A generalization of the Enright-Varadarajan Modules

R. Parthasarathy

For a semisimple Lie group admitting discrete series Enright and Varadarajan have constructed a class of modules. Denoted $D_{P,\lambda}$ (cf. [3]). Their infinitesimal description based on the theory of Verma modules parallels that of finite dimensional irreducible modules. The introduction of the modules $D_{P,\lambda}$ in [3] was primarily to give an infinitesimal characterization of discrete series but we feel that [3] my well be a starting point for a fresh approach towards dealing with the problem of classification of irreducible representations of a general semisimple Lie algebra.

In order to give more momentum to such an approach we first construct modules which broadly generalize those in [3]. We briefly describe them now.

Let \mathfrak{g}_0 be any real semisimple Lie algebra, $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ a Cartan decomposition and θ the associated Cartan involution. Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be the complexification. Let $U(\mathfrak{g}), U(\mathfrak{k})$ be the enveloping algebras of $\mathfrak{g}, \mathfrak{k}$ respectively and let $U^{\mathfrak{k}}$ be the centralizer of k in $U(\mathfrak{g})$. For each θ stable parabolic subalgebra \mathfrak{q} of \mathfrak{g} we associate in this paper a class of irreducible \mathfrak{k} finite $U(\mathfrak{g})$ modules having the following property: Like finite dimensional irreducible modules and like the Enright-Varadarajan modules $D_{P,\lambda}$, any member of this class comes with a special irreducible \mathfrak{k} -type occurring in it with multiplicity one, with an explicit description of the action of $U^{\mathfrak{k}}$ on the corresponding isotypical \mathfrak{k} -type. We obtain these modules by extending the techniques in [3].

To see in what way these modules are related to the θ invariant parabolic subalgebra \mathfrak{q} we refer the reader to $\S 2$.

When our parabolic subalgebra \mathfrak{q} is minimal in \mathfrak{g} and when rank of \mathfrak{g} = rank of \mathfrak{k} , the calss of $U(\mathfrak{g})$ modules which we associate to this \mathfrak{q} coincides with the class of modules $D_{P,\lambda}$ of [3] (with a slight difference

in parametrization). On the other hand when $\mathfrak{q} = \mathfrak{g}$ is the maximal parabolic subalgebra, the class we obtain is just the class of all finite dimensional irreducible representations of \mathfrak{g} . If \mathfrak{k} has trivial center, the trivial one dimensional $U(\mathfrak{g})$ module is not equivalent to any of the modules $D_{P,\lambda}$ of [3]. This gap is bridged by the introduction of our class of $U(\mathfrak{g})$ modules for every intermediate θ invariant parabolic subalgebra \mathfrak{q} between $\mathfrak{q} = \mathfrak{g}$ and $\mathfrak{q} = a$ θ invariant Borel subalgebra of \mathfrak{g} .

We have to point out that the knowledge of [3] is a necessary prerequisite to read this paper. If an argument or construction needed at some stage of this paper is parallel to that in [3] then instead of repeating them, we simply refer to [3].

§1. θ -stable parabolic subalgebras

As in the introduction, $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ is the complexified Cartan decomposition arising from a real one $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$. Let θ be the Cartan involution. Let \mathfrak{b} the complexification of a fixed Cartan subalgebra \mathfrak{b}_0 of \mathfrak{k}_0 . Then the centralizer of \mathfrak{b} in \mathfrak{g} is a θ stable Cartan subalgebra \mathfrak{h} , of \mathfrak{g} . We can write

$$\mathfrak{h} = \mathfrak{b} + \mathfrak{a}$$

where $\mathfrak{a} = \mathfrak{p} \cap \mathfrak{h}$. Let $\mathfrak{a}_0 = \mathfrak{a} \cap \mathfrak{g}_0$ and $\mathfrak{h}_0 = \mathfrak{h} \cap \mathfrak{g}_0$. Let \triangle be set of roots of $(\mathfrak{g}, \mathfrak{h})$. For α in \triangle , denote by \mathfrak{g}^{α} the corresponding root space.

(1.2) Lemma Let $\mathfrak{r}_{\mathfrak{k}}$ be a Borel subalgebra of \mathfrak{k} containing \mathfrak{b} . Let \mathfrak{q} be a θ stable parabolic subalgebra of \mathfrak{g} containing \mathfrak{h} and assume that \mathfrak{q} contains $\mathfrak{r}_{\mathfrak{k}}$. Then \mathfrak{q} contains a θ stable Borel subalgebra \mathfrak{rg} such that (i) $\mathfrak{h} \subseteq \mathfrak{r}$ and (ii) $\mathfrak{r}_{\mathfrak{k}} \subseteq \mathfrak{r}$.

Proof Let \mathfrak{u} be the unipotent radical of \mathfrak{q} . Define a θ invariant element μ of $\mathfrak{h}^X(=\operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}),\mathbb{C}))$ by $\mu(H)=\operatorname{trace}(\operatorname{ad}(H)\mathfrak{u})$. Let H'_{μ} in \mathfrak{h} be defined by $\lambda(H'_{\mu})=(\lambda,\mu)$ for every λ in \mathfrak{h}^X . (Here and in the following the bilinear form is the nondegenerate one induced by the Killing form of \mathfrak{g}). Then

(1.3)
$$\theta(H'_{\mu}) = H'_{\mu} \text{ so } H'_{\mu} \in \mathfrak{b}.$$

Let

(1.4)
$$\Delta(\mathfrak{q}) = (\alpha \in \Delta \mid \alpha(H'_{\mu}) \ge 0).$$

Then one can see that

$$\mathfrak{q} = \mathfrak{h} + \sum_{\alpha \in \triangle(\mathfrak{q})} \mathfrak{g}^{a}.$$

Let $C_{\mathfrak{k}}$ be the open Weyl chamber in $i\mathfrak{b}_0$ for $(\mathfrak{k},\mathfrak{b})$ defined by the Borel subalgebra $r_{\mathfrak{k}}$. Since we assumed that $r_{\mathfrak{k}} \subseteq \mathfrak{q}$, it follows from 1.5 that

(1.6)
$$H'_{\mu} \in \overline{C}_{\mathfrak{k}} = \text{the closure of } C_{\mathfrak{k}}.$$

Let α be in \triangle . If α is identically zero on \mathfrak{b} , it would follow that \mathfrak{b} is not maximal abelian in \mathfrak{k} . Hence α is not identically zero on \mathfrak{b} . Let $C'_{\mathfrak{k}}$ be the open subset of $C_{\mathfrak{k}}$ got by deleting points of $C_{\mathfrak{k}}$ where some α belonging to \triangle vanishes. Then $C'_{\mathfrak{k}}$ is the disjoint union

$$(1.7) C'_{\mathfrak{k}} = U_{i=1\cdots N} C'_{\mathfrak{k},j}$$

of its connected components and one has

$$\overline{C}_{\mathfrak{k}} = U_{i=1\cdots N} \overline{C'}_{\mathfrak{k},j}.$$

Choose an index M between 1 and N such that

$$(1.9) H'_{\mu} \in \overline{C'}_{\mathfrak{k}.M}.$$

Now choose an element X_j in $C'_{\mathfrak{t},j}$ and consider the weight space decomposition of \mathfrak{g} with respect to $\mathfrak{a}d(X_j)$. We now define a Borel subalgebra \mathfrak{r} of \mathfrak{g} by

(1.10)
$$\mathfrak{r}^j = \text{the sum of the eigen spaces for } ad(X_j)$$

with nonnegative eigenvalues.

If we define

$$(1.11) P^j = \{ \alpha \in \triangle \mid \alpha(X_j) > 0 \}$$

then clearly P^j is a positive system of roots in \triangle and $\mathfrak{r}^j = \mathfrak{h} + \sum_{\alpha \in P^j} \mathfrak{g}^{\alpha}$. Since X_j belongs to \mathfrak{k} clearly both \mathfrak{r}^j and P^j are θ stable. 1.9 implies that for every α in P^M , $\alpha(H'_{\mu})$ is nonnegative. Hence from 1.4 and 1.5

$$\mathfrak{r}^M \subseteq \mathfrak{q}.$$

Also since X_M belongs to $C_{\mathfrak{k}}$, (1.10) implies that

(1.13) $\mathfrak{r}_{\mathfrak{k}}$ is contained in \mathfrak{r}^M .

(q.e.d.)

(1.14) Corollary Let $\mathfrak{r}_{\mathfrak{k}}$ be as in Lemma 1.2. Let \mathfrak{r} be a θ stable Borel subalgebra of \mathfrak{g} containing $\mathfrak{r}_{\mathfrak{k}}$. Then \mathfrak{r} equals one of the N Borel subalgebras \mathfrak{r}^{j} of (1.10).

Proof Since \mathfrak{r} contains \mathfrak{b} , \mathfrak{r} contains a Cartan subalgebra of \mathfrak{g} containing \mathfrak{b} . \mathfrak{h} is the unique Cartan subalgebra of \mathfrak{g} containing \mathfrak{b} . Hence \mathfrak{r} contains \mathfrak{h} . In the proof of Lemma 1.2 take $\mathfrak{q} = \mathfrak{r}$. Then it is seen $\mathfrak{r} = \mathfrak{r}^M$. (q.e.d.)

