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Abstract

Due to increasing population, and human activities on land to meet various de-
mands, land uses are being continuously changed without a clear and logical planning
with any attention to their long term environmental impacts. Thus affecting the nat-
ural balance of the environment, in the form of global warming, soil degradation, loss
of biodiversity, air and water pollution, and so on. Hence, it has become urgent need
to manage land uses scientifically to safeguard the environment from being further de-
stroyed. Owing to the difficulty of deploying field experiments for direct assessment,
mechanistic models are needed to be developed for improving the understanding of the
overall impact from various land uses. However, very little work has been done so far
in this area. Hence, NSGA-II-LUM, a spatial-GIS based multi-objective evolutionary
algorithm, has been developed for three objective functions: maximization of economic
return, maximization of carbon sequestration and minimization of soil erosion, where
the latter two are burning topics to today’s researchers as the remedies to global warm-
ing and soil degradation. The success of NSGA-II-LUM has been presented through
its application to a Mediterranean landscape from Southern Portugal.

Keywords: Land-use management, multi-objective optimization, evolutionary algorithms,
NSGA-II, NSGA-II-LUM.

1 Introduction

Land-use management problem/practice may be defined as the process of allocating dif-
ferent competitive land uses/activities, such as agriculture, forest, industries, recreational
activities or conservation, to different units of a landscape to meet the desired objectives
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of land managers (Stewart et al. [40]). Land uses and their changes from patterns to
processes should be determined by land-use management practices. Land-use manage-
ment practices include many items, like geographic distribution of land, status of land
resources and their suitability, land use dynamics, policy interventions, socio-economic
practices and compulsions, science and technology inputs, and so on. Thus, various land-
use management practices are to be understood in order to develop an integrated land use
policy framework for improving soil quality, ensuing biomass production and food security,
maintaining environmental stability, and extending socio-economic benefits (Gautam and
Raghavswamy [21]).
The most important constraint on the progress of human society is soil. The survival of
all animals, including humans, depends on plants that grow in soil, and hence, it is very
important to maintain the quality of soil. Although humans can improve the properties of
soils through their agricultural activities, by far the most common effects of human activi-
ties on soils are degradation and destruction, and environmental instability (Huston [24]).
One burning example of environmental instability is global warming. Human activities,
such as burning of coal and other fossil fuels for energy, and extensive land use changes for
agriculture and development by clearing forests or draining wet-lands, are continuously
affecting the biosphere, thus altering the natural balance of atmospheric greenhouse gases
(GHGs) by increasing the amount of their constituents, particularly CO2 which is the ma-
jor constituent of GHGs (Bhadwal and Singh [4]; Bongen [6]). As a consequence, the layer
of GHGs is becoming thicker and thicker, thus causing global warming by capturing excess
solar heat near the Earth’s surface, which otherwise would have been radiated back to the
atmosphere (Bongen [6]). However, the atmospheric concentration of CO2 can be lowered
through carbon sequestration, i.e., (1) reducing the emissions of carbon through the re-
duction in the demand of fossil fuels, and other human activities, such as deforestation
and land use changes, and (2) increasing the rates of removal of CO2 from the atmosphere
through the growth of terrestrial biomass, and storing carbon in terrestrial, oceanic, or
freshwater aquatic ecosystems (Bhadwal and Singh [4]; USDA:GCFS [43]). There is major
potential for increasing carbon storage in soil through restoration of degraded soils, and
widespread adoption of soil conservation practices (USDA:GCFS [43]). Another big issue,
associated with land uses, is soil degradation - the visible part of which is soil erosion,
where soil particles are transported from one place to another place by gravity, water or
wind (Anthoni [2]). Though plants can provide protective cover on land by preventing soil
erosion, the loss of protective plants, through deforestation, over-grazing, and ploughing,
makes soil vulnerable for being eroded. In addition, over-cultivation and compaction cause
soil to lose its structure and cohesion, thus becoming more easily erodible (BCB:UWC [3]).
Though many protective measures, to the impacts of improper uses of land and its re-
sources, are already known, those are yet to be used fully due to lack of proper scientific
knowledge for their effective implementation. Owing to the difficulty of deploying field
experiments for direct assessment, it is important to develop mechanistic models, through
extensive study, for improving the understanding of the overall impact from various land
uses. However, very limited works have been done so far in this direction. Hence, the
present work has been aimed at modeling an optimization tool for allocating suitable land
uses to different units of a landscape, which would help in achieving multiple objectives
simultaneously. In this regard, NSGA-II-LUM, a spatial-GIS based multi-objective EA,
has also been developed to handle the problem. It employs NSGA-II (Deb [13]; Deb et al.
[15]), an EA-based multi-objective optimizer, with specially designed representation and
EA operators. NSGA-II-LUM has been designed for optimizing three non-commensurable
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objective functions, subject to a set of physical and ecological constraints. The chosen
objectives are maximization of socio-economic benefit, maximization of carbon sequestra-
tion, and minimization of soil erosion, where the latter two are burning topics to today’s
researchers as the remedies to global warming and soil degradation. Physical constraints
on a unit, to make it permissible to hold a land-use in it, have been imposed on geo-
morphological structure, and ecological constraints on land uses have been imposed to
insure spatial coherence of a landscape. The success of NSGA-II-LUM has been presented
through its application to a Mediterranean landscape, located in Southern Portugal.

2 Related Works

Bhadwal and Singh [4] made a comparative estimate of land-use and carbon sequestration
potential of different forestry options in India. Three different models were generated with
different land-use options, where the models estimate the amount of sequestered carbon
by approximating land-use and relative biomass changes. Kerr et al. [26] designed the in-
tegrated dynamics of land-use system and carbon-pools by combining an ecological model
with an economic model. The models are combined so that ecological conditions affect the
land-use choices, and vice versa. Liu and Bliss [28] developed a general ecosystem model
to dynamically simulate the influences of rainfall-induced soil erosion and deposition on
carbon dynamics in soil profiles. According to them, erosion reduces carbon storage at
eroding sites, while deposition increases carbon storage at depositional areas, thus bal-
ance the global atmospheric carbon budget through their impacts on the net exchange of
carbon between terrestrial ecosystems and the atmosphere. In another work, Liu et al.
[29] investigated the carbon sequestration of an ecoregion by assimilating historical data
on land-use and land-cover changes.
In the past, land-use management problem was tackled using linear programming (LP)
approaches. However, the recent trends, such as increased involvement of stakeholders,
increased complexity on decision making, spatial integrity, and use of Geographical Infor-
mation Systems (GIS), have made the problem more complicated by transforming it into
a pure integer programming (IP) problem (Stewart et al. [40]). As a result, IP approaches
were started to use in this problem as the LP approaches suffer from the disadvantages of
handling integer variables and spatial coordinates. However, both LP and IP approaches
are essentially single objective optimizers, and multiple objectives are required to be com-
bined into a single scalar value (Ducheyne [17]).

