 1992; Theirens and Goldberg, 1993). In order to observe the interactions of various GA
parameters, empirical studies have also been used (De Jong, 1975; Eshelman and Schaffer, 1993; Schaffer et al.,
1989; Wu, Lindsay, and Riolo, 1997). To study the dynamics of these interactions, more sophisticated stochas-
tic models using Markov chains have also been developed and analyzed (Chakraborty, Deb, and Chakraborty,
1996; Nix and Vose, 1992; Suzuki, 1993; Vose, 1992).
Based on these studies, the following salient observations can be made:

1. An optimal mutation probability is dependent on the representation being used (Tate and Smith, 1993).
Similar arguments are also made for the crossover operator, where it is highlighted that an optimal
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operator is largely dependent on the underlying coding used to represent decision variables (Battle and
Vose, 1990; Radcliffe, 1991; Kargupta, Deb, and Goldberg, 1992).

2. The effect of crossover and mutation can be interchanged by using a suitable coding transformation
(Culberson, 1994). However, the study does not mention about the cost (in terms of function evaluations)
needed to find a suitable coding transformation. Although the argument is right on its own sake, this does
not help much in terms of deciding which operator to give importance to, from a practical standpoint.

3. Crossover is useful in problems where building block exchange is necessary (Eshelman and Schaffer, 1993;
Goldberg, Deb, and Clark, 1992, Spears, 1993). The use of mutation may destroy already-found good
information and therefore may not be suitable in such problems. With this in mind, it is then suggested
that GAs may work well with a large crossover probability and with a small mutation probability
(Goldberg, 1989; Schaffer et al., 1989)

In this paper, we investigate the effect of three GA parameters (population size, crossover probability, and
mutation probability) on GA’s performance from a practical standpoint. In real-world search and optimization
problems, the most time-consuming task is the evaluation of function values. From a practical standpoint,
we view the use of a GA to solve a search and optimization problem as follows. Given a problem and a time
frame to obtain a solution, what GA parameter settings must be used to get a good solution (hopefully the
true optimum solution or a near true-optimal solution). Since the overall time to run a GA is more or less
proportional to the number of function evaluations used, we set the number of function evaluations fixed for
all the GA runs. When such a bound on function evaluations is desired for comparing different GAs, most
earlier GA parameter studies are not applicable, because in these cases GAs were run till complete population
convergence. We feel that this study of comparing performance of different GAs for a fixed number of function
evaluations is practical and useful from GA’s applicability in real-world scenarios.

Since GA’s performance (and its parameter setting) depends on the function being solved, we consider five
different test functions involving two unimodal functions, one four-peaked function, one massively multimodal
function, and one deceptive function. The performance of different GAs obtained from simulation results are
explained using probability calculations. Various levels of mathematical rigor—sometimes borrowing results
from published literature and sometimes resorting to Markov chain analysis—have been adopted. The analysis
supports the simulation results obtained and shows several insights into the complex working mechanism of a
simple genetic algorithm.

2 GAs in Practice

One common problem faced by the GA practitioners is the fixation of GA parameters. Because of the lack of
sound theoretical studies specifying ‘control maps’ for a successful GA run, researchers in the field still resort
to parametric studies to determine suitable GA parameters for the problem at hand. In most studies, a fixed
representation scheme and a fixed set of operators are chosen and a parametric study is performed with three
parameters—population size (N), crossover probability (p.), and mutation probability (p.,).

It is important to note that GA’s performance gets largely affected by the representation scheme used to
code the decision variables. Due to the lack of knowledge of a good representation scheme in an arbitrary
problem, a great deal of effort has being spent to use a flexible representation scheme so that GAs can evolve
an efficient representation on the fly (Goldberg, Korb, and Deb, 1989; Kargupta, 1996; Harik, 1997). In this
study, we do not address this so-called linkage problem and use a tight representation scheme in all our test
problems.

When such parametric studies are to be made, it is important that different GAs must be allocated the
same number of total points to search from. Thus, if a total of S number of function evaluations are allocated,
a GA with a population size of N must be run a maximum of 7' = S/N number of generations, because in
each generation N functions are evaluated!.