Rather than starting with a Borel subalgebra $\mathfrak{r}_{\mathfrak{k}}$ of \mathfrak{k} containing \mathfrak{b} , we want to start with an arbitrary θ invariant parabolic subalgebra of \mathfrak{g} and recover the set up in Lemma 1.2. For this we prove the following lemma.

(1.15) Lemma Let \mathfrak{q} be an arbitrary θ stable parabolic subalgebra of \mathfrak{g} . Then \mathfrak{q} contains a Borel subalgebra of \mathfrak{k} .

Proof Let $Ad(\mathfrak{g})$ be the adjoint group of \mathfrak{g} and Q the parabolic subgroup with Lie algebra \mathfrak{g} . Let G^u be the compact form of $Ad(\mathfrak{g})$ with Lie algebra $\mathfrak{k}_0 + i\mathfrak{p}_0$. Note that G^u is θ - stable. It is well known that $G^u \cap Q$ is a compact form of a reductive Levi factor of Q (cf.[8, § 1.2]). But $G^u \cap Q$ is θ stable since G^u and Q are θ stable. Thus, going to the Lie algebra level, \mathfrak{q} has a reductive Levi supplement which is θ stable. In this reductive Levi supplement we can surely find some θ stable Cartan subalgebra \mathfrak{h}' of \mathfrak{g} . Then, as in the proof of Lemma 1.2, we can find an element H'_{μ} in \mathfrak{h}' such that $\theta(H'_{\mu}) = H'_{\mu}$ and such that \mathfrak{q} is the sum of the nonnegative eigenspaces of $ad(H'_{\mu})$. Since H'_{μ} lies in $\mathfrak{h}' \cap \mathfrak{k}$, clearly it follows that \mathfrak{q} contains a Borel subalgebra of \mathfrak{k} .

(1.16) Corollary Let \mathfrak{r} by any θ stable Borel subalgebra of \mathfrak{g} . Then $\mathfrak{r} \cap \mathfrak{k}$ is a Borel subalgebra of \mathfrak{k} .

§2. The objects $\mathfrak{r}, \mathfrak{r}', PP'$ and the choice of P'' associated with a θ stable parabolic subalgerba \mathfrak{q}

Now let \mathfrak{q} be a θ stable parabolic subalgebra of \mathfrak{g} . By (1.15) we can find a Borel subalgebra $\mathfrak{r}_{\mathfrak{k}}$ of \mathfrak{k} contained in \mathfrak{q} . We fix a Cartan subalgebra \mathfrak{b}_0 of \mathfrak{k}_0 contained in $\mathfrak{r}_{\mathfrak{k}}$. Let \mathfrak{a}_0 be the centralizer of \mathfrak{b}_0 in \mathfrak{p}_0 . Then $\mathfrak{h}_0 = \mathfrak{b}_0 + \mathfrak{a}_0$ is a θ stable Cartan subalgebra of \mathfrak{g}_0 . Let $\mathfrak{h} = \mathfrak{b} + \mathfrak{a}$ be its complexification. Note that $\mathfrak{h} \subseteq \mathfrak{q}$. By (1.12), we can find a θ stable Borel subalgebra r of \mathfrak{g} such that $\mathfrak{r}_{\mathfrak{k}} \subset \mathfrak{r}$ and $\mathfrak{r} \subset \mathfrak{q}$. One has then $\mathfrak{h} \subset \mathfrak{r}$. There is a unique Borel subalgebra \mathfrak{r}' of \mathfrak{g} contained in \mathfrak{q} such that

(2.1)
$$\mathfrak{r} \cap \mathfrak{r}' = \mathfrak{h} + \mathfrak{u} \text{ where } \mathfrak{u} \text{ is the unipotent radical of } \mathfrak{q}.$$

Since $\theta(\mathfrak{r}')$ has the same property, we have $\theta(\mathfrak{r}') = \mathfrak{r}'$. Let $\mathfrak{r}'_k = \mathfrak{r}' \cap \mathfrak{k}$. Then by (1.16), $\mathfrak{r}'_{\mathfrak{k}}$ is a Borel subalgebra of \mathfrak{k} . We observe that $\mathfrak{r}'_{\mathfrak{k}}$ is the unique Borel subalgebra of \mathfrak{k} such that

(2.2)
$$\mathfrak{r}_{\mathfrak{k}} \cap \mathfrak{r}'_{\mathfrak{k}} = \mathfrak{b} + \mathfrak{u}_{\mathfrak{k}}$$
 where $\mathfrak{u}_{\mathfrak{k}}$ is the unipotent radical of $\mathfrak{q}_{\mathfrak{k}} (= \mathfrak{q} \cap \mathfrak{k})$.

We denote by $W_{\mathfrak{k}}$ the Weyl group of $(\mathfrak{k}, \mathfrak{b})$ and by $W_{\mathfrak{g}}$ the Weyl group of $(\mathfrak{g}, \mathfrak{h})$. $W_{\mathfrak{k}}$ is naturally embedded in $W_{\mathfrak{g}}$ as follows. If s belongs to $W_{\mathfrak{k}}$ then s normalizes \mathfrak{b} , hence also normalizes the centralizer of \mathfrak{b} in \mathfrak{g} which is precisely \mathfrak{h} . Thus s belongs to $W_{\mathfrak{g}}$.

We will now define two distinguished elements of the Weyl group $W_{\mathfrak{k}}$. Let t be the unique element of $W_{\mathfrak{k}}$ such that $t(P_{\mathfrak{k}}) = -P_{\mathfrak{k}}$. Next we denote by τ the unique element of the Weyl group $W_{\mathfrak{k}}$ such that $\tau(P_{\mathfrak{k}}) = P'_{\mathfrak{k}}$. The class of $U(\mathfrak{g})$ modules associated to \mathfrak{q} will be parametrized by some subsets of h^X . We now prepare to describe these. Let $\Delta_{\mathfrak{k}}$ be the set of roots for $(\mathfrak{k}, \mathfrak{b})$. Whenever possible we will denote elements of $\Delta_{\mathfrak{k}}$ by φ while elements of $\Delta(=$ the roots of $(\mathfrak{g}, \mathfrak{h}))$ will be denoted by α . For a root φ in $\Delta_{\mathfrak{k}}$, denote by X_{φ} a nonzero root vector in \mathfrak{k} of weight φ . For α in Δ , we denote by E_{α} a nonzero root vector in \mathfrak{g} of weight α . Let P and P' be the sets of positive roots in Δ defined respectively by \mathfrak{r} and \mathfrak{r}' . Next let $P_{\mathfrak{k}}$ and $P'_{\mathfrak{k}}$ be the sets of positive roots in $\Delta_{\mathfrak{k}}$ defined respectively by $\mathfrak{r}_{\mathfrak{k}}$ and $P'_{\mathfrak{k}}$. Let δ and δ' denote half the sum of the roots in P and P' respectively and let $\delta_{\mathfrak{k}}$ and $\delta'_{\mathfrak{k}}$ denote half the sum of the roots in $P_{\mathfrak{k}}$ and $P'_{\mathfrak{k}}$ respectively.

Let P'' be a θ stable positive system of roots in \triangle such that if \mathfrak{r}'' is the corresponding θ stable Borel subalgebra of \mathfrak{g} then

$$\mathfrak{r}'' \supseteq \mathfrak{r}'_{\mathfrak{k}} \text{ and }$$

$$(2.4) P'' \supset P' \cap -P.$$

(2.5) Remark If one takes P'' = P' then (2.3) and (2.4) are clearly satisfied. If \mathfrak{q} is a Borel subalgebra then P' = P and P'' which satisfies (2.3) also satisfies (2.4). If $\mathfrak{q} = \mathfrak{g}$, then P' = -P; the only candidate which satisfies (2.3) and (2.4) is P'' = P'.

We can now describe the modules that we want to construct. As usual for α in P denote by H_{α} the element of $i\mathfrak{b}_0 + \mathfrak{a}_0$ such that $\lambda(H_{\alpha}) = 2(\lambda, \alpha)/(\alpha, \alpha)$ for every λ in \mathfrak{h}^X . Similarly for φ in $P_{\mathfrak{k}}$, denote by $H_{\varphi}^{\mathfrak{k}}$ the element of $i\mathfrak{b}_0$ such that $\lambda(H_{\varphi}^{\mathfrak{k}}) = 2(\lambda, \varphi)/(\varphi, \varphi)$ for every λ in \mathfrak{b}^X . (Note: The Killing form of \mathfrak{g} induces a nondegenerate bilinear form on \mathfrak{b} which in turn induces one on \mathfrak{b}^X).

Let $F(P'':\mathfrak{q},\mathfrak{r})$ be the set of all elements μ in \mathfrak{h}^X with the following properties:

- (2.6) $\mu(H_{\alpha})$ is a nonnegative integer for every α in P''.
- (2.7) $\mu(H_{\varphi}^{\mathfrak{k}})$ is nonzero for every φ in $P_{\mathfrak{k}}$ and $\mu(H_{\varphi})$ is nonzero for every α in $P \cap -P'$.

Example Suppose μ belonging to h^X is such that $\mu(H_\alpha)$ is a positive integer for every α in P''. Then one can show that μ belongs to $F(P'':\mathfrak{q},\mathfrak{r})$. The method of showing that $\mu(H_{\varphi}^{\mathfrak{k}})$ is nonzero for every φ in $P_{\mathfrak{k}}$ can be found in the proof of (3.6).