Then non-classical heuristic approaches, such as simulated annealing, greedy grow-
ing algorithms, and tabu search, were also found applicable to this problem. However,
though these approaches are robust, fast and capable of solving large combinatorial prob-
lems, they do not guarantee the optimal solution. Recently, Genetic/Evolutionary al-
gorithms (GAs/EAs), biological evolution-based heuristic approaches, have been found
suitable enough to tackle the problem (Aerts et al. [1]). Unlike other heuristic ap-
proaches, GAs/EAs are general-purpose search methods, combining elements of directed
and stochastic search, which can make a remarkable balance between exploitation and
exploration of a search space (ISDAG [25]). Matthews et al. [30; 32] explored the po-
tential of applying GA to spatially integrated land-use management problem. Matthews
et al. [31] developed a GA-based spatial decision support system (DSS) that allows land
managers to explore their land use options and potential impacts of land use changes. In
another work, Matthews et al. [33] developed a multi-objective GA-based DSS to define
the structure of trade-off between two conflicting and non-commensurable objectives of
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financial and landscape diversity. Stewart et al. [40] used a GA, along with a goal pro-
gramming/reference point approach, to another spatially integrated problem, involving
two objectives: minimization of cumulative cost, and compactness of areas under each
land-use. Seixas et al. [38] proposed another EA to study future land-use configuration
under two objectives of maximization of carbon sequestration and minimization of soil
loss.

3 Land-Use Management as a Multi-Objective Optimiza-
tion Problem

Land-use management problem involves the allotment of different competitive land uses
to different units of a landscape to meet the desired objectives of land managers. This
is a complex process, since the decisions must be made not only on achieving the overall
objectives of land managers, but also on the selection of an effective land-use for a unit,
which is again subject to a number physical and ecological restrictions (Stewart et al. [40]).
This clearly leads the problem to an optimization problem, where different objectives of
land managers are to be optimized, subject to the restrictions imposed on the selection of
an effective land-use for a unit. Based on this, the problem can be defined and formulated
as mentioned below:

3.1 Constraints in Land-Use Management Problem

A land-use, effective at one location, may be totally ineffective at another location. Like-
wise, a land-use that works well in one season, may not work, at all, in another season. For
the effective implementation of a land-use, the consequences of spatial and temporal vari-
ations in soils and climate must be taken into account. Another constraint is on the choice
of land uses which have a major influence on runoff and erosion. Any land-use practices,
that reduce runoff, have the benefit of increasing the local water supply and reducing soil
loss. However, such practices impose limitations on agricultural and technological input,
and sustainable levels of productivity (Huston [24]). On the other hand, water availability
imposes strong constraints on technologies for sustainability, and even subtle variations
in the distribution of rainfall can have a major impact on the sustainability of various
agricultural systems (Ellis and Galvin [19] in Huston [24]). Apart from these, landscape
ecology and biodiversity are also major issues which are to be taken into care during any
management planning. In case of nature reserves, it is seen that the size of a patch, the
amount of edges, and the continuity of patches can affect the ability to support different
species (Davis et al. [11] in Ducheyne [17]), for which compact and contiguous patches are
always preferred (Diamond [16] in Venema et al. [44]). Based on these, the physical and
ecological constraints on the problem can be defined as below (Seixas et al. [38]):

• Physical constraints on geomorphological structure:

1. A land-use should be applied in a unit, only if it is permitted in the soil of that
unit,

2. The slope of a unit should be within the permitted range of slope for the land-
use applied in that unit,

3. The aridity index of a unit should be within the permitted range of aridity
index for the land-use applied in that unit, and
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4. Topographic soil wetness index (TSWI) of a unit should be within the permit-
ted range of TSWI for the land-use applied in that unit.

• Ecological constraints on spatial coherence:

1. Patch-Size Constraint: Area in a patch (a set of contiguous units) of a land-
use should be within the permitted range of area in a patch for that land-use,
and

2. Total Area Constraint: Total area under a land-use in a landscape should
be within the permitted range of total area for that land-use.

3.2 Objective Functions in Land-Use Management

Land-use management depends on the proper evaluation of the potential of every unit of
a landscape to sustainably support many services that a society needs. Every unit of a
landscape has the potential to perform several functions, which might be contributing to
agricultural or industrial productivity, maintaining biodiversity, and minimizing runoff.
Information on physical and biological properties of a landscape is available from soil sur-
veys, topographic maps, and satellite images. However, using this information effectively
requires both scientific understanding and technological infrastructure. Land-use manage-
ment must be a multidisciplinary effort, using the expertise of hydrologists, economists,
ecologists, social scientists, agronomists, foresters, etc. We already know which of the
available technologies would likely contribute to the sustainability of a particular sector
of human activity. What is still lacking is an understanding of the interactions between
various sectors, and how land-use management can simultaneously produce positive re-
sults in several sectors. Since sustainability must address multiple objectives of human
and natural systems, land-use prioritization must be based on proper evaluations of all
the potential uses of each unit of a landscape (Huston [24]). Realizing the urgent needs of
a society, the following three objectives have been considered in the present study:

1. Maximization of net present economic return,

2. Maximization of net amount of carbon sequestration, and

3. Minimization of net amount of soil erosion.

3.3 Mathematical Formulation

Different segments of a landscape vary from each other on the basis of their geomorpho-
logical structures. These differences restrict a land-use to be applied only in particular
segment(s) which meet(s) the requirements for that land-use. Therefore, a landscape needs
to be considered as composed of a number of units. These units need not to follow any
common pattern, but are identified on the basis of their areas, and/or other distinct prop-
erties. However, for the ease of mathematical analysis, a landscape can be represented by
a two-dimensional grid, as shown in fig.1 by i- and j-axes of the three-dimensional matrix,
where each grid represents a unit of the landscape. Then a unit can be identified by its
location (i, j) in the landscape. The third axis of the matrix, the t-th axis as shown in fig.1,
represents the time-scale of a unit over a planning horizon. Based on this, the land-use
management problem, as a multi-objective optimization problem, can now be expressed
mathematically as below:
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Figure 1: Model of a landscape.