The minimum number of function evaluations S that must be assigned for a successful application of GAs
depends on the function being solved. It is a intuitive that if the function is difficult for GAs to solve, GAs
must be allocated more function evaluations. Although there exists no clear study specifying what would

11t is noteworthy that, if properly implemented, a GA with a crossover probability of p. and zero mutation, changes only p.N
strings in each generation, thereby increasing the total number of generations to S/(p.N). Similarly, for a GA with zero crossover
probability and mutation probability of py, < 1/¢, the expected number of generations would be S/(pmf¢N). However, we ignore
such special implementations in this study.



cause GA-difficulty, the following few factors have been found (Goldberg, 1993; Horn, Goldberg, and Deb,
1994):

1. Multimodality
2. Deception
3. Isolation
4. Collateral noise

Multimodality causes difficulty to any search and optimization method, because of the presence of a number
of false attractors. For some algorithms (such as gradient-descent methods), only a few modalities may cause
enough difficulty. For some algorithms, the difficulty arises only when the number of modalities are huge
(we refer to such problems as massively multimodal problems in this study). Deception causes difficulty to
GAs because in these functions lower-order schema information is misleading, thereby causing a GA to get
attracted to sub-optimal solutions. Isolation (like the needle-in-the-haystack problem) causes difficulty to
any search and optimization algorithm, because in these problems, no information is usually available for the
search to proceed in any direction. The collateral noise in functions hides the presence of a good sub-solution
in a solution, thereby causing a search and optimization algorithm using smaller sample sizes to not detect
and emphasize the correct building blocks needed to solve the problem to global optimality (Rudnick and
Goldberg, 1991). It is clear that some of the above difficulties are related to each other and more than one
of them may be present in an arbitrary problem. In the test functions chosen in this study, we explicitly
introduce first two of the above difficulties in two functions.

2.1 Test Functions
2.1.1 Unimodal functions

We choose two unimodal functions, each having only one optimum solution. The first function is unimodal in
the Hamming space and the second function is unimodal in the decoded parameter space.

The one-max function (f1) is used as the unimodal function in the Hamming space. We choose a two-
variable unimodal function (Himmelblau’s function), often used as a test function in the optimization literature
(Deb, 1995; Reklaitis, Ravindran, and Ragsdell, 1983).

fQ(Il,IQ) = (I%+I2—11)2+($1 +$§—7)2. (1)

The search space is considered in the range 0 < x1, x5 < 6, in which the above function has a single minimum
point at (3,2) with a function value equal to zero. This function is a easy for most search algorithms, even
gradient descent methods do very well on this function (Deb, 1995).

2.1.2 Four-peaked function

This function is the same as the previous one, but the ranges for z; and x2 are extended to [—6,6]. The
function has a total of four minima, one in each quadrant. All minima have function values equal to zero. In
order to make one of them the global minimum, we add a term to the above function, which causes the point
(3,2) to become the global minimum with a function value equal to zero:

fa(zy, ) = (23 + 29 — 11)% 4 (21 + 22 — 7)* + 0.1(21 — 3)% (22 — 2)°. (2)

This function causes difficulty to many classical search methods, including gradient descent methods, where
the performance largely depends on the chosen initial solution (Deb, 1995).

2.1.3 Massively multimodal function

We choose a 10-variable Rastrigin’s function, which is also studied extensively in the GA literature:

10
falzy, ..., 210) = 200 + Z x7 — 10 cos(2m;). (3)

i=1

Each variable z; lies in the range [—6, 6]. The function has a global minimum at x; = 0 with a function value
equal to zero. This function has a minimum at every point where the cosine term is one. Thus, there are



a total of 13'0 or 1.38(10'") minima, of which 2!° minima are adjacent to the global minimum point. This
function tests an algorithm’s performance in handling massive multimodality, one of the difficulties that a
search algorithm may face.