We now use some definitions and notations from [3, §§ 2,5] (cf. also §§ 3,5 here). Let $U^{\mathfrak{k}}$ be the centralizer of \mathfrak{k} in $U(\mathfrak{g})$. Let $\mu \in F(P'':\mathfrak{q},\mathfrak{r})$. Our aim is to construct a \mathfrak{k} -finite irreducible $U(\mathfrak{g})$ module, denoted $D_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$ in which the irreducible \mathfrak{k} type with highest weight $-t(\tau\mu + \tau\delta - \tau\delta_{\mathfrak{k}} - \delta_{\mathfrak{k}})$ (cf. 3.7) occurs with multiplicity one and such that on the corresponding isotypical $U(\mathfrak{k})$ submodule, elements of $U^{\mathfrak{k}}$ act by scalars given by the homomorphism $\chi_{P,-\mu-\delta}$ (cf. § 5).

(2.8) Remark Fix \mathfrak{q} and \mathfrak{r} . For any compatible choice of P'' and for any element μ in $F(P'':\mathfrak{q},\mathfrak{r})$, we will show (cf.3.6) that (i) $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$ and (ii) $\tau \mu + \tau \delta - \tau \delta_{\mathfrak{k}} - \delta_{\mathfrak{k}}(H_{\varphi}^{\mathfrak{k}})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}}$. Now define $\overline{F}(\mathfrak{q},\mathfrak{r})$ to consist of all μ in \mathfrak{h}^X satisfying (i) and (ii) above. In general $\overline{F}(\mathfrak{q},\mathfrak{r})$ properly contains $\cup_{P''}F(P'':\mathfrak{q}:\mathfrak{r})$. Our constructions

and proofs in §§ 3,4,5 go through perfectly well for any μ in $\overline{F}(\mathfrak{q},\mathfrak{r})$ and so we do have a \mathfrak{k} -finite irreducible $U(\mathfrak{g})$ module in which the irreducible \mathfrak{k} type with highest weight $-t(\tau\mu+\tau\delta-\tau\delta_{\mathfrak{k}})$ occurs with multiplicity one and such that on the corresponding isotypical $U(\mathfrak{k})$ submodule elements of $U^{\mathfrak{k}}$ act by scalars given by $\chi_{P,-\mu-\delta}$. We have restricted ourselves to the subsets $F(P'':\mathfrak{q},\mathfrak{r})$ rather than all of $\overline{F}(\mathfrak{q},\mathfrak{r})$ only because condition (ii) is the definition of $\overline{F}(\mathfrak{q},\mathfrak{r})$ is quite incomprehensible.

§**3**

Choose and fix an element μ in $F(P'': \mathfrak{q}, \mathfrak{r})$ as in § 2 (cf.(2.6) and (2.7)). For facts about Verma modules that we will be using we refer to [1,2,5,6].

Let M be any $U(\mathfrak{g})$ module. Let Q be a subset of $\triangle_{\mathfrak{k}}$. An element v of M is said to be Q extreme if $X_{\varphi}.v = 0$ for every φ in Q. For λ in \mathfrak{b}^X, v is called a weight vector of weight λ with respect to \mathfrak{b} if $H \cdot v = \lambda(H) \cdot v$ for all H in \mathfrak{b} . By J(M) we denote the set of all λ in \mathfrak{b}^X for which there exists a nonzero weight vector of weight λ in M, which is $P_{\mathfrak{k}}$ extreme where $P_{\mathfrak{k}}$ is the positive system of roots in $\triangle_{\mathfrak{k}}$ defined in §2. For φ in $\triangle_{\mathfrak{k}}, M$ is said to be X_{φ} free if $X_{\varphi} \cdot v = 0$ implies v = 0. For a subalgebra \mathfrak{s} of \mathfrak{g} , M is said to be \mathfrak{s} -finite if every vector of M lies in a finite dimensional \mathfrak{s} submodule of M. For any η in $\pi_{\mathfrak{k}}$ let $m(\eta)$ denote the subalgebra of \mathfrak{g} spanned by the elements $X_{\eta}, X_{-\eta}$ and H_{η}^k . For the notion of $U(\mathfrak{k})$ module of 'type $P_{\mathfrak{k}}$ ' we refer to $[3, \S 2]$.

Let P_0 be a positive system of roots of \triangle and let $\lambda \in \mathfrak{h}^X$. The Verma module $V_{\mathfrak{g},P_0,\lambda}$ of $U(\mathfrak{g})$ is defined as follows: It is the quotient of $U(\mathfrak{g})$ by the left ideal generated by the elements $H - \lambda(H), (H \in \mathfrak{h})$ and $E_{\alpha}(\alpha \in P_0)$. The Verma modules of $U(\mathfrak{k})$ are defined similarly. We will suppress \mathfrak{g} and write $V_{P_0,\lambda}$ for the Verma module $V_{\mathfrak{g},P_0,\lambda}$.

We have the inclusions $\mathfrak{h} \subseteq \mathfrak{r} \subseteq \mathfrak{q}$ (cf. § 2). Let π be the set of simple roots for P. The parabolic subalgebras of \mathfrak{g} containing \mathfrak{r} are in one to one correspondence with subsets of π . The subset of π corresponding to \mathfrak{q} is got as follows: Let σ in \mathfrak{h}^X be defined by $\sigma(H) = \operatorname{trace}(adH) \mid \mathfrak{u}$. Then

$$\pi(\mathfrak{q})=\{\alpha\in\pi\mid (\sigma,\alpha)=0\}.$$

From standard facts about parabolic subalgebras (cf. [8, § 1.2]) we know that elements of $P \cap -P'$ are of the form $\sum m_i \alpha_i$ where m_i are nonnegative integers and α_i are in $\pi(\mathfrak{q})$. For α in Δ the element s_{α} of

 $W_{\mathfrak{g}}$ is the reflection corresponding to α . It is given by $s_{\alpha}(\lambda) = \lambda - 2(\lambda, \alpha)/(\alpha, \alpha) \cdot \alpha$. We now define a $U(\mathfrak{g})$ module W_1 by

$$(3.3) W_1 = V_{P,-\mu-\delta}$$

considered as a $U(\mathfrak{k})$ module it has some nice properties.

(3.4) Lemma W_1 considered as a module for $U(\mathfrak{k})$ is a weight module with respect to \mathfrak{b} ; i.e. W_1 is the sum of the weight spaces with respect to \mathfrak{b} . Denoting also $-\mu - \delta$ the restriction of $-\mu - \delta$ to b, all the weights are of the form $-\mu - \delta - \sum n_i \varphi_i$ where φ_i are elements of P and n_i are positive integers. Finally the weight spaces are finite dimensional and the weight space corresponding to $-\mu - \delta$ is one dimensional.

Proof Since as a $U(\mathfrak{g})$ module W_1 is the sum of weight spaces with respect to $\mathfrak{h} = \mathfrak{b} + \mathfrak{a}$, the first statement is clear. Since no root α in Δ is identically zero on \mathfrak{b} , we can pick up an element H in \mathfrak{b} such that for every α in $P, \alpha(H)$ is real and positive. As a $U(\mathfrak{g})$ module, the weights of W_1 with respect to \mathfrak{h} are of the form $-\mu - \delta - \sum m_i \alpha_i$ ($\alpha_i \in P, m_i$ nonnegative integers). By considering the action of H it is clear that weight spaces of W_1 with respect to \mathfrak{b} are finite dimensional and the weight space of \mathfrak{b} with weight $-\mu - \delta$ is one dimensional. Finally since P is θ stable the restriction to \mathfrak{b} of the weights with respect to \mathfrak{h} are of the form $-\mu - \delta - \sum n_i \varphi_i$ where φ_i are in P and n_i nonnegative integers.

(q.e.d)

(3.5) Corollary The U(k) submodule of W_1 generated by the unique weight vector in W_1 of weight $-\mu - \delta$ is isomorphic to the $U(\mathfrak{k})$ Verma module $V_{\mathfrak{k},P_{\mathfrak{k}},-\mu-\delta}$. W_1 is $X_{-\varphi}$ free for every φ in $P_{\mathfrak{k}}$.

Proof Let v_1 be the nonzero weight vector in W_1 of weight $-\mu - \delta$. v_1 is killed by every element of $[\mathfrak{r},\mathfrak{r}]$ hence in particular by every element of $[\mathfrak{r}_{\mathfrak{k}},\mathfrak{r}_{\mathfrak{k}}]$. On the other hand let $\bar{\mathfrak{r}}$ be the unique Borel subalgebra of \mathfrak{g} such that $\bar{\mathfrak{r}} \cap \mathfrak{r} = \mathfrak{h}$ and let $\mathfrak{n}(\bar{\mathfrak{r}})$ be the unipotent radical of $\bar{\mathfrak{r}}$. If $\bar{\mathfrak{r}}_{\mathfrak{k}} = \bar{\mathfrak{r}} \cap \mathfrak{k}$, then $\bar{\mathfrak{r}}_{\mathfrak{k}}$ is the unique Borel subalgebra of \mathfrak{k} such that $\bar{\mathfrak{r}}_{\mathfrak{k}} \cap \mathfrak{r}_{\mathfrak{k}} = \mathfrak{b}$. Let $U(\mathfrak{n}(\bar{\mathfrak{r}}))$ and $U(\mathfrak{n}(\bar{\mathfrak{r}}_{\mathfrak{k}}))$ denote the corresponding enveloping algebras considered as subalgebra of $U(\mathfrak{g})$. One knows that $U(\mathfrak{n}(\bar{\mathfrak{r}}))$ free, [2]. Hence in particular it is $U(\mathfrak{n}(\bar{\mathfrak{r}}))$ free. The corollary now follows from [2,7.1.8].

