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Strategies to stabilize exohedral
7°- and n°-fullerene transition

metal organometallic complexes:
A molecular orbital treatment

E. D. Jemmis* and M. Manoharan
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

Transition metal fragments are designed to overcome
the unfavourable interaction arising from the
splayed-out ;t-orbitals of the five- and six-membered
rings of Cg in complex formation. Semiemprical
studies at the PM3(tm) level on a series of C;(¢(MC,H,,
complexes suggest that, with the appropriate transi-
tion metal fragment, it is possible to stabilize 7°-
complexes of Cg4y. Isodesmic equations of the type
C.H,MC,H, + C5 > C,(ocMC,H, + C,H, indicate
that C;H;Co and C;H;Rh are ideal fragments in
stabilizing 7% Cg complexes. In comparison, 7°-
complexes are less favourable; structural modifica-
tions such as those in the recently synthesized
CePhs™ should readily help #°-bonding.

WITH their five- and six-membered rings, it is tempting
to speculate a rich organometallic chemistry for
fullerenes along the same lines as ferrocene (C,Hs);Fe
and dibenzene chromium (CiHg);Cr. However, the
transition metal organometallic chemistry of fullerenes,
so far, 1s dominated by n*-bonding'™'* akin to olefin
complexes. n°- and 7°-complexes involving the five- and
six-membered rings of fullerenes are unknown""™'®. The
propensity for n-complexes is readily understood from
the strain energy release involved in the complex for-
mation; the geometry around carbon 1n Cgy is remarka-
bly close to that in the olefin complex'”*°. On the other
hand, the decreased overlap of the splayed out orbitals
of five- and six-membered rings of Cgo with the frontier
orbitals of transition metal fragments makes n°- and n°-
complexes unfavourable®®*'. The only n®-organometallic
complex reported for a curved polyaromatic hydrocar-
bon involved corannulene which 1s much less curved
than Cgq (ref. 22). We present here ways to enhance the
overlap of transition metal {fragment orbitals with the
five- and six-membered rings of Cg and predict viable
targets for synthesis based on theorctical studies.

The rigid structure of Cg (refs 23-25) cluster docs
not permit many avenues to enhance exohedral n°- and
7°-bonding without dramatic alterations in the structure.

Therefore, we concentrate on the metal fragment first. I{

the frontier orbitals of the transition metal fragments can
be made more diffuse, the overlap with the splayed out
orbitals of five- and six-membered rings can be tm-
proved. The frontier orbitals of transition meial
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fragments can be controlled to a large extent by the li-
gands around it. For example, the diffuse nature of the
fragment orbitals increases on going from nG-C{,Hr,M to
n°-C3H;M (Figure 1)*°. In any such exercise, the elec-
tron count that is necessary to form a stable electronic
structure has to be maintained. Hence, we selected the
complexes of Cgo and CgoHs™ (refs 27, 28) with metal
fragments C,H,M (n =3-6; M = transition metal) for
theoretical study. The structures (1-14} studied here are
given in Figure 2.

In view of the number and size of the molecules in-
volved, the semiempirical MO method PM3(tm) with the
parameters for transition metal provided by Hehre et al.
is" used for all calculations®°. The reliability of the
method 1s tested for both geometry and energy of ex-
perimentally known complexes. Figure 3 shows crucial
geometric parameters compuied using PM3(tm) and
found experimentally for C;H;Co(CO);, C4H4Fe(CO)s,
CsHMn(CO); and C¢H(Cr(CO), or its derivatives’ ™°.
These are 1n reasonable agreement. A check on the reli-
ability of energetics at this level 1s made by comparing
the experimental value of the energy of the following
reaction with the computed value (eq. 1)*. The calcu-
lated value of 6.1 kcal/mol is in good accordance with the
experimental value of 4.5 kcal/mol (ref. 36). This is also
comparable to the estimate of 2.1 kcal/mol made using the
PRDDO method®'. Similar isodesmic equations’’ are uscd
to estimate the improvements brought by various transi-
tion metal fragments in binding to fullerene.