2.1.4 Deceptive function

Ten 4-bit trap functions have been used to construct a 40-bit problem, as follows:
10
o= glun), (4)
i=1

where the function g(-) is a function of unitation® (u), shown below:

w|0]12]3]|4
glu) [32|1|0]4

This function has a total of 2!° local maxima, of which one solution (the string with all 1s) is the global
maximum, which has a function value equal to 10 x 4 or 40. This function is difficult to solve because low-
order building blocks corresponding to the deceptive attractor (string of all 0s) is better than that of the global
attractor.

2.2 GA Operators and Performance Measure

In all simulations presented here, we use a binary tournament selection without replacement, where two
individuals are picked from a shuffled population and the better is copied in the mating pool (Goldberg and
Deb, 1990). We use a standard single-point crossover operator with a probability p.. We use a mutation clock
operator (Goldberg, 1989). With this operator, once a mutation is performed, the next bit to be mutated
is decided based on an exponential distribution having a mean p,,. This implementation drastically reduces
the random number generations by a factor equal to 1/p,,, on an expectation. Since we have chosen a small
mutation probability, this leverage in time complexity is significant in our studies.

In all the above test functions, the global optimal solution is known a priori. Thus, the success of a GA
simulation can be measured whether a solution within e-neighborhood? of the global optimal solution is found
with a pre-specified number of function evaluations S. In order to reduce the bias of the initial population,
we simulate GAs from 50 different initial populations and observe the number of occasions (M) the GA has
found the true optimal solution with a maximum of S function evaluations. The performance measure ¢ is
then defined as the proportion of successful GA simulations, or { = M/50. A GA run with a population size
of N is terminated if any one of the following criteria is satisfied:

1. A solution within e-neighborhood of the global optimal solution is found, or
2. A maximum of 7' = S/N number of generations have been elapsed.

Although a maximum of S function evaluations are allowed in any run, some GAs may require fewer
function evaluations (F') to solve the problem. In order to investigate the utilization of allowed function
evaluations, we have defined an Unuse Factor (U) as follows:

F

U=1-+. (5)

3 Unimodal Functions

3.1 Onemax Function

We take a 32-bit onemax problem with S = 500. Miihlenbein (1992) showed that with a greedy selection
operator and a bit-wise mutation operator, O(¢log¢) function evaluations are required to solve an ¢-bit onemax
problem. As per estimates given in Goldberg, Deb, and Clark (1992), this problem requires O(¢!:7) function

2Unitation is a measure of number of 1s in the 4-bit string.
3If for a solution z, each variable x; is within €; from the global optimal solution, the solution z is defined to be in the
e-neighborhood of the global optimal solution.



evaluations (for ¢ = 32, the recommended S is about 1,000 till population convergence) with crossover and
tournament selection. In this study, we have chosen ¢ = 0. Our choice of S = 500 is well within these
estimates.

Figure 1 shows the performance of GAs with different GA parameter settings. Let us first investigate
the performance of GAs with selection and mutation operators alone. GAs with three different p,, values
show that p,, = 0.5/¢ works better than other two p,, values. But it is clear from all three performance
characteristics that the performance of GAs is poor for very low and very large population sizes. Before we
discuss why GAs behave this way for extreme population sizes, let us observe how different GAs have utilized
the allocated function evaluations.

Figure 2 shows the mean Unuse Factor in 50 runs for different GA simulations. It is clear that for successful
GAs, this factor is large, thereby meaning that smaller function evaluations are required to solve the problem.
Whereas for unsuccessful GAs, all allowed function evaluations (S) are spent.

3.1.1 Very large populations

When the population is large, the diversity in the initial random population is large and the best solution
in the population is expected to be close (in both Hamming and decoded parameter space) to the optimal
solution. Since the onemax function is defined in the Hamming space, we consider the Hamming distance of a
string from the optimal string as a measure of distance. Therefore, the Hamming distance of the best string in
a population gives a rough estimate of the minimum number of generations needed to reach to the optimum
string, when a mutation probability of less than 1/¢ is used. Then, if the number of allowed generations S/N
is less than the smallest Hamming distance in the initial population, GAs will obviously not work. It then
becomes important to find how the expected Hamming distance (say K) of the best string in a population
varies with the population size.