There is an ascending chain of $U(\mathfrak{k})$ Verma modules containing $V_{\mathfrak{k},P_{\mathfrak{k}},-\mu-\delta}$. This chain will give rise to a chain of $U(\mathfrak{g})$ modules, which is fundamental in the work [3].

Recall the two distinguished elements t and τ of $W_{\mathfrak{k}}$ from § 2. The highest weight of the special irreducible representation of \mathfrak{k} which the $U(\mathfrak{g})$ module $D_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$ will contain is described in the corollary to the lemma below.

(3.6) Lemma (i) $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$ and (ii) $\tau \mu + \tau \delta - \tau \delta_{\mathfrak{k}}(H_{\varphi}^{\mathfrak{k}})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}}$.

Proof By (2.4), (2.7) and (2.8), one sees that $-\mu(H_{\alpha})$ is a positive integer for every α in $P \cap -P'$. The elements of $P \cap -P'$ are nonnegative integral linear combination of elements of $\pi(\mathfrak{q})$. Since $\delta(H_{\alpha}) = 1$ for every α in $\pi(\mathfrak{q})$ it now follows that $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$.

To prove (ii) first suppose φ lies in $P'_{\mathfrak{k}} \cap P_{\mathfrak{k}}$. We will show that $\tau \mu - \delta_{\mathfrak{k}}(H^{\mathfrak{k}}_{\varphi})$ and $\tau \delta - \tau \delta_{\mathfrak{k}}(H^{\mathfrak{k}}_{\varphi})$ are both nonnegative integers. For this it is enough to show that $\tau \mu(H^{\mathfrak{k}}_{\varphi})$ is a positive integer for every φ in $P_{\mathfrak{k}}$. By (2.6) there exists a finite dimensional representation of \mathfrak{g} having a weight vector v of weight μ with respect to the Cartan subalgebra \mathfrak{h} and such that v is annihilated by $[\mathfrak{r}',\mathfrak{r}']$ (cf. (2.3)). Since $\mathfrak{r}'_{\mathfrak{k}} \subseteq \mathfrak{r}'', v$ is in particular annihilated by $[\mathfrak{r}'_{\mathfrak{k}},\mathfrak{r}'_{\mathfrak{k}}]$. It is clear from this that $\mu(H^{\mathfrak{k}}_{\varphi})$ is a nonnegative integer for every φ in $P'_{\mathfrak{k}}$. In view of (2.7), $\mu(H^{\mathfrak{k}}_{\varphi})$ is then a positive integer for every φ in $P_{\mathfrak{k}}$. Note that $\tau P'_{\mathfrak{k}} = P_{\mathfrak{k}}$. Hence $\tau \mu(H^{\mathfrak{k}}_{\varphi})$ is a positive integer for every φ in $P_{\mathfrak{k}}$. For this consider the representation ρ of \mathfrak{g} having a weight vector v of weight δ with respect to the Cartan subalgebra \mathfrak{h} and annihilated by $[\mathfrak{r},\mathfrak{r}]$. Clearly then v is annihilated by $[\mathfrak{r}_{\mathfrak{k}},\mathfrak{r}_{\mathfrak{k}}]$, hence $\delta(H^{\mathfrak{k}}_{\varphi})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}}$. To show that $\delta(H^{\mathfrak{k}}_{\varphi})$ is nonzero we give the following reason: one can easily see that the stabilizer of v in \mathfrak{g} is exactly \mathfrak{r} . If $\delta(H^{\mathfrak{k}}_{\varphi})$ is a positive integer for every φ in $P_{\mathfrak{k}}$, then $X_{-\varphi}$ would stabilize v. But $X_{-\varphi}$ does not belong to \mathfrak{r} . Hence $\delta(H^{\mathfrak{k}}_{\varphi})$ is a positive integer for every φ in $P_{\mathfrak{k}}$, so that $\tau \delta(H^{\mathfrak{k}}_{\varphi})$ is a positive integer for every φ in $\tau P_{\mathfrak{k}}$.

Now suppose φ lies in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$. Let $\mathfrak{r}(\mathfrak{q})$ be the maximal reductive subalgebra of \mathfrak{q} defined by $\mathfrak{r}(\mathfrak{q}) = \mathfrak{h} + \sum_{\alpha \in P \cap -P'} (\mathfrak{g}^{\alpha} + \mathfrak{g}^{-\alpha})$. By (ii) $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap -P'$. Hence, if $\mathfrak{n}_{\mathfrak{r}(\mathfrak{q})} = \sum_{\alpha \in P \cap -P'} \mathfrak{g}^{\alpha}$, there exists a finite dimensional representation of $\mathfrak{r}(\mathfrak{q})$ and a weight vector for \mathfrak{h} of weight $-\mu - \delta$ annihilated by all of

 $\mathfrak{n}_{\mathfrak{r}(\mathfrak{q})}$, hence in particular by $\mathfrak{k} \cap \mathfrak{n}_{\mathfrak{r}(\mathfrak{q})}$. Observe that $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$ is precisely the set of roots in $P_{\mathfrak{k}}$, whose corresponding root spaces span $\mathfrak{k} \cap \mathfrak{n}_{\mathfrak{r}(\mathfrak{q})}$. Thus there exists a finite dimensional representation of $\mathfrak{b} + \sum_{\varphi \in P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}} (\mathbb{C} \cdot X_{\varphi} + \mathbb{C} \cdot X_{\varphi})$ with a weight vector for \mathfrak{b} of weight $-\mu - \delta$ annihilated by X_{φ} for every φ in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$. Hence we conclude that $-\mu - \delta(H^{\mathfrak{k}}_{\varphi})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$. Since $-\tau(P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}) = P_{\mathfrak{k}} \cap P'_{\mathfrak{k}}$, $\tau(\mu + \delta)(H^{\mathfrak{k}}_{\varphi})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$. On the other hand $\tau \delta_{\mathfrak{k}} = \delta'_{\mathfrak{k}} = \text{half the sum of the roots in } P'_{\mathfrak{k}}$, while $\delta_{\mathfrak{k}} + \delta'_{\mathfrak{k}}(H^{\mathfrak{k}}_{\varphi}) = 0$ for every φ in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$. Thus $\tau \mu + \tau \delta - \tau \delta_{\mathfrak{k}} - \delta_{\mathfrak{k}}(H^{\mathfrak{k}}_{\varphi})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$.

This completes the proof of (3.6). (q.e.d.)

(3.7) Corollary $-t(\tau\mu + \tau\delta - \tau\delta_{\mathfrak{k}} - \delta_{\mathfrak{k}})(H_{\varphi}^{\mathfrak{k}})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}}$.

Proof Clear since $-tP_{\mathfrak{k}} = P_{\mathfrak{k}}$. (q.e.d.)

Let $\pi_{\mathfrak{k}}$ be the set of simple roots of $P_{\mathfrak{k}}$. For φ in $P_{\mathfrak{k}}$, let s_{φ} be the reflection $s_{\varphi}(\lambda) = \lambda - \lambda(H_{\varphi})\varphi$ of \mathfrak{b}^X . If φ lies in $\pi_{\mathfrak{k}}, s_{\varphi}$ is called a simple reflection. For w in $W_{\mathfrak{k}}$, the length N(w) of w is the smallest integer N such that w is a product of N simple reflections. A reduced word for w is an expression of w as a product of N(w) simple reflections. Choose any reduced word for the element τt of $W_{\mathfrak{k}}$. Following the notation in [5, §4.15], we write it as

$$(3.8) \tau t = s_1 s_2 \cdots s_m$$

where $s_i = s_{\eta_i}, \eta_i = \varphi_{j_i}, \varphi_{j_i} \in \pi_{\mathfrak{k}}$. For λ in \mathfrak{b}^X and w in $W_{\mathfrak{k}}$ write $w'(\lambda) = w(\lambda + \delta_{\mathfrak{k}}) - \delta_{\mathfrak{k}}$. Having chosen the element μ in $F(P'' : \mathfrak{q}, \mathfrak{r})$ we now define elements μ_i of \mathfrak{b}^X as follows:

$$\mu_{m+1} = -t(\tau \mu + \tau \delta - \tau \delta_{\mathfrak{k}} - \delta_{\mathfrak{k}})$$
 and

$$\mu_i = (s_i s_{i+1} \cdots s_m)' \mu_{m+1} (i = 1, \cdots, m)$$

(3.9) Note that $\mu_1 = (\tau t)' \mu_{m+1} = -\mu - \delta$ and that μ_1 and μ_{m+1} are independent of the reduced expression (3.8). We now define the positive integers e_i by