CsH(Cr(CO); + CiHsCl = 7°-CHsCICr(CO); + CeHa;
AE = 6.1 kcal/mol (1)

Let us consider the isodesmic eqs (2)—(5) that involve
n°-Cso complex. As anticipated, dibenzenechromium is
considerably more favourable than nﬁ-CﬁgCrCﬁHﬁ(l) (eq.
2). The endothermicity of the reactions decreases from
30.8 kcal/mol with n%-CHM to 1.6 kcal/mol with 7°-
C.H:M. Evidently, the diffuse frontier orbitals of #'-
C;H;Co help in increasing the interaction with Cgp. Addt-
tional enhancement of diffuse nature of the metal frag-
ment orbitals is achieved bv going down the periodic
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Figure 1. Schematic representalion of the variation in the ditfuse
nature of the C,H,M fragment as a function of a.
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no. M n m  (kcal/mol) (A) (A) (deg.) (deg.)
1 Cr 6 6 977.2 2.213 2.246 3.2 35.5
2 Mn 5 6 769.4 2.1)8 2.196 4.1 34.3
3 Fe 4 6 699.9 2.005 2.151 0.6 35.1
4 Co 3 6 -741.3 1.985 2.170 27.6 35.6
) Rh 3 6 584 .9 2.105 2.256 28.2 35.8
6 Cr 6 5 1003.1 2.209 2.182 1.2 35.2
7 Mn 5 5 795.5 2.115 2.139 3.1 33.9
8 Fe 6 5 637.8 2.110 2.119 3.1 31.3
9 Co 5 5 -802.8 2.083 2.147 4.9 32.6
10 Mn 6 5 619.5 2.153 2.144 0.6 19.3
11 Fe 5 5 498.7 2.086 2.077 2.6 18.7
12 Co 4 5 -917.7 2.032 2.119 13.5 20.8
13 Ni 3 5 383.2 2.002 2.167 21.0 20.9
14 Pd 3 5 688.3 2.085 2.238 32.5 21.1

Figure 2. AHA; and
(n™-CeoHs){10-14] at PM3(tm) level.

table to Rh; eq. 6 (Figure 4) is calculated to be exother-
mic by 11.4 kcal/mol. The possibility of increasing the
metal-Cg, interactions using heavier metals had been sug-
gested by Marynick®. This is indeed an encouraging re-
sult and is to be compared to the reactions that are

acknowledged to be
CHCrCeHg + Cgp — 7°-CsoCrCsHg[1] + CsHg;

AE = 30.8 kcal/mol (2)
CHMCH + Coo = 1°-CeoMnCsHs[2] + CeH;

AE = 20.8 kcal/mol (3)
CHPeCHs + Cgo — °-CooFeCHy(3] + CeHe;

AE = 28.7 kcal/mol (4)

selected geometric parameters

of (q"-Can)M(r)"'-Cﬁn)[1—9] and (’?”"'C”HH)M
C3H1CoCgH¢ + Cgo = 1°-CeoCoCyHi[4] + C¢Hs:
AE = 1.6 kcal/mol (5)

C3H:RhC¢Hg + Cgo = 17°-CsoRhC3H;[5] + CHg:
AE = ~11.4 kcal/mol (6)

favourable experimentally. For example, eq. (7) which
compares an cthylene complex to the n*-Ceo complex is
exothermic by 22.1 kcal/mol. Thus, transition metal frag-
ments of the type 173-C3R3M

7?-CHNi(PH;); + Ceo — 77-CooNi(PH,); + C:Hy,
AE = -22.1 kcal/mol (7)
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insert

table

here
R 3 4 5 6
M Co Fe Mn Cr
al. PM3{tm) 102.5 97.7 01.9 88.7
exp. 104.0 97.0 92.0 88.0
a2, PM3(tm) 29.0 11.7 7.1 3.7
exp. 26.0 10.8 0.0 -1.7

