Strategies to stabilize exohedral η^5- and η^6-fullerene transition metal organometallic complexes: A molecular orbital treatment

E. D. Jemmis* and M. Manoharan
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

Transition metal fragments are designed to overcome the unfavourable interaction arising from the splayed-out π-orbitals of the five- and six-membered rings of C$_{60}$ in complex formation. Semiempirical studies at the PM3(tm) level on a series of C$_{60}$MC$_n$H$_n$ complexes suggest that, with the appropriate transition metal fragment, it is possible to stabilize η^6-complexes of C$_{60}$. Isodesmic equations of the type C$_m$H$_n$MC$_n$H$_n$ + C$_{60}$ \rightarrow C$_m$H$_n$C$_{60}$H$_n$ + C$_m$H$_n$ indicate that C$_5$H$_5$Co and C$_5$H$_5$Rh are ideal fragments in stabilizing η^5-C$_{60}$ complexes. In comparison, η^6-complexes are less favourable; structural modifications such as those in the recently synthesized C$_{60}$Ph$_5$ should readily help η^5-bonding.

WITH their five- and six-membered rings, it is tempting to speculate a rich organometallic chemistry for fullerenes along the same lines as ferrocene (C$_5$H$_5$)Fe and dibenzene chromium (C$_5$H$_5$)Cr. However, the transition metal organometallic chemistry of fullerenes, so far, is dominated by η^5-bonding$^{1-14}$ akin to olefin complexes. η^5- and η^6-complexes involving the five- and six-membered rings of fullerenes are unknown$^{15-18}$. The propensity for η^5-complexes is readily understood from the strain energy release involved in the complex formation; the geometry around carbon in C$_{60}$ is remarkably close to that in the olefin complex19,20. On the other hand, the decreased overlap of the splayed out orbitals of five- and six-membered rings of C$_{60}$ with the frontier orbitals of transition metal fragments makes η^5- and η^6-complexes unfavourable20,21. The only η^5-organometallic complex reported for a curved polyaromatic hydrocarbon involved corannulene which is much less curved than C$_{60}$ (ref. 22). We present here ways to enhance the overlap of transition metal fragment orbitals with the five- and six-membered rings of C$_{60}$ and predict viable targets for synthesis based on theoretical studies.

The rigid structure of C$_{60}$ (refs 23–25) cluster does not permit many avenues to enhance exohedral η^5- and η^6-bonding without dramatic alterations in the structure. Therefore, we concentrate on the metal fragment first. If the frontier orbitals of the transition metal fragments can be made more diffuse, the overlap with the splayed out orbitals of five- and six-membered rings can be improved. The frontier orbitals of transition metal

fragments can be controlled to a large extent by the ligands around it. For example, the diffuse nature of the fragment orbitals increases on going from η^5-C$_5$H$_5$M to η^1-C$_5$H$_5$M (Figure 1)26. In any such exercise, the electron count that is necessary to form a stable electronic structure has to be maintained. Hence, we selected the complexes of C$_{60}$ and C$_{60}$H$_{2n}$ (refs 27, 28) with metal fragments C$_n$H$_n$M ($n = 3–6$; $M =$ transition metal) for theoretical study. The structures (1–14) studied here are given in Figure 2.

In view of the number and size of the molecules involved, the semiempirical MO method PM3(tm) with the parameters for transition metal provided by Hehre et al. is used for all calculations29,30. The reliability of the method is tested for both geometry and energy of experimentally known complexes. Figure 3 shows crucial geometric parameters computed using PM3(tm) and found experimentally for C$_5$H$_5$Co(CO)$_3$, C$_5$H$_5$Fe(CO)$_3$, C$_5$H$_5$Mn(CO)$_3$ and C$_5$H$_5$Cr(CO)$_3$ or its derivatives$^{31-34}$. These are in reasonable agreement. A check on the reliability of energetics at this level is made by comparing the experimental value of the energy of the following reaction with the computed value (eq. 1)35. The calculated value of 6.1 kcal/mol is in good accordance with the experimental value of 4.5 kcal/mol (ref. 36). This is also comparable to the estimate of 2.1 kcal/mol made using the PRDDO method21. Similar isodesmic equations37 are used to estimate the improvements brought by various transition metal fragments in binding to fullerene.