(3.10)
$$e_i = \mu_{i+1} + \delta_k(H_{\eta_i}^{\mathfrak{k}}) \cdot (i = 1, \dots, m).$$

With μ_i defined as above, the following inclusion relations between Verma modules are well known [2.6]:

$$(3.11) V_{\mathfrak{k},P_{\mathfrak{k}},\mu_1} \subseteq V_{\mathfrak{k},P_{\mathfrak{k}},\mu_2} \subseteq \cdots \subseteq V_{\mathfrak{k},P_{\mathfrak{k}},\mu_{m+1}}.$$

Define elements v_1, v_2, \dots, v_{m+1} of $V_{\mathfrak{k}, P_{\mathfrak{k}}, \mu_{m+1}}$ as follows: μ_{m+1} is the unique nonzero weight vector of $V_{\mathfrak{k}, P_{\mathfrak{k}}, \mu_{m+1}}$ of weight μ_{m+1} . For $i=1,2,\dots,m, v_i=X_{-\eta_i}^{e_i}\cdot v_{i+1}$. Then one knows that v_i is of weight μ_i and that $V_{\mathfrak{k}, P_{\mathfrak{k}, \mu_i}} = U(\mathfrak{k})v_i$. Associated to the reduced word (3.8) and μ in $F(P'':\mathfrak{q},\mathfrak{r})$ is a fundamental chain of $U(\mathfrak{g})$ modules: $W_1 \subseteq W_2 \subseteq \dots \subseteq W_{m+1}$. It will turn out that W_1 and W_{m+1} are independent of the reduced expression (3.8). They are defined as follows: W_1 is defined to be $V_{P,-\mu-\delta}$ as in (3.3). Then W_{m+1} is given by the following lemma.

(3.12) Lemma There exists a $U(\mathfrak{g})$ module $W_{m+1} = U(\mathfrak{g}) \cdot v_{m+1}$ such that (a) W_1 is a $U(\mathfrak{g})$ submodule of W_{m+1} , (b) v_1 belongs to $U(\mathfrak{k})v_{m+1}$, (c) v_{m+1} is a $P_{\mathfrak{k}}$ extreme weight vector (with respect to \mathfrak{b}) of weight μ_{m+1} (d) W_{m+1} is $X_{-\varphi}$ free for all φ in $P_{\mathfrak{k}}$ and (e) W_{m+1} is a sum of $U(\mathfrak{k})$ submodules of type $P_{\mathfrak{k}}$.

Proof Start with the conclusion of $V_{\mathfrak{k},P_{\mathfrak{k}},\mu_1}$ in W_1 given by Corollary 3.5 and the inclusion of $V_{\mathfrak{k},P_{\mathfrak{k}},\mu_1}$ in $V_{\mathfrak{k},P_{\mathfrak{k}},\mu_{m+1}}$ given by 3.11. By 3.5 we know that W_1 is $X_{-\varphi}$ free for every φ in $P_{\mathfrak{k}}$. Now [3, Lemma 4] gives us the module W_{m+1} with the properties required in the lemma. (One easily sees that the results of [3 § 2] do not depend on the assumption there that rank of \mathfrak{g} = rank of \mathfrak{k}). (q.e.d)

(3.13) Remark If V and \overline{V} are Verma modules for, say, $U(\mathfrak{k})$ then the space of $U(\mathfrak{k})$ homomorphisms of V into \overline{V} has dimension equal to zero or one. Thus the inclusion of $V_{\mathfrak{k},P_{\mathfrak{k}},\mu_{m+1}}$ given by (3.11) is independent of the reduced expression (3.8) for τt . Hence also the $U(\mathfrak{g})$ module W_{m+1} and the inclusion of W_1 in W_{m+1} with the properties listed in Lemma 3.12 can be chosen to be independent of the reduced expression (3.8).

Having defined W_1 and W_{m+1} as above, now for any given reduced word for τt such as (3.8), we define submodules W_2, W_3, \dots, W_m of W_{m+1} by

$$(3.14) W_i = U(\mathfrak{g})v_i$$

where v_i are the elements of W_{m+1} defined after (3.11). We have

- $W_1 \subseteq W_2 \subseteq \cdots \subseteq W_{m+1}$ because v_i belongs to $U(\mathfrak{k})v_{i+1}$, $(i=1,\cdots,m)$. The properties of this chain of $U(\mathfrak{g})$ modules are summarized below from the work of $[3, \S 3]$:
- (3.15) $W_1 = V_{P,-\mu-\delta}$ and each W_i is the sum of its weight spaces with respect to \mathfrak{b} . Moreover as a $U(\mathfrak{k})$ module W_i is the sum of $U(\mathfrak{k})$ submodules of type $P_{\mathfrak{k}}$.
- (3.16) Each W_i is a cyclic $U(\mathfrak{g})$ module with a cyclic vector v_i , which is a $P_{\mathfrak{k}}$ extreme weight vector of weight μ_i with respect to $\mathfrak{b}, i = 1, \dots, m+1$.
- (3.17) The $P_{\mathfrak{k}}$ extreme vectors of weight μ_i in W_i are scalar multiples of v_i ; for $i = 1, \dots, m+1$, the vector v_i does not belong to W_{i-1} .
- (3.18) Each W_i is $X_{-\varphi}$ free for every φ in $P_{\mathfrak{k}}$ and W_{i+1}/W_i is $m(\eta_i)$ finite $(i=1,\cdots,m)$.
- $(3.19) v_i = X_{-n_i}^{e_i} v_{i+1} (i = 1, \dots, m).$
- (3.20) Let w be in $W_{\mathfrak{k}}$. Let $i=1,\cdots,m$. Suppose $w'(\mu_{m+1})$ belongs to $J(W_i)$. Then N(w) equals at least m+1-i.

We will not prove the properties (3.15) to (3.20) here since they are essentially proved in [3, Lemma 5]. Though (3.20) has the same form as [3, Lemma 5, vi] its proof is different in our case. It is important to first know the case i = 1 of (3.20) to carry over the inductive arguments of [3, § 3] to our situation. To this end we prove the following lemma. Before that we make the following remark.

(3.21) Remark Let $H'_{\mathfrak{q}}$ be the element of \mathfrak{h} defined by $(H'_{\mathfrak{q}}, H) = \operatorname{trace}$ (ad $H \mid \mathfrak{u}$), for every H belonging to \mathfrak{h} , where \mathfrak{u} is the unipotent radical of \mathfrak{q} . Since \mathfrak{q} and \mathfrak{h} are θ invariant $\theta(H'_{\mathfrak{q}}) = H'_{\mathfrak{q}}$; hence $H'_{\mathfrak{q}}$ belongs to \mathfrak{b} . One can easily prove the following: For every α in $P \cap -P'$, $\alpha(H'_{\mathfrak{q}})$ equals zero; for every α in $P \cap P'$, $\alpha(H'_{\mathfrak{q}})$ is a positive real number; and for every φ in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$, $\varphi(H'_{\mathfrak{q}})$ equals zero while for every φ in $P_{\mathfrak{k}} \cap P'_{\mathfrak{k}}$, $\varphi(H'_{\mathfrak{q}})$ is a positive real number. (Observe that any φ in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$ is the restriction to \mathfrak{b} of some α in $P \cap -P'$).

Now we come to the lemma which is basic to carry over the inductive arguments of $[3, \S 3]$.

(3.22) Lemma Let w be in $W_{\mathfrak{k}}$. Suppose $w'(\mu_{m+1})$ belongs to $J(W_1)$. Then N(w) is greater than or equal to m.

Proof Since $w'(\mu_{m+1})$ belongs to $J(W_1)$ it is in particular a weight of W_1 of for \mathfrak{b} . Hence by (3.4), $w'(\mu_{m+1})$ is of the form $\mu_1 - \sum n_i \alpha_i \mid \mathfrak{b}$, where n_i are nonnegative integers and α_i are in P. That is $w(\mu_{m+1} + \delta_{\mathfrak{k}}) - \delta_{\mathfrak{k}} = \mu_1 - \sum n_i \alpha_i \mid \mathfrak{b} = \tau t(\mu_{m+1} + \delta_{\mathfrak{k}}) - \delta_{\mathfrak{k}} - \sum n_i \alpha_i \mathfrak{b}$. Thus

$$\tau t(\mu_{m+1} + \delta_{\mathfrak{k}}) - w(\mu_{m+1} + \delta_{\mathfrak{k}}) = \sum n_i \alpha_i \mid \mathfrak{b}.$$

Write $\mu'_{m+1} = -t\mu_{m+1}$. Hence

$$(3.23) -\tau(\mu'_{m+1} + \delta_{\mathfrak{k}}) + wt(\mu'_{m+1} + \delta_{\mathfrak{k}}) = \sum n_i \alpha_i \mid \mathfrak{b}$$

where n_i are nonnegative integers and α_i are in P. The left side of the equality in (3.23) is the sum of $wt(\mu'_{m+1} + \delta_{\mathfrak{k}}) - (\mu'_{m+1} + \delta_{\mathfrak{k}})$ and $(\mu'_{m+1} + \delta_{\mathfrak{k}}) - \tau(\mu'_{m+1} + \delta_{\mathfrak{k}})$. We claim that (3.23) implies

(3.24)
$$P_{\mathfrak{k}} \cap -wtP_{\mathfrak{k}}$$
 is contained in $P_{\mathfrak{k}} \cap -\tau P_{\mathfrak{k}}$.