Let, E Number of events (land uses).
Ru Number of rows of units in a landscape.
Cu Number of columns of units in the landscape.
U Total number of units in the landscape (= Ru.Cu).
T Total number of years over the planning horizon.

Xe,i,j = 1, if event e is applied in unit (i, j),
= 0, otherwise.

• Objectives functions:

1. Maximize net present economic return

f1 ≡
E∑

e=1

Ru∑

i=1

Cu∑

j=1

Xe,i,j .me,i,j , (1)

where me,i,j is the discounted net present economic return from event e applied
in unit (i, j). me,i,j over the planning horizon can be computed using eq. 8
below.

2. Maximize net amount of carbon sequestered

f2 ≡
E∑

e=1

Ru∑

i=1

Cu∑

j=1

T∑

t=1

Xe,i,j .Ce,i,j,t , (2)

where Ce,i,j,t is the net amount of carbon sequestered in year t from event e
applied in unit (i, j). Ce,i,j,t can be computed either experimentally (Bhadwal
and Singh [4]) or using some allometric relations (Unni et al. [42]).

3. Minimize net amount of soil eroded

f3 ≡
E∑

e=1

Ru∑

i=1

Cu∑

j=1

T∑

t=1

Xe,i,j .εe,i,j,t , (3)

where εe,i,j,t is the net amount of soil eroded in year t from unit (i, j) under
event e. εe,i,j,t can be computed using universal soil loss equation (McCloy [34];
RUSLE [36]), given by eq. 9 below.
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• Physical constraints on geomorphological structure:

eu
i,j ∈ Eu

i,j , i = 1, ..,Ru and j = 1, ..,Cu , (4)

where eu
i,j represents the event applied in unit (i, j), and Eu

i,j is the set of permissible
events for that unit. An event e becomes permissible in unit (i, j), only if the unit
satisfies the following four physical constraints:

1. Type of soil of a unit:
si,j ∈ Se , (5a)

where si,j is the type of soil in the unit (i, j), and Se is the set of permissible
soils for event e.

2. Slope of a unit:
Lmin
e,si,j ≤ li,j ≤ Lmax

e,si,j , (5b)

where li,j is the slope of the unit (i, j), and (Lmin
e,si,j ,L

max
e,si,j ) is the range of per-

missible slope for event e in soil si,j .

3. Aridity index of a unit:

Dmin
e,si,j ≤ di,j ≤ Dmax

e,si,j , (5c)

where di,j is the aridity index of the unit (i, j), and (Dmin
e,si,j ,D

max
e,si,j ) is the range

of permissible aridity index for event e in soil si,j .

4. Topographic soil wetness index (TSWI) of a unit:

Hmin
e,si,j ≤ hi,j ≤ Hmax

e,si,j , (5d)

where hi,j is TSWI of the unit (i, j), and (Hmin
e,si,j ,H

max
e,si,j ) is the range of permis-

sible TSWI for event e in soil si,j .

Since the constraints of eq. 5 just put limitations on various physical parameters of
a unit to make it permissible to hold an event in it, these constraints can simply be
treated as box constraints (Hardt [22]) in forming the set of permissible events for a
unit (Eu

i,j in eq. 4). Once the set Eu
i,j is formed, an event can be applied to a unit, if

the event belongs to this set for that unit.

• Ecological constraints on spatial coherence:

1. Area in a patch of a land-use:

g2(
P
Ne−1+n)−1 ≡ ae,n ≥ Ap

e,min

g2(
P
Ne−1+n) ≡ ae,n ≤ Ap

e,max

}
, e = 1, ..,E;n = 1, .., Ne and N0 = 0,

(6)
where (Ap

e,min,Ap
e,max) is the range of area of a patch under event e. Ne is the

total number of patches under that event, and ae,n is the area of its n-th patch.

2. Total area under a land-use:

g2
PE
e′=1Ne′+2e−1 ≡∑Ne

n=1 ae,n ≥ Ae,min

g2
PE
e′=1Ne′+2e ≡

∑Ne
n=1 ae,n ≤ Ae,max

}
, e = 1, ..,E , (7)

where (Ae,min,Ae,max) is the range of total area under event e.
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From the above formulation, it is seen that the considered land-use management problem
is composed of U physical constraints and 2(

∑E
e=1Ne+E) ecological constraints, where

U, Ne and E represent, respectively, the numbers of units in a landscape, patches under
event e, and total evenets. This formulation shows that the only task in the problem is to
schedule suitable land uses to the units, located in different geographical coordinates of a
landscape. Constraints can be made satisfied, and subsequently objective functions can
be optimized, only by altering the land uses of the units. In any optimization process, this
can be done by allocating to the decision variables (units of a landscape) the representative
positive integers (serial numbers) of the land uses applied to the units. This makes the
land-use management problem a pure integer programming (IP) problem, which is a class
of combinatorial optimization problem.

The discounted net present economic return from event e applied in unit (i, j), me,i,j

in eq. 1, can be computed as below (Dykstra [18]):

me,i,j =

τe,i,j∑

q=1

(
ve,i,j,q − pe,i,j,q(1 + re,i,j,q)

ye,i,j,q

(1 + re,i,j,q)(q−1)T/τe,i,j

)
+
Ve,i,j − Pe,i,j(1 +Re,i,j)

Ye,i,j

(1 +Re,i,j)T
, (8)

where, for event e applied in unit (i, j),

τe,i,j = Number of harvesting periods over the planning horizon,
ve,i,j,q = Economic value evaluated at q-th time-period,
pe,i,j,q = Cost of development/maintenance at q-th time-period,
re,i,j,q = Discount rate of the product at q-th time period,
ye,i,j,q = Age at the beginning of q-th time period,
T = Number of years over the planning horizon,
Ve,i,j = Net economic value of end-inventory,
Pe,i,j = Cost of development/maintenance on end-inventory,
Re,i,j = Discount rate on end-inventory,
Ye,i,j = Age at the end of planning horizon.