C$_5$H$_5$Cr(CO)$_3$ + C$_5$H$_5$Cl \rightarrow η^6-C$_5$H$_5$ClCr(CO)$_3$ + C$_5$H$_5$: \[\Delta E = 6.1 \text{ kcal/mol} \] (1)

Let us consider the isodesmic eqs (2)–(5) that involve η^6-C$_{60}$ complex. As anticipated, dibenzenechromium is considerably more favourable than η^5-C$_{60}$CrC$_{60}$H$_{14}$(1) (eq. 2). The endothermicity of the reactions decreases from 30.8 kcal/mol with η^5-C$_5$H$_5$M to 1.6 kcal/mol with η^5-C$_5$H$_5$M. Evidently, the diffuse frontier orbitals of η^5-C$_5$H$_5$Co help in increasing the interaction with C$_{60}$. Additional enhancement of diffuse nature of the metal fragment orbitals is achieved by going down the periodic

*For correspondence. (e-mail: jemmis@uohyd.ernet.in)

Figure 1. Schematic representation of the variation in the diffuse nature of the C$_n$H$_n$M fragment as a function of n.

CURRENT SCIENCE, VOL. 76, NO. 8, 25 APRIL 1999
Figure 2. ΔH_f and selected geometric parameters of \((\eta^6-C_6H_6)_2M(\eta^8-C_60)\) \(1-9\) and \((\eta^6-C_6H_6)_2M(\eta^8-C_60H_5)\) \(10-14\) at PM3(tm) level.

<table>
<thead>
<tr>
<th>Structure no.</th>
<th>M</th>
<th>n</th>
<th>m</th>
<th>ΔH_f (kcal/mol)</th>
<th>r_1 (Å)</th>
<th>r_2 (Å)</th>
<th>θ_1 (deg.)</th>
<th>θ_2 (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cr</td>
<td>6</td>
<td>6</td>
<td>977.2</td>
<td>2.213</td>
<td>2.246</td>
<td>3.2</td>
<td>35.5</td>
</tr>
<tr>
<td>2</td>
<td>Mn</td>
<td>5</td>
<td>6</td>
<td>769.4</td>
<td>2.118</td>
<td>2.196</td>
<td>4.1</td>
<td>34.3</td>
</tr>
<tr>
<td>3</td>
<td>Fe</td>
<td>4</td>
<td>6</td>
<td>699.9</td>
<td>2.005</td>
<td>2.151</td>
<td>9.6</td>
<td>35.1</td>
</tr>
<tr>
<td>4</td>
<td>Co</td>
<td>3</td>
<td>6</td>
<td>-741.3</td>
<td>1.985</td>
<td>2.170</td>
<td>27.6</td>
<td>35.6</td>
</tr>
<tr>
<td>5</td>
<td>Rh</td>
<td>3</td>
<td>6</td>
<td>584.9</td>
<td>2.105</td>
<td>2.256</td>
<td>28.2</td>
<td>35.8</td>
</tr>
<tr>
<td>6</td>
<td>Cr</td>
<td>6</td>
<td>5</td>
<td>1003.1</td>
<td>2.209</td>
<td>2.182</td>
<td>1.2</td>
<td>35.2</td>
</tr>
<tr>
<td>7</td>
<td>Mn</td>
<td>5</td>
<td>5</td>
<td>795.5</td>
<td>2.115</td>
<td>2.139</td>
<td>3.1</td>
<td>33.9</td>
</tr>
<tr>
<td>8</td>
<td>Fe</td>
<td>6</td>
<td>5</td>
<td>637.8</td>
<td>2.110</td>
<td>2.119</td>
<td>3.1</td>
<td>31.3</td>
</tr>
<tr>
<td>9</td>
<td>Co</td>
<td>5</td>
<td>5</td>
<td>-802.8</td>
<td>2.083</td>
<td>2.147</td>
<td>4.9</td>
<td>32.6</td>
</tr>
<tr>
<td>10</td>
<td>Mn</td>
<td>6</td>
<td>5</td>
<td>619.5</td>
<td>2.153</td>
<td>2.144</td>
<td>0.6</td>
<td>19.3</td>
</tr>
<tr>
<td>11</td>
<td>Fe</td>
<td>5</td>
<td>5</td>
<td>498.7</td>
<td>2.086</td>
<td>2.077</td>
<td>2.6</td>
<td>18.7</td>
</tr>
<tr>
<td>12</td>
<td>Co</td>
<td>4</td>
<td>5</td>
<td>-917.7</td>
<td>2.032</td>
<td>2.119</td>
<td>13.5</td>
<td>20.8</td>
</tr>
<tr>
<td>13</td>
<td>Ni</td>
<td>3</td>
<td>5</td>
<td>383.2</td>
<td>2.002</td>
<td>2.167</td>
<td>21.0</td>
<td>20.9</td>
</tr>
<tr>
<td>14</td>
<td>Pd</td>
<td>3</td>
<td>5</td>
<td>688.3</td>
<td>2.085</td>
<td>2.238</td>
<td>32.5</td>
<td>21.1</td>
</tr>
</tbody>
</table>