To see this enumerate the elements of $P_{\mathfrak{k}} \cap -wtP_{\mathfrak{k}}$ in a sequence $(\epsilon_1, \epsilon_2, \cdots, \epsilon_k)$ such that ϵ_1 is a simple root of $P_{\mathfrak{k}}$ and ϵ_{i+1} is a simple root of $s_{\epsilon_i} \cdots s_{\epsilon_1} P_{\mathfrak{k}} (i=1,\cdots,k-1)$. Then $wt = s_{\epsilon_k} \cdots s_{\epsilon_1}$ (cf. (5, 4.15.10] and [7, 8.9.13]). By induction on i one can show that $(\mu'_{m+1} + \delta_{\mathfrak{k}}) - s_{\epsilon_i} \cdots s_{\epsilon_1} (\mu'_{m+1} + \delta_{\mathfrak{k}})$ can be written as $\sum_{j=1}^i d_{j,i} \epsilon_j$ where $d_{j,i}$ are positive integers. Thus $(\mu'_{m+1} + \delta_{\mathfrak{k}}) - wt(\mu'_{m+1} + \delta_{\mathfrak{k}})$ can be written as $d_1 \epsilon_1 + d_2 \epsilon_2 + \cdots + d_k \epsilon_k$ where d_j are positive integers. Similarly $(\mu'_{m+1} + \delta_{\mathfrak{k}}) - \tau(\mu'_{m+1} + \delta_{\mathfrak{k}})$ can be written as $d'_1 \epsilon'_1 + d'_2 \epsilon'_2 + \cdots + d'_h \epsilon'_h$ where d'_i are positive integers and $(\epsilon'_1, \cdots, \epsilon'_h)$ is an enumeration of $P_{\mathfrak{k}} \cap -\tau P_{\mathfrak{k}}$. With these observations we can write

$$(3.25) -\tau(\mu'_{m+1} + \delta_{\mathfrak{k}}) + wt(\mu'_{m+1} + \delta_{\mathfrak{k}})$$
$$= (d'_1\epsilon'_1 + \dots + d'_h\epsilon'_h) - (d_1\epsilon_1 + \dots + d_k\epsilon_k)$$

where $d'_1, \dots, d'_h, d_1, \dots, d_k$ are positive integers. Let $H'_{\mathfrak{q}}$ be the element of \mathfrak{h} defined by $(H'_{\mathfrak{q}}, H) = \operatorname{trace}$ (ad $H \mid \mathfrak{u}$), where \mathfrak{u} is the unipotent radical of \mathfrak{q} . Then $H'_{\mathfrak{q}}$ belongs to \mathfrak{b} . We can apply remark (3.21) to (3.25) and conclude that $[-\tau(\mu'_{m+1} + \delta_{\mathfrak{k}}) + wt(\mu'_{m+1} + \delta_{\mathfrak{k}})](H'_{\mathfrak{q}})$ is a strictly negative real number unless (3.24) holds. But by looking at the right hand side of (3.23) and applying remark (3.21), we see that $[-\tau(\mu'_{m+1} + \delta_{\mathfrak{k}}) + wt(\mu'_{m+1} + \delta_{\mathfrak{k}})](H'_{\mathfrak{q}})$ is a nonnegative real number.

Thus we have proved the validity of (3.24). Now (3.24) implies that N(wt) is less than or equal to $N(\tau)$. But note that N(wt) = N(t) - N(w), while $N(\tau) = N(t) - N(\tau t) = N(t) - m$. Hence N(w) is greater than or equal to m. (q.e.d.)

(3.22) Enables us to carry over the inductive arguments in $[3, \S 3]$ without any further change and obtain the properties (3.15) to (3.20).

§ 4. The \mathfrak{k} -finite quotient $U(\mathfrak{g})$ module of W_{m+1}

The difference between the special situation in [3] and our more general situation becomes more apparent in this section which parallels $[3, \S 4]$.

Start with an arbitrary reduced word (3.8) for τt and let $W_1 \subseteq W_2 \subseteq \cdots \subseteq W_{m+1}$ be a fundamental chain of $U(\mathfrak{g})$ modules satisfying (3.15) through (3.20). Recall $W_1 = V_{P-\mu-\delta}$. Recall the subset $\pi(\mathfrak{q}) \subseteq \pi$ corresponding to the parabolic subalgebra \mathfrak{q} . For α in π and λ in \mathfrak{h}^X define $s_{\alpha}^X(\lambda) = s_{\alpha}(\lambda + \delta) - \delta$. By lemma 3.6, $-\mu - \delta(H_{\alpha})$ is a nonnegative integer for every α in $P \cap P'$, hence in particular for every α in $\pi(\mathfrak{q})$. Thus one has the inclusion of the Verma modules $V_{P,s_{\alpha}^X(-\mu-\delta)} \subseteq V_{P,-\mu-\delta}$ for every α in $\pi(\mathfrak{q})$. We now define a $U(\mathfrak{g})$ submodule.

(4.1)
$$W_0 = \sum_{\alpha \in \pi(\mathfrak{q})} V_{P, s_{\alpha}^X(-\mu - \delta)} \text{ of } W_1.$$

As is well known the Verma modules have unique proper maximal submodules. Let I be the proper maximal $U(\mathfrak{g})$ submodule of $V_{P,-\mu-\delta}$.

Then each $V_{P,s_{\alpha}^{X}(-\mu-\delta)}$, $(\alpha \in \pi(\mathfrak{q}))$, is contained in I. Hence

$$(4.2) v_1 ext{ does not belong to } W_0.$$

Now fix some $i, (i = 1, \dots m)$. Define a $U(\mathfrak{g})$ submodule (relative to some reduced word (3.8) for $\tau t)\overline{W}_i$ of W_{m+1} as follows: Let $W_{i,0}$ be the $U(\mathfrak{g})$ submodule of all vectors in W_{m+1} that are $m(\eta_i)$ finite mod W_{i-1} ; once $W_{i,0}, \dots, W_{i,p-1}$ are defined, $W_{i,p}$ is the $U(\mathfrak{g})$ submodule of all vectors in W_{m+1} that are $m(\eta_{i+p})$ finite mod $W_{i,p-1}, p = 1, 2, \dots, m-i$. We have $W_{i,0} \subseteq \dots \subseteq W_{i,m-i}$. We then define $\overline{W}_i = W_{i,m-i}$. Define

$$(4.3) \overline{W} = W_m + \overline{W}_1 + \overline{W}_2 + \dots + \overline{W}_m.$$

Thus for each reduced expression (3.8) for τt , we have defined a $U(\mathfrak{g})$ submodule \overline{W} of W_{m+1} .

(4.4) Proposition For any reduced word (3.8) for τt define the $U(\mathfrak{g})$ submodule \overline{W} of W_{m+1} as above. Then v_{m+1} does not belong to \overline{W} . If $\lambda \in \mathfrak{b}^X$ is such that W_{m+1} has a nonzero $P_{\mathfrak{k}}$ extreme weight vector (with respect to \mathfrak{b}) of weight λ which is nonzero mod \overline{W} , then $(\tau t)'\lambda$ is a $P_{\mathfrak{k}}$ extreme weight of W_1/W_0 .

Proof We refer to the proof of [3, Lemma 9].

Since we do not have a full chain of $U(\mathfrak{g})$ modules corresponding to a reduced word for t as in [3] but only a shorter chain corresponding to a reduced word for τt , we have to work more to obtain a \mathfrak{k} -finite quotient $U(\mathfrak{g})$ module of W_{m+1} . We now define

- (4.5) $W_X = \sum \overline{W}$, the summation being over all reduced expressions (3.8) for τt .
- (4.6) Lemma v_{m+1} does not belong to W_X . Let $\lambda \in \mathfrak{b}^X$ be such that there is a $P_{\mathfrak{k}}$ extreme vector in W_{m+1} of weight λ which is nonzero mod W_X . Then $\tau t)'\lambda(H_{\varphi}^{\mathfrak{k}})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$.

Proof v_{m+1} is a $P_{\mathfrak{k}}$ extreme weight vector in W_{m+1} of weight μ_{m+1} . From (3.7) and the definition of μ_{m+1} , we know that $\mu_{m+1}(H_{\varphi}^{\mathfrak{k}})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}}$. Now suppose v_{m+1} belongs to W_X . Since $W_X = \sum \overline{W}, W_X$ is a quotient of the abstract direct sum $\oplus \overline{W}$, the summation being ower all reduced words (3.8) for τt . We can then apply [3, Lemma 7] and conclude that for some reduced word (3.8) for τt , the corresponding \overline{W} has a nonzero $P_{\mathfrak{k}}$ extreme vector of weight μ_{m+1} . This vector has to be a nonzero scalar multiple of v_{m+1} in view of (3.17). Hence v_{m+1} belongs to that \overline{W} . But this contradicts (4.4). This proves the first assertion in (4.6).