Figure 3. Selected bond angles of C,H,M(CQO); complexes com-
puted at PM3(tm) level and corresponding expertmental values.

should be able to support n°-complexes of Cg. The
structure of 1°-CgRhC3H,(5) shown in Figure 4 presents
an interesting conformational problem. The C—C bonds of
a six-membered ring in Cgo are not equal in length’ 8 This
leads to three distinct arrangement a, b and ¢ (Figure 4).
The conformation a is calculated to be more favourable
than b by 2.8 kcal/mol. This is true with the qualitative
results available on C{HgM(CO), complexes”. Confor-
mation ¢ goes to a on optimization. The geometric pa-
rameters (Figure 2) calculated for various structures
follow expected trends.

From the point of view of ring-size and s-metal orbital-
overlap alone 1°-Cq should be better than 7°-Cgq in bind-
ing to transition metal fragments. The angle subtended by
a C—C bond with the plane of five- and six-membered
rings are found to be 31.7° and 35.3° respectively’". Thus,
the m-orbitals of the five-membered face should be less
unfavourable than those of the six-membered face. How-
ever, 1°-Cgo binding brings in some constraints of electron
counting. If the Cs ring in Cg forms an n’-complex, the
remaining Css atoms will be left as an open shell system.
This was not so with the ﬂﬁ*C&} complexes. A closed shell
Css unit can be obtained by forcing the #°-Cgo to bind ei-
ther as a 4-clectron donor leaving a formal Css unit or as
a 6-electron donor with a formal Cs' unit. qs -
CeoCrCsHg(6) and 7°-CeoMnCsHs(7) constitute examples
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Figure 4, Computed structure of n°-CeRhC3Hs complex (5). The
structures a, b and ¢ represent the onentation of C3;Hj in relation to

the six-membered ring of Ceo; a is found to be lower in energy than
b by 2.8 kcal/mol.

for C¢g as an vys—six-electron ligand. These complexes are
calculated to have the charges of + 0.144 and + 0.077
respectively in the Css unit. Cgq 18 forced to be an ﬂﬁ-four-
electron donor in ’?S'CﬁoFECﬁHﬁ(S) and ﬂS-C50C0C5H5(9)
and hence the Css unit in these complexes are calculated
to have —0.495 and -0.167 charge respectively. None of
these complexes are favourable in relation to the isolated
Ce¢o and the corresponding metallocene; eqs (8)-(11) are
all endothermic, by larger magnitudes than those of com-
parable egs (2) and (3) involving 7°-Ceo.

CsHCrCeHg + Ceo — 1°-CeoCrCsHg[6] + CsHe;
| AE = 56.7 kcal/mol (8)

CsHsMnCgHg + Cgp — 7°-CooMnCsH;s[7] + CeHs;
AE = 46.9 kcal/mol (9)

CsHgFeC4Hy + Coo — 7°-CeoFeCsHo[8] + C4Hy;

AE = 42.2 kcal/mol (10)
CsHsCoCH, + Cgo — 7°-CeoCoCsHs[9] + CoHy;
AE = 52.0 kcal/mol (11)
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Obviously, the overlap factor alone cannot explain these
results. A possible explanation comes from the elec-
tronic structure of Cg itself**™*; the delocalization of
electrons in Cgp 1s dominated by the Cg ring525‘46'48. The
pentagon isolation rule is a direct consequence of the
meagre contribution of the valence bond configurations
involving double bonds within the five-membered rings
to the electronic structure of Cgp (refs 40-45). The five-
membered ring is not naturally available to participate
in bonding as a conventional cyclopentadienyl unit,
Forcing the Cs unit to act a penta-hapto ligand perturbs
the electronic structure considerably and hence the
complexes are not favourable. One of the ways of over-
coming the dilemma of the open shell Css unit faced
above 1s to form derivatives of Cgy such as the recently
synthesized 7°-CgoPhsT1 (ref. 28). This has a regular five-
membered ring which can act as an isolated cyclopentadi-
enyl anion. We have examined the ns-complexes of
CeoHs (10-14). Equations (12)—(16) are endothermic, but
this 1s more due to the extra stabilization anticipated for a
large 10on vs a small ion. However, even here the advan-
tage of using metal fragments with more diffuse orbitals is
clear as found in 776-C60 complexes. A heavier metal
reduces the endothermicity; eq. (16) 1s almost thermoneu-
tral.