Let us denote k£ be the Hamming distance of the best string from the optimal string in an initial random
population.

The probability of choosing a string of Hamming distance k from the optimal string is

(i)

b= ol (6)
The probability of choosing a string which is at a Hamming distance greater than k is
Ze':kJrl (‘f)
g === (7)

2¢

Then, the probability p(k, ) of having ¢ strings at a Hamming distance k and rest (N — i) strings at Hamming
distances larger than k is as follows:

i) = (7)o ©

Summing all these probabilities for ¢ = 1,2,..., N, we have the overall probability of having the best strings
at a Hamming distance k£ from the optimal string in a population of size N:

N
Zp(kai)a

= (p+o" 4" (9)

P(k)

The expected value K of the Hamming distance of the best strings in a population is then calculated as follows:

y4
K => " kP(k). (10)
k=0

This value is difficult to calculate exactly. Thus, we calculate this numerically for ¢ = 10, 20, and 32.

Figure 3 shows K for different population sizes. For N = 1, this expected shortest Hamming distance is
exactly ¢/2 and as the population size increases this value reduces almost as O(N~%), where a depends on
the string length. For string lengths of 10, 20 and 32, the values of a are 0.399, 0.157, and 0.125, respectively.
In contrast, the number of generations allowed in a GA run varies as O(N 1), which reduces at much higher



Figure 1:

Figure 2: Mean and standard deviation of unuse factor U versus population size.
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Figure 3: Expected value of the shortest Hamming distance in a random population of different sizes.

rate than the above estimate. Thus, for large population sizes, adequate generations are not allowed and GA’s
performance drops.

Figure 3 also shows the variation of the allowed number of generations T' = 500/N. For ¢ = 32 plot, it
predicts that for population sizes more than about N = 50, mutation-based GAs should not perform well.
Figure 1 verifies this fact by showing that all mutation-based GAs did not find the true optimum in any run
when the population size is more than 50.

We now investigate why GAs did not perform well with very small populations.

3.1.2 Very small populations

It has been discussed elsewhere (Mithlenbein, 1992) that for onemax problems, the most difficult task is to move
from strings having Hamming distances one to the optimal string. This is because the transition probability
of this movement for a single string is very small. However, the cumulative probability of this movement for
a number of strings could be large. Thus, it is intuitive that there exists a minimum threshold population
size, smaller than which GAs will have difficulty reaching to the optimum string. In the following, we first
calculate the transition probability of moving to the optimal string from any string and then estimate the
expected transition time based on Markov chain analysis. Thereafter, we show how this transition probability
reduces with population size. giving rise to the concept of a minimum population size below which GAs are
not expected to work.

The probability of transition of a string having a Hamming distance of k from the optimal string to a
string of Hamming distance k¥’ from the optimal string can be written as follows:

Pk = i zk: (];) (E ; k) (L= pm) " (11)

b=max (0,k’ —k) a=0

All possibilities of different mutations are considered so that ¥’ = k — a + b, where a is the number of bits
mutated in the k bits which are different from the optimal string and b is the number of bits mutated in the rest
of the bits. The above equation is valid for all k¥ and k' varying from 0 to £. Forming the complete transition
matrix using equation 11, we estimate the mean absorption time (mean time required to move from Hamming
distance of k to 0) by using standard procedures. Figure 4 shows this mean time for different & values. It
is important to note that these time estimates are for mutation operator only. Thus, they correspond to the
genetic drift. Although these values are large, the important point is that the mean transfer time required to
move from strings of Hamming distance more than one to zero is marginally larger than that for the strings of
Hamming distance one. This is also evident from the ‘Time to k = 1’ line shown in the figure, which shows the
mean transition times to move from k > 1 strings to k = 1 strings under mutation alone*. The figure also shows

4This plot is generated by redoing the Markov chain analysis assuming k = 1 as the absorbing state.
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the transition time for returning to the optimal string using Miihlenbein’s (1992) (141, m, hc)-algorithm?®,
which uses a greedy selection scheme and thus will give smaller estimates than for GAs with a tournament
selection and bit-wise mutation. Nevertheless, both our drift estimates and Miihlenbein’s estimates show that
the transition from strings of Hamming distance of one to the optimum is the most difficult task.