Table to Rh; eq. 6 (Figure 4) is calculated to be exothermic by 11.4 kcal/mol. The possibility of increasing the metal-C$_{60}$ interactions using heavier metals had been suggested by Marynick21. This is indeed an encouraging result and is to be compared to the reactions that are acknowledged to be

$$C_6H_6CrC_6H_6 + C_{60} \rightarrow \eta^6-C_{60}CrC_6H_6[1] + C_6H_6;$$

$\Delta E = 30.8$ kcal/mol \hspace{1cm} (2)

$$C_6H_6MnC_6H_6 + C_{60} \rightarrow \eta^6-C_{60}MnC_6H_6[2] + C_6H_6;$$

$\Delta E = 20.8$ kcal/mol \hspace{1cm} (3)

$$C_6H_6FeC_6H_6 + C_{60} \rightarrow \eta^6-C_{60}FeC_6H_6[3] + C_6H_6;$$

$\Delta E = 28.7$ kcal/mol \hspace{1cm} (4)

$$C_3H_3CoC_6H_6 + C_{60} \rightarrow \eta^6-C_{60}CoC_3H_3[4] + C_6H_6;$$

$\Delta E = 1.6$ kcal/mol \hspace{1cm} (5)

$$C_3H_3RhC_6H_6 + C_{60} \rightarrow \eta^6-C_{60}RhC_3H_3[5] + C_6H_6;$$

$\Delta E = -11.4$ kcal/mol \hspace{1cm} (6)

favourable experimentally. For example, eq. (7) which compares an ethylene complex to the η^2-C$_{60}$ complex is exothermic by 22.1 kcal/mol. Thus, transition metal fragments of the type η^2-C$_3$R$_3$M

$$\eta^2-C_2H_2Ni(PH_3)_2 + C_{60} \rightarrow \eta^2-C_{60}Ni(PH_3)_2 + C_2H_2;$$

$\Delta E = -22.1$ kcal/mol \hspace{1cm} (7)
should be able to support η^6-complexes of C$_{60}$. The structure of η^5-C$_{60}$RhC$_3$H$_3$(S) shown in Figure 4 presents an interesting conformational problem. The C–C bonds of a six-membered ring in C$_{60}$ are not equal in length38. This leads to three distinct arrangement a, b and c (Figure 4). The conformation a is calculated to be more favourable than b by 2.8 kcal/mol. This is true with the qualitative results available on C$_{60}$M(CO)$_3$ complexes39. Conformation c goes to a on optimization. The geometric parameters (Figure 2) calculated for various structures follow expected trends.