Many land uses, such as forest, cannot be harvested every year, but they need years to
grow for harvesting. In such cases, the planning horizon is generally divided into number
of periods, covering some suitable number of years - for example, 5 or 10 years. Then the
harvesting is assessed in terms of such periods, instead of individual years. That is the
reason why period τ has been considered in eq. 8.
The amount of soil eroded in year t from unit (i, j) under event e, εe,i,j,t in eq. 3, can be
predicted using the following Universal Soil Loss Equation (USLE) (McCloy [34]; RUSLE
[36]):

εe,i,j,t = Ri,j,t.Ki,j,t.LSi,j,t.Ce,t.Pe,t , (9)

where, in year t,

Ri,j,t = Rainfall erosivity factor for unit (i, j),
Ki,j,t = Soil erodibility factor for unit (i, j),
LSi,j,t = Slope length-gradient factor for unit (i, j),
Ce,t = Cropping (land-use) management factor for event e, and
Pe,t = Erosion control practice factor for event e.
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4 Evolutionary Chromosome and Operators for Land-Use
Management Problem

Land-use management problem involves the allotment of a suitable land-use, from a set
of competitive alternatives, to each unit of a landscape. As addressed in sec. 3.3, this
requirement transforms the problem into a pure integer programming problem. Moreover,
the recent trends, such as the increased involvement of stakeholders, increased complexity
on decision making, spatial integrity, and use of Geographical Information Systems (GIS),
have made the problem more complicated. Increased involvement of stakeholders leads the
problem not only to different demands (objectives) on the expected results, but also to dif-
ferent types of interactions with the solution techniques. Increased complexity on decision
making follows from the inclusion of multiple objectives, and their natures, which may not
always be linear or additive. Furthermore, spatial relationships introduce dependencies
between activities in adjacent units, in the sense that attribute values of one unit may
be dependent on those of adjacent units. On the other hand, geographical information
systems (GIS), used to store and present geographically dependent spatial information,
require the solution techniques to handle large amount of data, and also to maintain good
communication with the data (Stewart et al. [40]). As seen in literature (sec. 2), such a
problem is best solvable by non-classical methods, out of which evolutionary algorithms
(EAs) have been used widely. The present work also uses a specially developed spatial-GIS
based multi-objective EA for handling the problem.
The basic component of an EA is chromosome which represents a solution in the search
space of an optimization problem. A chromosome is composed of genes, each of which
describes a parameter of a problem. A set of chromosomes forms a population for an EA,
evolution of which takes place over the repeated application of EA operators, particularly
selection, crossover and mutation. The function of selection operator is to emphasize good
solutions and eliminate weak solutions. Crossover and mutation operators are responsible
for the generation of offspring (new solutions). It is seen that the standard chromosome
representation, and crossover and mutation operators hardly work in complex problems,
and in those cases, they need to be problem-specific (Datta et al. [10]). Such problem-
specific chromosome and EA operators, developed for land-use management problem, have
been explained in the following three subsections. It is also learnt that an optimization
technique needs to be guided, at least in large and complex problems, to speed up its
search for optimum solutions, or even to obtain feasible solutions (Datta et al. [10]).
Hence, such an operator has also been designed for satisfying spatial requirements in
land-use management problem, and has been addressed in sec. 4.4.

4.1 Chromosome Representation

The land-use management problem requires a chromosome to encode the information
needed to schedule land uses in different units of a landscape. A simple and direct chro-
mosome representation is a two-dimensional grid of genes, known as spatial-based repre-
sentation, where position of each gene (grid) represents a unit of a landscape, and its
value determines the land-use for that unit. A similar representation was employed in
spatial modelling (Noreen [35] in Matthews et al. [30]; Samet [37] in Matthews et al.
[31]), and land-use management problem (Butcher et al. [7] in Matthews et al. [31];
Stewart et al. [40]; Seixas et al. [38]). Cartwright and Harris [8] (in Matthews et al.
[31]) proposed a grid-based chromosome representation with two-dimensional crossover
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operators. Matthews et al. [30] proposed two chromosome representations: fixed-length,
and variable-length representations. The fixed-length representation, which directly maps
the land uses of individual fields to genes, is insensitive to the complexity of the optimum
solution, but adversely affected by significant increase in the number of land blocks. The
variable-length representation is order dependent, and makes allocations indirectly via a
greedy algorithm. The genes encode the target percentages of different land uses, along
with their priority for allocation. This representation is again sensitive to an increase in
the number of land uses.
In addition to the two-dimensional grid, a third dimension has also been used in spatial-
based representation to represent the dynamics of a landscape over a planning horizon,
i.e., a chromosome is a two-dimensional grid of genes, where each gene is again a vector
of years of the planning horizon. Hence, mathematically a chromosome can simply be
expressed as:

G = [eu
ij ]RuxCu

eu
ij = (y1, y2, ..., yt, ..., yT)T

}
, (10)

where Ru = Total number of rows of units in a landscape,
Cu = Total number of columns of units in the landscape,
eu
ij = Event (land-use) applied in the unit (i, j),

yt = t-th year of the planning horizon, and
T = Total number of years in the planning horizon.

This representation is shown diagrammatically in fig. 1, where the position of a gene in
ij-plane represents a unit and its value gives the land-use for that unit, and the t-th axis
represents the years of the planning horizon.

4.2 Crossover Operators (XTD & XBC)

Two quite different crossover operators, namely XTD and XBC, can be used in land-use
management problem. XTD, originally developed by Datta and Deb [9] for topology op-
timization of structures, is problem-independent and based just on the two-dimensional
structure of a landscape. While XBC, developed in the present work, uses problem infor-
mation for generating offspring.

1. Two-Dimensional Crossover (XTD): The purpose of using a crossover operator
in an EA is to exploit particularly beneficial portions of a search space, by exchanging
randomly selected sets of genes between two chromosomes. Such a beneficial portion
in land-use management problem is comprised of one or more patches under different
land uses. Hence, patch-exchange between two chromosomes would be the most
natural crossover in this problem. However, since a patch of a land-use may be of
any arbitrary shape and size, the exchange of two full patches would not only become
computationally expensive, but may be impossible also. Hence, for simplicity, a
segment of particular geometric shape (e.g., a square or rectangle), comprised of one
or more patches/parts of patches, may be considered for exchanging under crossover
operator. Such a two-dimensional crossover operator (XTD), originally developed
by Datta and Deb [9] for topology optimization of structures, has been adopted in
the present work. Since the feasibility of a solution can not guaranteed in XTD, a
guidance, addressed in sec. 4.4 below, may be applied to infeasible solutions to speed
up the EA search. XTD is problem-independent and its working procedure is also
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very simple. A chromosome is first divided into four blocks by randomly selected row
and column, and then a random block is exchanged with a similar one from another
chromosome. As can be viewed in real solutions, shown in fig. 5, an advantage of
XTD is the possibility of getting straight edges to a patch, which would definitely
be preferred by land managers.