Since, the most difficult transition is from k£ = 1 to k = 0, we calculate the probability of this transition in
the following (using equation 11):

p(k =LK = 0) = pm(l - pm)e_l' (12)

With a population size of N, the probability of having this transition in at least one string is as follows (with
the assumption that all strings are at a Hamming distance one from the optimal string):

P=1-(1-pk=1Fk=0)". (13)

It is interesting to note that this probability P is small for small N and large for large N. Thus, with a small
population size, the probability of moving towards the optima in one generation is small. This means that
under mutation operator, strings of a population go away from the optima more often. Since this involves
a transition time to come back to the optima, GAs spend a considerable number of function evaluations in
visiting other states before returning to the optimum string. We verify this argument by finding the number of
generations and function evaluations needed to reach to the optimal string from a population initialized with
strings at a Hamming distance one from the optimal string, for the above onemax problem. We run GAs from
1,000 different initial populations of strings of Hamming distance one from the optimal and continue each run
till one copy of the optimal string is found. Figure 5 shows that GAs require a large number of generations to
return to the optimum string for smaller population sizes. Although with a small population size the number
of function evaluations per generation is less, Figure 6 shows that there exists a minimum population size
at which GAs require the smallest total number of function evaluations to find the optimum string. With a
fixed number of allowed function evaluations, GAs thus perform poorly for very small population sizes. It is
worthwhile to mention here that the above argument can also be used to explain why micro-GA applications
(Krishnakumar, 1989) does not perform well with very small populations (such as 2 or 3), whereas they
perform well on simpler problems with population sizes 5 or more.

The above two subsections suggest that GAs with mutation and selection operators and with a very small
or very large population sizes will perform poorly. We also observe this behavior of GAs in the simulation
runs for the onemax problem.

5This algorithm works with one solution. If a random mutation with probability p,, is successful, the mutated string is
accepted as a new parent; otherwise the original string is retained. This algorithm is supposed to work well on onemax problem,
but may not efficient for complex problems, as the study (Miihlenbein, 1992) showed for the (k,£) deceptive problems.
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Figure 6: Number of function evaluations needed
to find the optimal string for the onemax problem.

Figure 5: Number of generations needed to find
the optimal string for the onemax problem.

3.1.3 Crossover alone

GA'’s performance with selection and crossover (no mutation) operators starts to improve only after a crit-
ical population size. This is because GAs with crossover as the only search operator requires an adequate
population size to allow correct schema processing to take place. Population sizes based on correct schema
processing have been derived elsewhere (Goldberg, Deb, and Clark, 1992, Harik, et al., 1996) and experimental
verification to those population sizing was also shown. Taking the cue from the earlier work, we explain why
the performance starts to improve when the population is increased from a critical population size.

Considering schema competition among two competing schemata, Goldberg, Deb, and Clark (1993) showed
that a minimum population size (IVs) is necessary to trigger correct building block processing:

o
Ng = 20n?, (14)
where c is the tail of the Gaussian distribution relating to the permissible error rate o,  is the number of
competing schemata, and 02, /d? is the inverse of the signal-to-noise in the underlying problem. The factor ¢
varies with a as a = exp(—c/2)/v/2me. That study also showed that if the population is sized for a error rate
«, GAs performance ( is related to ( = 1 — a.. It can then be argued that if a population size N smaller than
N is used, such that N = &N, then effective factor is ¢/ = £c. With this ¢/, the performance measure is as

follows:
exp(—c£/2)
V2meg ) ’ (15)

where C' is a normalization constant to adjust performance measure ¢ at N;. This equation suggests that the
performance should increase in a logistic manner. Using equation 14, the required population size is 31c¢ for
the onemax problem. With 90% confidence level, ¢ = 1.67 and the required population size is about 52. This
population estimate gives an adequate population size needed for GAs to make correct decisions in the first
generation. Although we did not allow our GAs to run till the complete population converges, Figure 1 shows
that GAs with about N = 50 works the best.