Next let λ be as in the lemma. Let c be the reductive component of \mathfrak{q} defined by $c=\mathfrak{h}+\sum_{\alpha\in P\cap -P'}(\mathfrak{g}^{\alpha}+\mathfrak{g}^{-\alpha})$. We calim that W_1/W_0 is \mathfrak{c} -finite. For this it is enough to show that the image \overline{v}_1 in W_1/W_0 of v_1 is c-finite. For any α in $\pi(\mathfrak{q})$ the submodule $V_{\mathfrak{g},P,s_{\alpha}^X(\mu_1)}$ of W_1 coincides with $U(\mathfrak{g})X_{-\alpha}^{\mu_1(H_{\alpha})+1}\cdot v_1$ (cf. [2, 7.1.15]). Thus we have $W_0=\sum_{\alpha\in\pi(\mathfrak{q})}U(\mathfrak{g})X_{-\alpha}^{\mu_1(H_{\alpha})+1}\cdot v_1$. Hence the annhilator in $U(\mathfrak{g})$ of \overline{v}_1 contains $U(\mathfrak{g})X_{-\alpha}^{\mu_1(H_{\alpha})+1}$ for every α in $\pi(\mathfrak{q})$. This suffices in view of [2, 7.2.5] to conclude that \overline{v}_1 is \mathfrak{c} -finite. Thus W_1/W_0 is \mathfrak{c} -finite.

Let $\mathfrak{c}_{\mathfrak{k}} = \mathfrak{c} \cap \mathfrak{k}$. Then in particular W_1/W_0 is $\mathfrak{c}_{\mathfrak{k}}$ -finite. But note that $\mathfrak{c}_{\mathfrak{k}} = \mathfrak{b} + \sum_{\varphi \in P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}} (\mathbb{C} \cdot X_{-\varphi})$.

Now choose some reduced word (3.8) for τt and relative to it define \overline{W} as in (4.3). Note that $\overline{W} \subseteq W_X$. For λ as in the lemma, choose a $P_{\mathfrak{k}}$ extreme weight vector v in W_{m+1} which is nonzero mod W_X and is of weight λ . Then v is in particular nonzero mod \overline{W} . Hence from (4.4), $(\tau t)'\lambda$ is a $P_{\mathfrak{k}}$ extreme weight of W_1/W_0 . Since W_1/W_0 is $\mathfrak{c}_{\mathfrak{k}}$ -finite, it now follows that $(\tau t)'\lambda(H_{\varphi}^{\mathfrak{k}})$ is a nonnegative integer for every φ in $P_{\mathfrak{k}} \cap -P_{\mathfrak{k}}'$. (q.e.d)

For our proof of the \mathfrak{k} -finiteness of $W_{m+1}/W_{\mathfrak{k}}$, we need one more lemma.

(4.7) Lemma Let η be in \mathfrak{b}^X . Suppose $\eta(H_{\varphi}^{\mathfrak{k}})$ is nonnegative for every φ in $P_{\mathfrak{k}}$. Let s be in $W_{\mathfrak{k}}$. Suppose $\tau ts)'\eta(H_{\varphi}^{\mathfrak{k}})$ is nonnegative for every φ in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$. Then $N(\tau t) = N(\tau ts) + N(s^{-1})$.

Proof $(\tau ts)'\eta = \tau ts(\eta + \delta_{\mathfrak{k}}) - \delta_{\mathfrak{k}}$. Since $\eta(H_{\varphi}^{\mathfrak{k}})$ is nonnegative for every φ in $P_{\mathfrak{k}}$, $\tau ts(\eta + \delta_{\mathfrak{k}})(H_{\varphi}^{\mathfrak{k}})$ is negative for every φ in $-\tau tsP_{\mathfrak{k}}$. Also $-\delta_{\mathfrak{k}}(H_{\varphi}^{\mathfrak{k}})$ is negative for every φ in $P_{\mathfrak{k}}$. Hence $(\tau ts)'\eta(H_{\varphi}^{\mathfrak{k}})$ is negative for every φ in $(-\tau tsP_{\mathfrak{k}}) \cap P_{\mathfrak{k}}$. Hence the assumption implies

$$(4.8) P_{\mathfrak{k}} \cap -\tau ts P_{\mathfrak{k}} \subseteq \text{ complement of } P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}} \text{ in } P_{\mathfrak{k}}.$$

Note that $tP_{\mathfrak{k}} = -P_{\mathfrak{k}}$ and $\tau P_{\mathfrak{k}} = P'_{\mathfrak{k}}$. So, $-P'_{\mathfrak{k}} = \tau t P_{\mathfrak{k}}$. So, the complement of $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$ in $P_{\mathfrak{k}}$ is $P_{\mathfrak{k}} \cap -\tau t P_{\mathfrak{k}}$. Hence from (4.8) we have

$$(4.9) P_{\mathfrak{k}} \cap (-\tau t s P_{\mathfrak{k}}) \subseteq P_{\mathfrak{k}} \cap (-\tau t P_{\mathfrak{k}}).$$

Let $(\epsilon_1, \epsilon_2, \dots, \epsilon_j, \epsilon_{j+1}, \dots, \epsilon_m)$ be an enumeration of the elements of $(-\tau t P_{\mathfrak{k}}) \cap P_{\mathfrak{k}}$ such that ϵ_1 is a simple root of $P_{\mathfrak{k}}, \epsilon_2$ is a simple root of $s_{\epsilon_1} P_{\mathfrak{k}}, \dots, \epsilon_{i+1}$ is a simple root of $s_{\epsilon_i} s_{\epsilon_{i-1}} \dots s_{\epsilon_1} P_{\mathfrak{k}} (i = 1, \dots, m-1)$. Because of (4.9) we can further assume $(\epsilon_1, \dots, \epsilon_j)$ is an enumeration of $(-\tau t s P_{\mathfrak{k}}) \cap P_{\mathfrak{k}}$. Let

$$\varphi_i' = s_{\epsilon_1 \dots s_{\epsilon_{i-1}}}(\epsilon_i) (i = 1, \dots, m) (\varphi_1' = \epsilon_1).$$

Then φ_i' belongs to $\pi_{\mathfrak{k}}$. One can show that $\tau t = s_{\epsilon_m} \cdots s_{\epsilon_1}$ and a reduced word for τt is

$$(4.10) \tau t = s_{\varphi_1'} s_{\varphi_2'} \cdots s_{\varphi_m'}$$

(cf. [5,4.15.10] and [7,8.9.13]). Similarly $\tau ts = s_{\epsilon_j} \cdots s_{\epsilon_1}$ and a reduced word for τts is

$$(4.11) \tau ts = s_{\varphi_1'} \cdots s_{\varphi_i'}.$$

Note that $N(\tau t) = m$ and $N(\tau ts) = j$. Now from (4.10) and (4.11) it is clear that $s^{-1} = s_{\varphi'_{j+1}} \cdots s_{\varphi'_m}$ is a reduced word for s^{-1} . These observations substantially prove the lemma. (q.e.d.)

(4.12) Remark With the data assumed in Lemma 4.7 we have actually proved more than what is asserted in (4.7): There exists a reduced word $\tau t = s_{\varphi'_1} \cdots s_{\varphi'_j} s_{\varphi'_{j+1}} \cdots s_{\varphi'_m}$ for τt such that $s^{-1} = s_{\varphi'_{j+1}} \cdots s_{\varphi'_m}$.

The following proposition gives the \mathfrak{k} -finite $U(\mathfrak{g})$ module quotient of W_{m+1} .

(4.13) Propostion The $U(\mathfrak{g})$ module W_{m+1}/W_X is \mathfrak{k} -finite.

Proof Let \overline{v}_{m+1} be the image of v_{m+1} in W_{m+1}/W_X . Sine $U(\mathfrak{g})\overline{v}_{m+1} = W_{m+1}/W_X$, it suffices to prove that $U(\mathfrak{k}) \cdot \overline{v}_{m+1}$ has finite dimension over \mathbb{C} . For this again, by well known facts [2, 7.2.5] it suffices to prove that the annihilaor of \overline{v}_{m+1} in $U(\mathfrak{k})$ contains $X_{-\varphi}^{e(\varphi)}$ for every φ in $\pi_{\mathfrak{k}}$, where $e(\varphi) = \mu_{m+1}(H_{\varphi}^{\mathfrak{k}}) + 1$ (observe that in view of (3.7), $\mu_{m+1}(H_{\varphi}^{\mathfrak{k}})$ is a nonnegative integer for every φ in $\pi_{\mathfrak{k}}$). Thus it suffices to show that for every φ in $\pi_{\mathfrak{k}}$,

(4.14)
$$X_{-\varphi}^{e(\varphi)} \cdot v_{m+1}$$
 belongs to W_X .

Suppose (4.14) is not true. Choose a φ in $\pi_{\mathfrak{k}}$, such that $X_{-\varphi}^{e(\varphi)}v_{m+1}$ does not belong to W_X . Then $X_{-\varphi}^{e(\varphi)}v_{m+1}$ is a $P_{\mathfrak{k}}$ extreme vector of weight $s'_{\varphi}(\mu_{m+1})$ in W_{m+1} which is nonzero mod W_X . Hence by (4.6), $(\tau t s_{\varphi})' \mu_{m+1}(H_{\varphi'}^{\mathfrak{k}})$ is a nonnegative integer for every φ' in $P_{\mathfrak{k}} \cap -P'_{\mathfrak{k}}$. We can now apply(4.7) and (4.12) and conclude that there exists a reduced word.