2. Crossover on Boundary Cells (XBC): One of the main functions of an optimizer,
in land-use management problem, is to increase/decrease the size of a patch of a land-
use to meet the objectives of the problem. When the size of a patch is increased, the
size of one of its adjacent patches is decreased, and vice versa. The size of a patch
can be increased by adding new cells on the boundaries of the patch. Similarly, the
size of a patch can be decreased by removing cells from its boundaries. That is, the
size of a patch can be altered by alternating the land uses in its boundary cells1. This
problem information has been utilized for developing a crossover operator, known as
Crossover on Boundary Cells (XBC). In XBC, the Hamming Distance2 between two
parent solutions are first determined. If a randomly chosen Hamming cell (where
the land uses in two parents differ from each other) of a parent is on boundary, its
land-use is replaced by that of the corresponding cell of the second parent. If all
the Hamming cells of a parent are considered to change their land uses under XBC,
possibility is there for the parent to get duplicated with the second parent. Hence,
a percentage of Hamming cells, with some probability, may be used under XBC to
generate offspring.

4.3 Mutation Operators (MBC & MSIS2)

Two mutation operators, MBC and MSIS2, have been developed for land-use management
problem. MBC is engaged for local search, as well as for maintaining diversity among the
solutions of a population. On the other hand, MSIS2 is applied to infeasible solutions to
steer them to feasible region.

1. Mutation on Boundary Cells (MBC): Like in XBC, problem information can
be used to design mutation operator also. Such a mutation operator, known as
Mutation operator on Boundary Cells (MBC), has been developed in the present
work. MBC is employed to replace the land-use of a boundary cell by the one in one
of its adjacent cells, which have different land uses than in the boundary cell. All
the boundary cells of a solution are first sorted out. Then a boundary cell is chosen
randomly with some probability, and its land-use is replaced as above, provided the
new land-use is permitted in the chosen boundary cell (physical constraints of eq. 4).

2. Mutation for Steering Infeasible Solution-2 (MSIS2): In general, EAs have
strong capabilities to come out from infeasible regions. However, sometime they
suffer from huge computational time in handling infeasible solutions, or even fail
in many complex problems (Datta et al. [10]). Hence, some guidance to improve
infeasible solutions may be provided to speed up EA search. For this purpose, a
mutation operator, known as Mutation for Steering Infeasible Solutions-2 (MSIS2),

1A cell/unit of a landscape is on boundary if the land-use in it differs from that in any of its adjacent
cells (two cells are adjacent, if they share an edge).

2Hamming Distance: The number of bits which differ between two strings. More formally, the
Hamming distance between strings A and B is

P
I(Ai − Bi 6= 0), where I is an indicator function that

returns 1 if its argument is true, else 0 (Black [5]).
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has been developed for land-use management problem. It is similar with MSIS,
proposed by Datta et al. [10] for class timetabling problem. Like MSIS, MSIS2
is also not explicitly a repairing mechanism, but mutation is performed only in
those patches which violate patch-size constraints of eq. 6, with an expectation of
steering an infeasible solution towards the feasible region. An exhaustive search is
first performed for boundary cells. If the area of the patch, in which a boundary
cell belongs, is less than its minimum requirement, the adjacent cells of the chosen
boundary cell, having different land uses than in the patch, are merged in the patch,
provided the new cells satisfy the physical constraints for the land-use of the patch.

4.4 Operator for Satisfying Spatial Requirements

At least theoretically, EAs should not depend on initial solutions. However, some guidance
to the generation of initial solutions, in case of many complex problems, help in speed up
EA search. It is supported by university class timetabling problem also, where a heuristic
approach is used for generating feasible initial solutions (Datta et al. [10]). In case of
land-use management problem, however, feasible initial solutions are not essential. It
is observed (reported in sec. 6) that little guidance, in generating near feasible initial
solutions, helps in drastic reduction of computational time for EA search in obtaining
feasible solutions. EA search also suffers from computational time if EA operators cannot
preserve the feasibility in offspring. Hence, some run-time guidance may also be provided
to speed up EA search by satisfying one or more constraint(s). Based on these, an EA for
land-use management problem may be provided the following two guidance:

1. During initialization, attempt may be made for satisfying, if possible, the patch-
size constraints of eq. 6 by scheduling a land-use in sufficient number of contiguous
units. This will attempt to reduce 2

∑E
e=1Ne constraints, where Ne is the number

of patches under event e, and E is the total number of evenets.

2. Since no provision has been provided to any of EA operators (XTD, XBC and MBC)
to satisfy the patch-size constraints, which are attempted in initial solutions by
following the guidance of Step (1), MSIS2 has been developed to improve infeasible
solutions. However, the progress of MSIS2 is very slow (reported in sec. 6). Hence,
a patch, having less area than the specified one, may be deleted before evaluating a
solution. This can be made by merging the cells of the patch in its adjacent patches,
where the physical constraints for the merging cells are satisfied. Once the patch-size
constraints are satisfied, an EA should move rapidly towards satisfying the total area
constraints, given by eq. 7.

5 NSGA-II-LUM: NSGA-II in Land-Use Management

After designing chromosome, and other operators for generating offspring, an EA is re-
quired where these can be incorporated for optimizing a problem. Since multiple objectives
are to be achieved in land-use management problem, a multi-objective EA is required to
tackle the problem. A number of such EAs, differing in one or more aspects from each
other, have been developed, and implemented in different types of problems. Widely ac-
cepted among those are MOGA (Fonseca and Fleming [20]), NPGA (Horn et al. [23]),
NSGA (Srinivas and Deb [39]), SPEA (Zitzler and Thiele [45]), and NSGA-II (Deb [13],
Deb et al. [15]). Non-dominated Sorting Genetic Algorithm-II (NSGA-II) has been selected
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in the present work, and named it as NSGA-II-LUM (NSGA-II in Land-Use Management).
The reason for selecting NSGA-II among its counterparts is its successful implementation
in a wider range of problems, which led it to be crowned as the fast breaking paper in
engineering in February, 2004 (THOMSON [41]). The salient features of NSGA-II-LUM
are as given below:

1. The chromosome representation, addressed in sec. 4.1, is used to form an EA popu-
lation of N solutions.

2. The guidance (1), addressed in sec. 4.4, is used to initialize the solutions of the
population, by satisfying, as much possible, the patch-size constraints of eq. 6.

3. Crowded tournament selection operator (Deb [13]) is used to form a mating pool
(Deb [12]) of N solutions from the population. It is done by randomly selecting two
solutions from the population, and sending a copy of the best one, based on ranks
and crowding distances (Deb [13]), to the mating pool. The process is continued
until the mating pool is filled up with N solutions. The mating pool is later used by
EA operators for generating offspring.