c=cfa

3.2 Himmelblau’s Function

We use 12 bits to code each variable. Thus, a complete string is 24 bits long. The total number of search points
is 224 or about 16.8 million. For a successful GA run, we choose €; = €5 = 0.01. This requires a random search
method to compute (gf)g) X (gf)g) or 90,000 function evaluations to find a solution within e-neighborhood of
the minimum solution. We allow only 3.33% of this amount (or S = 0.033 x 90,000 = 3,000) to a GA to find
a solution in the e-neighborhood.

Figure 7 shows that GAs with mutation as the only search operator can also find a near-optimal solution
in most simulations. However, the performance degrades when smaller mutation probability is used. Like
the onemax problem, GAs perform poorly for very small and large population sizes. GAs with only crossover
operator as the search operator (with p. = 0.9) starts to perform with larger population sizes, where adequate
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Figure 7: Performance measure versus population size for Himmelblau’s unimodal function.

schema processing is possible in favor of the optimum solution. GAs with all three operators perform better
than other GAs.

The Unuse Factor U for this function is plotted in Figure 8. Once again, the figure shows that lesser number
of function evaluations are needed in GAs which worked successfully in most of the runs. Both Figures 7 and
8 suggest that GAs with all three operators not only perform the best but also perform with highest efficiency
in terms of utilizing the allocated number of function evaluations.
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Figure 8: Unuse factor U for Himmelblau’s unimodal function.

4 4-peaked Function

We use 13 bits to code each variable, thereby making the total string length equal to 26. For termination
criterion, we choose €; = €3 = 0.01. We also set the maximum number of function evaluations equal to 2.5%

10



of the search space, or S =9, 000.

Figure 9 shows the performance of various GAs with different population sizes. We observe that with
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Figure 9: Performance measure of GAs for the four-peaked function.

selection and mutation operators alone, GA’s performance is similar to that in the unimodal function. For

very small and very large population sizes, GAs again perform poorly.

With selection and crossover operators alone (no mutation operator), the performance is also similar to that
in the unimodal function. GAs begin to perform well only after an adequate population size is used. Thereafter,
the performance improves steadily. However, when population size is large the performance degrades due to

small number of generations allowed.

To investigate what population size is adequate from a schema processing point of view, we use equation 14
for the following two important order-one schema partitions:

1. 29 <0 versus x5 > 0, and

2. x1 <0 versus x; > 0.

In terms of the string-coding, the first competition is between the following two schemata:

sk ok sk ok ok ok ok ok ok ok ok ok sk O3k sk ok ok ok ok ko koK ok

k sk sk sk sk ok sk sk sk ok ok sk ok Lok sk sk sk ok sk sk sk sk ok kek

fo=13326, of=76851.4,
f1 =294.8,

We calculate the mean and variance of the function values by sampling 100,000 points in the above two regions
0?2 = 98879.3.
Using the population sizing for k£ = 1, we have the following;:

2 2
NS = QCL(ZEQ
(fr = fo)

= 246¢.
With 90% confidence level, the required population size is 410.

(16)

Similarly, when the second schema competition is considered, the required population sizing is 260,550.
This suggests that with a population size of 260,550 or more, GAs can make correct decisions in both two
competitions and GAs may not have any problem proceeding towards the right optimum. However, if a
population of size less than 410 is used, GAs make mistakes in both decisions and may not be able to converge
to the true optimum. Figure 9 shows that GAs with crossover operator alone needed a population size of
about 300 to 500 to work most of the times.
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When GAs are used with both crossover and mutation operators as the search operators, the performance
enhances for a wider population sizes. Figure 10 shows the variation of the Unuse Factor U with the population
size. Once again, GAs require only about 40-60% of the allocated number of function evaluations wherever
they work successfully.
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Figure 10: Unuse factor U for the four-peaked function.