CeHMnCsHs + CeoHs™ — 7°-CeoHsMnCgHg[10] + CsH;s™;
AE = 32.6 kcal/mol (12)

C5H5F6C5H5 + CﬁOHS* — ﬂS—C(g{)HerCSHj[ll] + CSHS_;
AE = 38.1 kcal/mol (13)

C,H,CoCsH;s + CyoHs™ — 1°-CeoHsCoCyH,[12] + CsHs™;
AE = 23.7 kcal/mol (14)

C3H3NiC5H5 + CﬁOHS_ — ﬂS-CE,OHSNiCSHB[lB} + CﬁHS“;
AE = 20.7 kcal/mol (15)

C,H;PdCsHs + CeoHs™ — 17°-CeoHsPdC3Hs[14] + CsHy™;
AE = 7.0 kcal/mol (16)

The effect of the inherent extra stability of the larger
ion, C¢Hs™, can be removed by employing the corre-
sponding protonated species in the equations. For ex-
ample, when these reactions are calculated with CeoHg
and CsHg instead of C¢Hs™ and CsHs™, the reactions (eqgs
(17)-(21)) are found to be more favourable. Similar ¢s-
timates can also be made by using n’-CeHsLi and ?75-
CsH.Li (cqs (22)-(26)) with comparable results.

CﬁH(}M‘ﬂCSI'IS + C(}UI'I(; - ﬂS*C(,“I'ISMﬂCﬁ[I(,[lO] - C_ﬂ}{ﬁ,
AE = -5.4 kcal/mol (17)

CSI‘IgFﬁCSIlg + C(,UI"Iﬁ - ﬂs"CGU}ISFec.‘S}Iﬁ[l l] + CS} lh;

AE = (0.1 kcal/mol (18)
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C4H4C0C5H5 +- Cﬁ[)HG —> US-C60H5COC4H4[12] + C_sH(,;
AE = -14.3 kcal/mol (19)

C3H;NiCsHs + CeoHg = 7°-CeoHsNiC3H5[13] + CsHg:

AE =-17.3 kcal/mol (20)

C3H3PdC5H5 + CﬁoHﬁ — 7?5-C60H5PdC3H3[10] + C5H6;

AE = -30.9 kcal/mol (21)
CﬁHgMﬂC5H5 + ﬂS-Cf,ng,Li >
ﬂs-ctggHsMnCﬁHﬁ[IO] + C5H5Ll,
AE = -12.2 kcal/mol (22)

C5H5FeC5H5 + ﬂS-Cm}HSLi —>
US-C60H5F6C5H5[11] + CSHjLi;

AE = —-6.4 kcal/mol (23)

C4H4COC5H5 + US-C(,{)HSLi -
7°-CeoHsCoCsH,[12] + CsHiLi;
AE = -21.1 keal/mol (24)

C;H;NiCsHs + 17°-CgoHsLi —
7°-CeoHsNiCsH3[13] + CsH;Li;

AE =-24.1 kcal/mol (25)

C3;H;PdCsHs + 7°-CeoHsLi —
n’-CeoHsPdC3H;[14] + CsHsLi;
AE = -37.8 kcal/mol (26)

We conclude that C;H:M fragments would provide
largely diffuse frontier orbitals to stabilize the nﬁ-Cm
transition metal complexes. Isodesmic equations indi-
cate that n°-CgRhC3H; (Figure 4) should be one of the
best possibilities. nS-Cﬁg complexes are more unfavour-
able. Structural modifications such as the recently syn-
thesized CgPhs would help to form ns-complexes.
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