4. One of the two crossover operators, XTD and XBC, addressed in sec. 4.2, is used for
generating a new population of N offspring.

5. The mutation operator MBC, addressed in sec. 4.3, is used for mutating the solutions
of the new population.

6. The second mutation operator MSIS2, also addressed in sec. 4.3, is used for steering
an infeasible solution of the new population, if any, towards the feasible region.

7. Next, the guidance (2), addressed in sec. 4.4, is used for satisfying patch-size con-
straints of eq. 6.

8. Both the populations, obtained so far, are combined to form a combined population
of 2N solutions.

9. Based on ranks and crowding distances, the best N solutions from the combined
population are picked up to form a single population.

10. Steps (3)-(9) are repeated for required number of generations (iterations).

11. Result obtained after the required number of generations is accepted as the optimum
result.

5.1 Local Search Along With NSGA-II-LUM

Although multi-objective EAs have demonstrated good convergence properties in many
test problems, these are yet to be proved as convergent to Pareto optimal front (set of non-
dominated optimal solutions) (Deb [13]) of any problem. Unfortunately, Pareto optimal
fronts of many real-world problems are usually not known to compare the results of an
EA. Sometimes the probabilities of true convergence of EAs can be enhanced by using
hybrid approaches to their final Pareto fronts (Deb [13]). Such an attempt has been made
in case of NSGA-II-LUM also. A local search strategy, proposed by Deb and Goel ([14]),
has been included in NSGA-II-LUM for better convergence to true Pareto optimal front,
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and also to reduce the size of its final Pareto front. According to the requirement of a
local search strategy, a single-objective minimization problem for solution x is formed, as
below, by combining multiple objective functions into a single weighted objective function:

Minimize F (x) ≡
M∑

i=1

w̄xi fi(x) , (11)

where M is the number of objective functions in the original problem. w̄xi is the pseudo-
weight for i-th objective function of solution x, and can be calculated as:

w̄xi =
(fmax
i − fi(x))/(fmax

i − fmin
i )

∑M
j=1((fmax

j − fj(x))/(fmax
j − fmin

j ))
, (12)

where fmin
i and fmax

i are, respectively, the minimum and maximum values of i-th objective
function from all the solutions in final Pareto front of an EA. After calculating pseudo-
weights for all objective functions of solution x, the local search is applied to minimize
F (x) with some termination criteria. In NSGA-II-LUM, the search is applied to each
boundary unit of a solution. The land-use in a boundary unit is replaced by the one in
one of its adjacent units, under different land uses than in the boundary unit in hand,
provided the new land-use is permissible in that boundary unit (physical constraints, given
by eq. 4). Then F (x) is evaluated, and the change is accepted only if some improvement
is found in F (x).

6 Application of NSGA-II-LUM

NSGA-II-LUM has been developed as a dynamic model to predict long term global
changes, particularly climate changes over a planning horizon - say, of the duration of
50 or 100 years. However, due to non-availability of dynamic data on any case study, it
has been implemented on a static problem. The problem, which has been named here as
LBAP in short, is from a Mediterranean landscape, located in Baixo Alentejo, Southern
Portugal. The latitude and longitude at the centroid of the landscape are, respectively,
3800′50.3′′N and 7051′56.94′′W. The detail of LBAP is available in the publication of
Seixas et al. [38] where it was handled using PAES - a multi-objective EA (Knowles
and Corne [27]). According to the available data of LBAP, the landscape is divided into
100×100 units. Six pieces of information, supplied against each unit, are: (1) type of soil,
(2) slope, (3) aridity index, (4) topographic soil wetness index, (5) erosivity factor due to
rain fall, and (6) product of slope length-gradient factor and soil erodibility factor, where
information (1)-(4) are used in eq. 5 as physical constraints on a unit to be permissible
to hold a particular land-use in it, and (5) and (6) are used in USLE, given by eq. 9, for
calculating soil loss due to erosion. There are nine types of soils in the landscape, where
five different land uses can be applied. The allowed land uses are:

1. Annual agriculture - crops with annual cycles, mostly wheat,

2. Permanent agriculture - crops relying permanently on the land, like vineyards, fruits,
and olive trees,

3. Mixed agriculture - a typical class of land uses in that region, which includes dis-
persed forestry (mostly oaks), and agricultural land use (mostly rangelands),
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4. Forest, and

5. Shrubs.

Since the landscape has been divided into 100×100 grid where 5 different land uses are
allowed, as per the formulation, given by eqs. 1-7, there are total 100×100 = 10000 physical
constraints, and 2(

∑5
e=1Ne+5) ecological constraints, where Ne is the number of patches

under event e. The number of ecological constraints is not fixed, but varies with the num-
ber of patches under a land-use in a particular instance. Based on the type of a soil, each
land-use has certain permissible ranges on different physical properties for applying it in
that soil. A unit becomes permissible to hold a land-use in it, if its physical properties
lie within the specified ranges of those for that land-use in the soil of the unit. For ex-
ample, the physical properties of units 1 and 15, and the ranges of those for all the land
uses, corresponding to the types of soils of the units, are given in Table 1. The soil in

Table 1: Physical properties of units and land uses.

Unit

Physical Properties

Unit
Land Uses

Soil Ann. Perm. Mix.
Forest Shrubs

Type Agri. Agri. Agri.

1 3
Slope 2 [1,4] [1,6] [1,5] [1,14] [5,15]

P/PET 2 [2,4] [2,4] [2,3] [2,4] [2,2]
TSWI 8 [6,26] [0,16] [0,26] [0,28] [0,4]