The similarity in the performances of GAs on all the above three functions (onemax, Himmelblau’s uni-
modal, and the four-peaked function) predicts the performance of GAs in a generic unimodal or in a simple
function:

1. GAs with selection and mutation operators may perform well if an appropriate mutation probability and
correct population size are used.

2. GAs with selection and crossover operators perform well at larger population size than needed for GAs
with selection and mutation.

3. GA’s applicability increases to a wider range of population sizes with all three operators.

4. In these functions,mutation-based GAs work better than crossover-based GAs. The presence of the
crossover operator enhances the performance of mutation-based GAs.

We now study the performance of GAs in more complex problems involving massive multimodality and
deception.

5 Massively Multimodal Function

In the 10-variable Rastrigin’s function, we use 13 bits to code each variable, thereby making the complete
string equal to 130 bits. For our study, we use ¢; = 0.1, so that no local optimum lies within +e¢; from the
global optimal solution. In the solution range of [—6, 6], on an average a random search method will require
[(6 — (—6))/0.2]19 or about 6(10'7) function evaluations to find the global optimum. In the simulations here,
we only allow a maximum of S = 45,000 function evaluations.

Figure 11 shows the performance measure with various GA parameter combinations. We observe that
GAs with mutation alone perform miserably, whereas GAs with crossover operator alone finds the global
optimal solution in almost 90% of runs. When mutation operator is added (even with a small probability),
GA’s performance degrades. Since this problem has many local optima (in fact, there are a total 13! or
about 1.38(10'1) local optimal solutions, of which only one is the global optimum), mutation in most cases
destroys an already-found good solution. On the other hand, the crossover operator can combine good partial
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Figure 11: Performance measure of GAs for Rastrigin’s massively multimodal function.

solutions together to form the optimal solution. It is interesting to note that a random initial population of
size (6 —(—6))/0.2 or 60 would have one expected copy of the optimal solution (with € from the true optimum)
for each subfunction. Thus, a reasonable population size will have many copies of the correct sub-solution
somewhere in the population. The task of the selection operator is to detect these good sub-solutions in the
midst of noise from other subfunctions. This requires a population size which can again be computed using
equation 14. Assuming that at a later stage® when most of the population converges to the best two peaks,
we find that the squared noise to-signal ratio is about 52.0. Noting that there are 9 other subfunctions where
the noise can come from, the population sizing becomes about 2¢2(52 x 9) or 1,872¢. With 90% confidence
limit this sizing amounts to about 3,070. Since, we do not allow enough generations to the GA and the above
population sizing is an conservative estimate (as also mentioned in the original study), the best performance
is around a population size of 1,000. Figure 12 shows the Unuse Factor U for different GA runs.

Thus, it is clear that a massively multimodal function such as this one cannot be solved using a mutation-
based operator. In fact, a bit-wise mutation operator is found to be detrimental in our study. To solve
such problems reliably, an adequate population size and a schema-preserving crossover operator are necessary.
Although Miihlenbein and Schlierkamp-Voosen (1993) have shown that a breeder GA (BGA) can solve this
function in 49nlogn (where n is the number of variables) function evaluations, BGA is a real-coded imple-
mentation and uses a line search which cannot be implemented for binary strings. Moreover, their crossover
operator explicitly exploits the linear separability of subfunctions. Thus, such an approach may not perform

well on a more generic function.

6 Deceptive Function

In this function, we use S = 15,000. Figure 13 shows the performance of GAs with different GA parameter
values. It is observed that mutation-based GAs cannot find the optimal string with different mutation proba-
bilities ranging from p,, = 0.1/¢ to 1/¢. However, crossover-based GAs can find the correct solution in 100%
of the runs for a wide range of population sizes. The population sizing estimate using equation 14 is N = 350c.
With 90% confidence level, this size is about 584. Figure 13 shows that GA’s performance is the best around
this population size.

When crossover is aided with the mutation operator, the performance either does not improve or improves
marginally. However, if a large mutation probability (p,, = 1/¢) is used, GA’s performance degrades drastically.
This is because, a large mutation destroys the already-found good building blocks in a population. The fall
of GA’s performance with large population is due to smaller number of allowed generations.