From the point of view of ring-size and π-metal orbital-overlap alone η^5-C$_{60}$ should be better than η^6-C$_{60}$ in binding to transition metal fragments. The angle subtended by a C–C bond with the plane of five- and six-membered rings are found to be 31.7° and 35.3° respectively38. Thus, the π-orbitals of the five-membered face should be less unfavourable than those of the six-membered face. However, η^5-C$_{60}$ binding brings in some constraints of electron counting. If the C$_3$ ring in C$_{60}$ forms an η^7-complex, the remaining C$_{55}$ atoms will be left as an open shell system. This was not so with the η^6-C$_{60}$ complexes. A closed shell C$_{55}$ unit can be obtained by forcing the η^5-C$_{60}$ to bind either as a 4-electron donor leaving a formal C$_{55}^-$ unit or as a 6-electron donor with a formal C$_{55}^+$ unit. η^5-C$_{60}$CrC$_3$H$_3$(6) and η^5-C$_{60}$MnC$_3$H$_3$(7) constitute examples for C$_{60}$ as an η^5-six-electron ligand. These complexes are calculated to have the charges of +0.144 and +0.077 respectively in the C$_{55}$ unit. C$_{60}$ is forced to be an η^5-four-electron donor in η^5-C$_{60}$FeC$_3$H$_3$(8) and η^5-C$_{60}$CoC$_3$H$_3$(9) and hence the C$_{55}$ unit in these complexes are calculated to have −0.495 and −0.167 charge respectively. None of these complexes are favourable in relation to the isolated C$_{60}$ and the corresponding metallocene; eqs (8)–(11) are all endothermic, by larger magnitudes than those of comparable eqs (2) and (3) involving η^6-C$_{60}$.

$$
\text{C}_6\text{H}_5\text{CrC}_3\text{H}_3 + \text{C}_{60} \rightarrow \eta^5\text{-C}_{60}\text{CrC}_3\text{H}_3[6] + \text{C}_6\text{H}_6;
\Delta \text{E} = 56.7 \text{ kcal/mol} \quad (8)
$$

$$
\text{C}_6\text{H}_5\text{MnC}_3\text{H}_3 + \text{C}_{60} \rightarrow \eta^5\text{-C}_{60}\text{MnC}_3\text{H}_3[7] + \text{C}_6\text{H}_6;
\Delta \text{E} = 46.9 \text{ kcal/mol} \quad (9)
$$

$$
\text{C}_6\text{H}_5\text{FeC}_3\text{H}_4 + \text{C}_{60} \rightarrow \eta^5\text{-C}_{60}\text{FeC}_3\text{H}_4[8] + \text{C}_6\text{H}_4;
\Delta \text{E} = 42.2 \text{ kcal/mol} \quad (10)
$$

$$
\text{C}_6\text{H}_5\text{CoC}_3\text{H}_4 + \text{C}_{60} \rightarrow \eta^5\text{-C}_{60}\text{CoC}_3\text{H}_4[9] + \text{C}_6\text{H}_4;
\Delta \text{E} = 52.0 \text{ kcal/mol} \quad (11)
$$

Figure 3. Selected bond angles of C$_{60}$M(CO)$_3$ complexes computed at PM3(tm) level and corresponding experimental values.

Figure 4. Computed structure of η^5-C$_{60}$RhC$_3$H$_3$ complex (5). The structures a, b and c represent the orientation of C$_3$H$_3$ in relation to the six-membered ring of C$_{60}$: a is found to be lower in energy than b by 2.8 kcal/mol.
Obviously, the overlap factor alone cannot explain these results. A possible explanation comes from the electronic structure of C_{60} itself; the delocalization of electrons in C_{60} is dominated by the C_{6} rings. The pentagon isolation rule is a direct consequence of the meager contribution of the valence bond configurations involving double bonds within the five-membered rings to the electronic structure of C_{60} (refs 40–45). The five-membered ring is not naturally available to participate in bonding as a conventional cyclopentadienyl unit. Forcing the C_{5} unit to act a penta-hapto ligand perturbs the electronic structure considerably and hence the complexes are not favourable. One of the ways of overcoming the dilemma of the open shell C_{55} unit faced above is to form derivatives of C_{60} such as the recently synthesized \eta^{5}-C_{60}Ph_{5}Ti (ref. 28). This has a regular five-membered ring which can act as an isolated cyclopentadienyl anion. We have examined the \eta^{5}-complexes of C_{60}H^{2+} (10–14). Equations (12)–(16) are endothermic, but this is more due to the extra stabilization anticipated for a large iron vs a small iron. However, even here the advantage of using metal fragments with more diffuse orbitals is clear as found in \eta^{6}-C_{60} complexes. A heavier metal reduces the endothermicity; eq. (16) is almost thermonutral.