15 6
Slope 2 [1,4] [1,5] [1,15] [1,15] —

P/PET 2 [2,4] [2,4] [2,3] [2,4] —
TSWI 0 [6,26] [0,18] [0,26] [0,28] —

unit 1 is of type 3, where all five land uses are permitted. However, the TSWI of unit 1
is 8, which is outside the permissible range ([0,4]) of TSWI for shrubs. Hence, all land
uses, other than shrubs, are permissible in unit 1. The soil in unit 15 is of type 6, where
shrubs are not permitted at all. Moreover, the TSWI of unit 15 is 0, which is outside the
permissible range ([6,26]) of TSWI for annual agriculture. Hence, only three land uses
(permanent agriculture, mixed agriculture and forests) are permissible in unit 15. Simi-
larly, the permissible land uses for other units, satisfying the physical constraints of eq. 5,
can be obtained. Other available information about LBAP are related with land uses only.
These include: (1) range of permissible area under a patch of a land-use, (2) range of total
permissible area under a land-use3, (3) economic value, (4) carbon sequestered, and (5)
cropping (land-use) management factor, where information (1) and (2) are used in eqs. 6
and 7 as ecological constraints on land uses, and (3)-(5) are used for calculating per unit
objective values, f1, f2 and f3, given by eqs. 1-3, respectively. As per the dynamic formu-
lation, addressed in sec. 3.3, data related with eqs. 1-3, 8 and 9 are required year-wise over
a planning horizon. However, since these were provided as average values over a planning
horizon, the time-scale of the dynamic model has been just ignored. The data on land uses
are given in Table 2, where ranges of patch-area or total area are in percentages of total
landscape area. It is seen from Table 2 that maximum economic value can be gained from
annual agriculture. However, no carbon sequestration takes place from this land-use, and
soil loss is also maximum. Carbon sequestration is maximum under forestry. On the other
hand, soil loss is minimum under shrubs only, in which case, economic gain is minimum.
Hence, solutions of the problem should find compromised sets of these values. It has been

3Ranges of total permissible areas under different land uses were not provided in the original problem.
These have been considered arbitrarily in the present work for illustrative purpose only.
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Table 2: Ecological constraints on land uses, and per unit outcome.

Land-Use

Ecological Constraints
Per Unit Outcome

Range of Range of
Patch-Area Total Area Eco. Carbon Crop.

(in %) (in %) Value Sequest. Factor

Annual agri. [0.09,3.35] [10,30] 12 0.0 0.3

Permanent agri. [0.09,3.35] [10,30] 10 0.5 0.1

Mixed agri. [0.12,13.00] [10,30] 7 0.1 0.3

Forest [0.11,11.55] [10,30] 8 1.6 0.1

Shrubs [0.05,3.50] [10,30] 1 0.4 0.02

observed that NSGA-II-LUM is able to find solutions, maintaining good trade-off among
different objective functions.

The results, obtained from the use of NSGA-II-LUM on LBAP, are presented here through
one or more of the following plots:

1. Final Pareto Front (set of non-dominated trade-off solutions).

2. Comparison of Pareto fronts under different cases.

3. Computational time.

4. Pattern of land uses scheduled in the landscape.

5. Distribution of areas under different land uses, etc.

6.1 LBAP Without Guidance to Satisfy Patch-Size Constraints

As the first case, LBAP has been considered under XTD, MBC, and MSIS2, without any
guidance for satisfying the patch-size constraints of eq. 6. The EA parameters, crossover
probability (pc), mutation probability (pm), random seed (rs), and population size, have
been chosen as 0.9, 0.05, 0.125 and 50, respectively. Then NSGA-II-LUM has been ex-
ecuted for 5000 generations. There was no feasible solution in the initial population.
Though NSGA-II-LUM has reduced constraint violation to a great extent, it also could
not produce even a single feasible solution in 5000 generations. Fig. 2(a) shows all the
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Figure 2: LBAP without guidance for satisfying patch-size constraints.

obtained solutions, none of which is feasible. Total computational time till 5000 genera-
tions, in Linux environment in a Pentium IV machine with 1.0 GB RAM and 2.933 GHz
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processor, was 78 hours 39 minutes 46 seconds, most of which was exhausted by MBC. As
shown in fig. 2(b), average time required by MBC per generation was 56 seconds.

6.2 LBAP Using Guidance to Satisfy Patch-Size Constraints

Being not succeeded without any guidance to EA search, LBAP has been considered
with the guidance of sec. 4.4 for satisfying the patch-size constraints of eq. 6, both during
initialization and optimization process. In the first case, it has been considered under
XTD, MBC, and MSIS2. The EA parameters have been kept the same as in sec. 6.1.
Then NSGA-II-LUM has been executed for 5000 generations which has taken 82 hours
3 minutes 52 seconds. Local search strategy has taken another 56 minutes 59 seconds for 50
solutions of the final Pareto front of NSGA-II-LUM. The obtained result of this experiment
is shown in fig. 3(a), where it is observed that significant improvements in both values and
spread of the Pareto front of NSGA-II-LUM have been obtained from the local search.
The size of the Pareto front has also been reduced from 50 to 32. Next, LBAP has been
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Figure 3: Solutions of LBAP using guidance to satisfy patch-size constraints.

considered with XBC, in place of XTD. Other conditions have been kept the same as
before. In this case, NSGA-II-LUM has taken 80 hours 12 minutes 10 seconds to complete
5000 generations. Local search strategy has taken another 58 minutes 41 seconds for 50
solutions of the final Pareto front of NSGA-II-LUM. That is, the execution time is almost
the same with that of the earlier case. The obtained result is shown in fig. 3(b). In this
case also, significant improvements in both values and spread of Pareto front of NSGA-
II-LUM have been obtained from the local search. Moreover, the size of the Pareto front
has been reduced from 50 to 21. However, comparatively better results were obtained
from the use of XTD. The poor performance of XBC may be due to the number of
Hamming cells of two parents, used in generating new solutions. Due to lack of any prior
knowledge, it was considered the same with pc (= 0.90), i.e., 90% of Hamming cells of a
parent was considered for generating a new solution. Perhaps, it is necessary to acquire
some knowledge on the effective percentage of Hamming cells (let it be denoted by ph)
that can be used in XBC for generating good solutions. In this regard, an experiment has
been done where ph in an initial solution is set randomly. Then it is allowed to evolve
in successive generations. This evolution is made by polynomial mutation of real number
(Deb [13]) with 100% probability. The polynomial probability distribution index (Deb
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Figure 4: Evolving percentage of Hamming cells against objective functions of LBAP.

[13]), for mutating ph, has been considered 30 in this experiment. Then LBAP has been
solved nine times for nine different values of rs. Plots of objective function versus ph for
final Pareto fronts of NSGA-II-LUM are shown in fig. 4. Though the final Pareto fronts
have been improved under evolving ph over those under fixed ph (plots are not shown),
no specific range of evolution of ph could be obtained from any of the figs. 4(a)-4(c). The
values of ph vary, almost uniformly, within 0-100% for all three objective functions. For
different sets of values of pc, pm and rs, each of the Pareto fronts of all nine runs of LBAP
with evolving ph under XBC have been compared with the Pareto front of LBAP under
XTD (plots are not shown), where it is observed that performance of XTD is better than
XBC in all nine cases.