6This assumption is not particularly bad, because the Rastrigin’s function has an overall parabolic structure with a minimum
at x; = 0 and the toughest competition happens between the best two minima where the function value difference between the

minima is only 1.0.
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Figure 12: Unuse factor versus population size for the massively multimodal function.

Figure 14 shows the Unuse Factor U for different GA runs.

These results again show that if the function is difficult to solve, GAs require a right population size to
solve the problem. If the population size is adequate, the crossover is a much more reliable approach than a
mutation-based approach.

Miihlenbein (1992) showed that GA-deceptive functions (of length ¢) of order k, can be solved using his
(141, m, he)-algorithm in O(¢¥ log ¢) function evaluations. Using the exact form of the equation, we observe
that we require more than 2(10°) function evaluations to solve the above problem. We have only used a small
fraction (S = 15,000 which is less than 1%) of this requirement. This is why we do not observe any significant
success of GAs with mutation operator alone. However, Miihlenbein’s estimate is valid for any kind of linkage
used in coding the subfunctions, whereas the population sizing estimate of Goldberg, Deb, and Clark (1992)
is valid for tight coding of subfunctions only.
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Figure 13: Performance of GAs with different GA parameters. A maximum of S = 15,000 function evaluations
are used in each case.
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Figure 14: Unuse factor versus population size for the deceptive function.

7 Conclusions

In this paper, we have studied the effect of various parameters on the performance of GAs from point of view
of fixed computational cost. In order to investigate the performance of GAs on different fitness landscapes,
we have chosen two unimodal functions (one in Hamming space and one in decoded parameter space), one
four-peaked yet simple function, a massively multi-modal function, and a deceptive function.

In the following, we make our conclusions based on this study:

e Simulation results show that for unimodal and simple functions, mutation-based approaches have per-
formed better than the crossover-based approaches. With a fixed amount of function evaluations, a
mutation-based GA performs best with a moderate population size. Too small or too large population
sizes are detrimental. With a very small population size, the required number of generations is too large
to solve the problem with comparable number of function evaluations needed for moderate population
size. This also explains why micro-GAs work nicely on simpler problems with a population size of 5
or more, but does not work as well with smaller population sizes. Whereas for a GA with a very large
population size, the number of allowed generations is not enough to find the optimum.

e GAs with both crossover and mutation operators have performed better than only crossover or mutation-
based GAs in simpler problems.

e An important aspect observed from this study is the following. For simpler problems, although both
mutation- and crossover-based approaches can find an optimal or a near-optimal solution, the working
range for population size in each of these approaches is quite different. Mutation-based approaches
require smaller population sizes compared to that in crossover-based approaches. However, the Unuse
Factor graphs have shown that both these approaches required almost the same number of function
evaluations.

e When GAs are applied to more complex problems involving massive multimodality and misleadingness
(or deception), a completely different scenario emerged. Mutation-based GAs have failed miserably to
solve these problems, whereas crossover-based GAs are able to solve these problems.

e It is also observed that in order to achieve good performance with either approach, a correct population
size must be used. For crossover-based GAs, we have been able to explain (and match with the simulation
results) the required population sizes from a population sizing estimate developed elsewhere (Goldberg,
Deb, and Clark, 1992). However, for mutation-based approaches, a theoretical population sizing does
not exist. Our analysis supports the existence of such an optimal population sizing for mutation-based
approaches. In either case, the correct population size must depend on the function being used.
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e Based on these simulation results, it can be concluded that when in doubt about the complexity of the
problem at hand, one is better off using crossover operator with an adequate population size. Crossover-
based GAs are more reliable than mutation-based GAs in an arbitrary problem.

Since the use of correct population size is a crucial factor for successful GA applications, we strongly feel
that more efforts need to be spent in finding correct population sizing estimates. We already have an estimate
for subfunction-decomposable problems. What we need is a good yet ready-to-use population sizing estimate
for generic problems. It would interesting to study the effect of elitism and other important GA operators on
the performance of GAs from a point of view of fixed computational cost.
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