\begin{align}
C_{6}H_{5}MnC_{5}H_{5}^{+} + C_{6}H_{6}^{+} & \rightarrow \eta^{5}-C_{60}H_{2}MnC_{5}H_{6}[10] + C_{5}H_{5}^{+}; \\
\Delta & E = 32.6 \text{ kcal/mol} \quad (12) \\
C_{6}H_{5}FeC_{5}H_{5}^{+} + C_{6}H_{6}^{+} & \rightarrow \eta^{5}-C_{60}H_{2}FeC_{5}H_{6}[11] + C_{5}H_{5}^{+}; \\
\Delta & E = 38.1 \text{ kcal/mol} \quad (13) \\
C_{6}H_{5}CoC_{5}H_{5}^{+} + C_{6}H_{6}^{+} & \rightarrow \eta^{5}-C_{60}H_{2}CoC_{5}H_{6}[12] + C_{5}H_{5}^{+}; \\
\Delta & E = 23.7 \text{ kcal/mol} \quad (14) \\
C_{6}H_{5}NiC_{5}H_{5}^{+} + C_{6}H_{6}^{+} & \rightarrow \eta^{5}-C_{60}H_{2}NiC_{5}H_{6}[13] + C_{5}H_{5}^{+}; \\
\Delta & E = 20.7 \text{ kcal/mol} \quad (15) \\
C_{6}H_{5}PdC_{5}H_{5}^{+} + C_{6}H_{6}^{+} & \rightarrow \eta^{5}-C_{60}H_{2}PdC_{5}H_{6}[14] + C_{5}H_{5}^{+}; \\
\Delta & E = 7.0 \text{ kcal/mol} \quad (16)
\end{align}

The effect of the inherent extra stability of the larger ion, C_{60}H^{+}, can be removed by employing the corresponding protonated species in the equations. For example, when these reactions are calculated with C_{60}H_{6} and C_{6}H_{6} instead of C_{60}H^{+} and C_{5}H_{5}^{+}, the reactions (eqs (17)–(21)) are found to be more favourable. Similar estimates can also be made by using \eta^{5}-C_{60}H_{2}Li and \eta^{5}-C_{60}H_{2}Li (eqs (22)–(26)) with comparable results.

\begin{align}
C_{6}H_{6}MnC_{5}H_{5} + C_{6}H_{6} & \rightarrow \eta^{5}-C_{60}H_{2}MnC_{5}H_{6}[10] + C_{5}H_{5}; \\
\Delta & E = -5.4 \text{ kcal/mol} \quad (17) \\
C_{6}H_{5}FeC_{5}H_{5} + C_{6}H_{6} & \rightarrow \eta^{5}-C_{60}H_{2}FeC_{5}H_{6}[11] + C_{5}H_{5}; \\
\Delta & E = 0.1 \text{ kcal/mol} \quad (18)
\end{align}

\begin{align}
C_{6}H_{5}CoC_{5}H_{5} + C_{6}H_{6} & \rightarrow \eta^{5}-C_{60}H_{2}CoC_{5}H_{6}[12] + C_{5}H_{5}; \\
\Delta & E = -14.3 \text{ kcal/mol} \quad (19) \\
C_{6}H_{5}NiC_{5}H_{5} + C_{6}H_{6} & \rightarrow \eta^{5}-C_{60}H_{2}NiC_{5}H_{6}[13] + C_{5}H_{5}; \\
\Delta & E = -17.3 \text{ kcal/mol} \quad (20) \\
C_{6}H_{5}PdC_{5}H_{5} + C_{6}H_{6} & \rightarrow \eta^{5}-C_{60}H_{2}PdC_{5}H_{6}[10] + C_{5}H_{5}; \\
\Delta & E = -30.9 \text{ kcal/mol} \quad (21) \\
C_{6}H_{5}MnC_{5}H_{5} + \eta^{5}-C_{60}H_{2}Li & \rightarrow \eta^{5}-C_{60}H_{2}MnC_{5}H_{6}[10] + C_{5}H_{5}; \\
\Delta & E = -12.2 \text{ kcal/mol} \quad (22) \\
C_{6}H_{5}FeC_{5}H_{5} + \eta^{5}-C_{60}H_{2}Li & \rightarrow \eta^{5}-C_{60}H_{2}FeC_{5}H_{6}[11] + C_{5}H_{5}; \\
\Delta & E = -5.4 \text{ kcal/mol} \quad (23) \\
C_{6}H_{5}CoC_{5}H_{5} + \eta^{5}-C_{60}H_{2}Li & \rightarrow \eta^{5}-C_{60}H_{2}CoC_{5}H_{6}[12] + C_{5}H_{5}; \\
\Delta & E = -21.1 \text{ kcal/mol} \quad (24) \\
C_{6}H_{5}NiC_{5}H_{5} + \eta^{5}-C_{60}H_{2}Li & \rightarrow \eta^{5}-C_{60}H_{2}NiC_{5}H_{6}[13] + C_{5}H_{5}; \\
\Delta & E = -24.1 \text{ kcal/mol} \quad (25) \\
C_{6}H_{5}PdC_{5}H_{5} + \eta^{5}-C_{60}H_{2}Li & \rightarrow \eta^{5}-C_{60}H_{2}PdC_{5}H_{6}[14] + C_{5}H_{5}; \\
\Delta & E = -37.8 \text{ kcal/mol} \quad (26)
\end{align}