6.3 Distribution of Land Uses in LBAP by NSGA-II-LUM

After solving a problem, it is required to see the structure of the obtained solution(s).
In this regard, the final Pareto fronts, shown in fig. 3(a), have been considered to study
the distribution of land uses in LBAP. Three solutions from the Pareto front of NSGA-
II-LUM have been selected, covering the extreme values of the objective functions. The
distribution of land uses in these solutions are shown in figs. 5(a)-5(c). Figs. 5(e) and 5(f)
show two solutions from the Pareto front after local search, which also cover the extreme
values of the objective functions, other than the minimum value of f3. It is observed in all
five solutions that each land-use has been allotted to a number of patches of different sizes,
varying from very small to very large. The patch-size could be controlled by altering the
permissible range of area in a patch. Similarly, the number of patches for a land-use could
also be controlled by imposing a limit on it. However, it observed in figs. 5(e) and 5(f)
that, not only objective values have been improved from local search, but patch-sizes have
also been increased. It is also observed in the figures that XTD has resulted in straight
edges to many patches, which would definitely be preferred by land managers from the
point of view of maintenance. A major observation from fig. 5 is that NSGA-II-LUM has
maintained the tendency, in all of the considered solutions, for allocating three land uses
in particular locations of the landscape. Permanent agriculture has been always allotted
over the entire landscape, except the South-West corner where shrubs have been allotted.
Annual agriculture has also been preferred mostly in the South-West corner. However,
no preference of specific locations for mixed agriculture and forest is seen. These two
land uses have been allotted over the entire landscape. Another observation from fig. 5 is
that the total area under a land-use varies with the values of the objective functions. To
study these variations, area under each land-use has been plotted against each objective
function of the solutions in the Pareto front of NSGA-II-LUM of fig. 3(a). The plots are
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(a) f1=84495, f2=6698,
f3=511877, Aa=17.58,
Ap=29.32, Am=13.73,
Af=29.33, As=10.04

(b) f1=78242, f2=7032,
f3=447186, Aa=10.55,
Ap=29.75, Am=14.77,
Af=30.00, As=14.93

(c) f1=78030, f2=7017,
f3=441279, Aa=10.39,
Ap=29.40, Am=15.27,
Af=29.97, As=14.97
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(e) f1=88260, f2=5896,
f3=533360, Aa=25.65,
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Af=24.35, As=10.00

(f) f1=72896, f2=7176,
f3=393450, Aa=10.00,
Ap=27.67, Am=10.00,
Af=29.99, As=22.34

Figure 5: Distribution of land uses in five solutions of the Pareto fronts of fig. 3(a).
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Figure 6: Objective-wise distribution of areas under different land uses in solutions of
fig. 3(a). (1): Annual agriculture, (2): Permanent agriculture, (3): Mixed agriculture, (4):
Forest, and (5): Shrubs.

shown in fig. 6, where it is observed that higher economic return (f1) prefers higher annual
agriculture, and lower mixed agriculture and shrubs. The preferences of higher carbon
sequestration (f2) and lower soil erosion (f3) are just opposite to those of higher f1. On
the other hand, permanent agriculture and forest are preferred to the maximum extent by
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all three objective functions, irrespective to their values.

6.4 Natures of the Objective Functions of LBAP

Another major observation from the Pareto fronts of fig. 3(a) is that all three objective
functions of LBAP are not conflicting. To study the trends clearly, objective functions
have been projected in two-dimensional planes of f1-f2, f1-f3 and f2-f3, the plots of which
are shown in fig. 7. The conflicting trend between f1 and f2 (both are to be maximized)
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Figure 7: Two dimensional projections of the objective functions of the Pareto front of
NSGA-II-LUM shown in fig. 3(a).

is clearly visible in fig. 7(a), which shows the increment in one at the cost of reduction in
the other. Similarly, fig. 7(b) displays the conflicting trend between f1 and f3 (f3 is to be
minimized), where both increase/decrease simultaneously. However, it is seen in fig. 7(c)
that the increment in f2 and reduction in f3 are taking place simultaneously, which is
the requirement of the problem also. Hence, the solution of the extreme right-bottom
corner dominates all other solutions in fig. 7(c), and is the ultimate optimum solution with
respect to these two objectives. To further confirm the trends, LBAP has been solved
again as two-objective optimization problem, separately with f1 and f2, f1 and f3, and f2

and f3. In each of the three cases, eleven runs have been taken with different values of EA
parameters, where it is observed once again that f1 and f2, and f1 and f3 maintain good
conflicting trends with each other, while f2 and f3 tend to converge to a single optimum
solution (plots are not shown here).
Hence, it can be concluded that all three objective functions (f1, f2 and f3, given by eqs. 1-
3, respectively) of land-use management problem are not conflicting with each other, but
pair-wise only f1 and f2, and f1 and f3 are conflicting. On the other hand, f2 and f3 are
correlated to some extent. This observation is also supported by the study of Liu and Bliss
[28], which states that soil erosion and deposition may play important roles in balancing
the global carbon budget by reducing emissions of CO2 from the soil by exposing low
carbon bearing soil at eroding sites, and burying carbon at depositional sites.

7 Conclusions

To fulfill different kinds of immediate needs of human society, land uses are being con-
tinuously changed without any attention to their long term environmental impacts, and
thus affecting the natural balance of the environment. Hence, it has become urgent need
to manage land uses scientifically to safeguard the environment from being further de-
stroyed. Before applying it in real-field, mechanistic models are needed to be developed
for improving the understanding of the overall impact from various land uses. However,
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very little work has been done so far in this area. Hence, NSGA-II-LUM, a spatial-
GIS based multi-objective evolutionary algorithm, has been developed for three objective
functions: maximization of economic return, maximization of carbon sequestration and
minimization of soil erosion, where the latter two are burning topics to today’s researchers
as the remedies to global warming and soil degradation. NSGA-II-LUM has been applied
to a Mediterranean landscape from Southern Portugal, and observed that:

1. NSGA-II-LUM is able to maintain good trade-off among the objective functions.
Moreover, it has the tendency for allocating a particular land-use in a particular
location of the landscape.

2. Higher economic return prefers higher annual agriculture, and lower mixed agri-
culture and shrubs. The preferences of higher carbon sequestration and lower soil
erosion are just opposite to those of higher economic return.

3. Permanent agriculture and forest are preferred to the maximum extent by all three
objective functions, irrespective to their values.

4. Both carbon sequestration and soil erosion conflict with economic return. However,
carbon sequestration and soil erosion are correlated.
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