We conclude that C_{6}H_{5}M fragments would provide largely diffuse frontier orbitals to stabilize the \eta^{5}-C_{60} transition metal complexes. Isodesmic equations indicate that \eta^{6}-C_{60}RhC_{5}H_{5} (Figure 4) should be one of the best possibilities. \eta^{5}-C_{60} complexes are more unfavourable. Structural modifications such as the recently synthesized C_{60}Ph_{5}Ti would help to form \eta^{5}-complexes.

RESEARCH COMMUNICATIONS

35. Other AH\textsubscript{f} values (kcal/mol) at PM3(tm) involved in the isodesmic equations are C\textsubscript{6}H\textsubscript{4} = 23.5, C\textsubscript{6}H\textsubscript{5} = 15.9, C\textsubscript{6}H\textsubscript{2} = 99.1, C\textsubscript{6}H\textsubscript{3}Cl = 16.7, C\textsubscript{6}H\textsubscript{2} = 31.8, C\textsubscript{6}H\textsubscript{2} = 16.6, C\textsubscript{6}H\textsubscript{2}Li = 35.9, C\textsubscript{6}H\textsubscript{2}Na(FH\textsubscript{3})\textsubscript{2} = -350.0, C\textsubscript{6}H\textsubscript{2}CrC\textsubscript{6}H\textsubscript{5} = 158.1, C\textsubscript{6}H\textsubscript{2}MnC\textsubscript{6}H\textsubscript{5} = -39.7, C\textsubscript{6}H\textsubscript{2}FeC\textsubscript{6}H\textsubscript{5} = -117.2, C\textsubscript{6}H\textsubscript{2}CoC\textsubscript{6}H\textsubscript{5} = -1531.2, C\textsubscript{6}H\textsubscript{2}RhC\textsubscript{6}H\textsubscript{5} = -192.1, C\textsubscript{6}H\textsubscript{2}FeC\textsubscript{6}H\textsubscript{5} = -166.0, C\textsubscript{6}H\textsubscript{2}CoC\textsubscript{6}H\textsubscript{5} = -568.0, C\textsubscript{6}H\textsubscript{2}NiC\textsubscript{6}H\textsubscript{5} = -264.1, C\textsubscript{6}H\textsubscript{2}PdC\textsubscript{6}H\textsubscript{5} = 54.6, C\textsubscript{6}H\textsubscript{2}Cr(CO)\textsubscript{3} = -45.2, C\textsubscript{6}H\textsubscript{2}Cl(C\textsubscript{6}H\textsubscript{5})\textsubscript{2} = -45.9, C\textsubscript{6}H\textsubscript{2} = 81.8, C\textsubscript{6}H\textsubscript{3} = 423.0.

ACKNOWLEDGEMENTS. Financial support from the Department of Science and Technology is gratefully acknowledged. The help of Mr Pankaz Kumar Sharma in the preparation of this manuscript is appreciated.

Received 26 March 1999; revised accepted 5 April 1999