(4.15)
$$\tau t = s_{\varphi_1'} s_{\varphi_2'} \cdots s_{\varphi_{m-1}'} s_{\varphi_m'} (\varphi_i' \in \pi_{\mathfrak{k}})$$

for τt such that

Take the reduced word (4.15) for τt in (3.8) and consider the corresponding modules W_m and \overline{W} . By definition $W_m \subseteq \overline{W}$. But in the fundamental chain $W_1 \subseteq \cdots \subseteq W_m \subseteq W_{m+1}$ associated to the reduced word (4.15) for τt , the module W_m is simply $U(\mathfrak{g}) \cdot X_{-\varphi}^{e(\varphi)} v_{m+1}$. This is clear from the definitions (cf.(3.14) and the definition of v_i after (3.11) and (4.16). Thus it follows that $X_{-\varphi}^{e(\varphi)} v_{m+1} \in \overline{W} \subseteq W_X$. But this is a contradiction to the hypothesis. Thus (4.14) is true and proved and with that also the \mathfrak{k} -finiteness of W_{m+1}/W_X . (q.e.d)

§ 5

Let \mathfrak{b} be a Cartan subalgebra of \mathfrak{k} and \mathfrak{h} its centralizer in \mathfrak{g} , so that \mathfrak{h} is a θ stable Cartan subalgebra of \mathfrak{g} . Let P be a system of positive roots for $(\mathfrak{g}, \mathfrak{h})$ such that $\theta(P) = P$. Let

$$\mathfrak{n}^+ = \sum_{\alpha \in P} \mathfrak{g}^\alpha$$

and

$$\mathfrak{n}^- = \sum_{\alpha \in P} \mathfrak{g}^{-\alpha}.$$

The following fact is standard if $\mathfrak{b} = \mathfrak{h}$, but it remains true in our general case.

(5.1) **Lemma** Let $U^{\mathfrak{b}}$ be the centralizer of \mathfrak{b} in $U(\mathfrak{g})$. If the set P of positive roots satisfies $\theta P = P$, we have a unique homomorphism

$$(5.2) \beta_P: U^{\mathfrak{b}} \to U(\mathfrak{h})$$

such that for any y in $U^{\mathfrak{b}}$.

(5.3)
$$y \equiv \beta_P(y) \; (\mathbf{mod} \; U(\mathfrak{g})\mathfrak{n}^+).$$

Proof We have

(5.4)
$$U(\mathfrak{g}) = U(\mathfrak{n}^- + \mathfrak{h}) \oplus U(\mathfrak{g})\mathfrak{n}^+$$

and this decomposition is stable under adH for every H in \mathfrak{h} i.e. $adH(U(\mathfrak{n}^-+\mathfrak{h})) \subseteq U(\mathfrak{n}^-+\mathfrak{h})$ and $adH(U(\mathfrak{g})\mathfrak{n}^+) \subseteq U(\mathfrak{g})\mathfrak{n}^+$. For y in $U^{\mathfrak{b}}$, let $y = y_0 + y_1$ be its decomposition with respect to (5.4). Define

 $\beta_P(y) = y_0$. We claim $\beta_P(y)$ belongs to the subalgebra $U(\mathfrak{h})$ of $U(\mathfrak{n}^- + \mathfrak{h})$. Since y is in $U^{\mathfrak{b}}$, y_0 and y_1 are also in $U^{\mathfrak{b}}$. Let $S(\mathfrak{n}^- + \mathfrak{h})$ and $S(\mathfrak{h})$ denote the symmetric algebras and λ the symmetrizer map of $S(\mathfrak{n}^- + \mathfrak{h})$ onto $U(\mathfrak{n}^- + \mathfrak{h})$. Then for H in $\mathfrak{b}, \lambda^{-1}(y_0)$ is annihilated by adH (extended as a derivation to $S(\mathfrak{n}^- + \mathfrak{h})$). It is enough to show that $\lambda^{-1}(y_0)$ belongs to $S(\mathfrak{h})$. Using (1.14), one can show that there exists an element X_P in \mathfrak{b} such that $\alpha(X_P)$ is a nonzero real number for every α in $\Delta(=$ the roots of $(\mathfrak{g},\mathfrak{h})$) and such that P consists of precisely those α in Δ such that $\alpha(X_P)$ is positive. It is then clear that in $S(\mathfrak{n}^- + \mathfrak{h})$, the null space for adX_P is just $S(\mathfrak{h})$. Since $adX(\lambda^{-1}(y_0)) = 0$ for every X in \mathfrak{b} , in particular $adX_P(\lambda^{-1}(y_0)) = 0$. Hence $\lambda^{-1}(y_0)$ belongs to $S(\mathfrak{h})$, so that $\beta_P(y)$ belongs to $U(\mathfrak{h})$.

Now suppose y and y' are in $U^{\mathfrak{b}}$. Let $y = y_0 + y_1$ and $y' = y'_0 + y'_1$ be their decomposition with respect to (5.4), so that $\beta_P(y) = y_0$ and $\beta_P(y') = y'_0$. Then $yy' = y_0y'_0 + y_0y'_1 + y_1y'_0 + y_1y'_1$. Clearly $y_0y'_0$ belongs to $U(\mathfrak{h})$ and $y_0y'_1 + y_1y'_1$ belongs to $U(\mathfrak{g})\mathfrak{n}^+$. Also $y_1y'_0 \in U(\mathfrak{g})\mathfrak{n}^+ \cdot U(\mathfrak{h}) \subseteq U(\mathfrak{g})U(\mathfrak{h})\mathfrak{n}^+$. Thus $y_0y'_0$ is the component of yy' in $U(\mathfrak{n}^- + \mathfrak{h})$ with respect to (5.4). We already know that this component is in $U(\mathfrak{h})$. Thus β_P is a homomorphism of algebras. (q.e.d)

The centralizer $U^{\mathfrak{k}}$ of \mathfrak{k} in $U(\mathfrak{g})$ is contained in $U^{\mathfrak{b}}$. As usual interpret elements of $S(\mathfrak{h})$ as polynomials on \mathfrak{h}^X . For any φ in \mathfrak{h}^X , define a homomorphism $\chi_{P,\varphi}$ of $U^{\mathfrak{k}}$ into \mathbb{C} as follows:

(5.5)
$$\chi_{P,\varphi}(y) = \beta_P(y)(\varphi) \quad (y \in U^{\mathfrak{k}}).$$

The main results of the previous sections can now be formulated. Let \mathfrak{b}_0 be a Cartan subalgebra of \mathfrak{k}_0 and \mathfrak{b} its complexification. Let \mathfrak{q} be a θ stable parabolic subalgebra of \mathfrak{g} containing \mathfrak{b} . The centralizer \mathfrak{h} of \mathfrak{b} in \mathfrak{g} is a Cartan subalgebra of \mathfrak{g} and \mathfrak{q} contains \mathfrak{h} . Let \mathfrak{r} be a θ stable Borel subalgebra of \mathfrak{g} contained in \mathfrak{q} (cf. (1.15) and (1.2)). Let P be the set of positive roots for $(\mathfrak{g},\mathfrak{h})$ corresponding to \mathfrak{r} . Define the θ stable Borel subalgebra $\mathfrak{r}' \subseteq \mathfrak{q}$ by (2.1). Choose a θ stable positive system P'' of roots of $(\mathfrak{g},\mathfrak{h})$ having properties (2.3) and (2.4). Denote by $F(P'':\mathfrak{q},\mathfrak{r})$ the set of all elements μ in \mathfrak{h}^X having properties (2.6) and (2.7). Now choose a μ in $F(P'':\mathfrak{q},\mathfrak{r})$ and recall the objects associated to it in §§ 3,4.

We can now state

(5.6) Theorem Let \mathfrak{q} be a θ stable parabolic subalgebra. Let $\mu \in F(P'':\mathfrak{q},\mathfrak{r})$. Let $W_{P'':\mathfrak{q},\mathfrak{r}} = W_{m+1}/W_X$ (cf. (3.12) and (4.5)). Then $W_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$ is a \mathfrak{k} finite $U(\mathfrak{g})$ module having the following properties:

- (i) $W_{P'': \mathfrak{q},\mathfrak{r}}(\mu) = U(\mathfrak{g})\overline{v}_{m+1}$, where \overline{v}_{m+1} is the image of the vector v_{m+1} of W_{m+1} . The irreducible finite dimensional representation of \mathfrak{k} with highest weight $-t(\tau \mu + \tau \delta \tau \delta_{\mathfrak{k}} \delta_{\mathfrak{k}})$ occurs with multiplicity one in $W_{P'': \mathfrak{q},\mathfrak{r}}(\mu)$. The corresponding isotypical $U(\mathfrak{k})$ submodule of $W_{P'': \mathfrak{q},\mathfrak{r}}$ is $U(\mathfrak{k})\overline{v}_{m+1}$; on this space elements of $U^{\mathfrak{k}}$ act by scalars given by the homomorphism $\chi_{P,-\mu-\delta}$.
- (ii) If τ_{λ} is an irreducible finite dimensional representation of \mathfrak{k} with highest weight λ with respect to $P_{\mathfrak{k}}$, then the multiplicity of τ_{λ} in $W_{P'': \mathfrak{q},\mathfrak{r}}(\mu)$ is finite; it is zero if λ is not of the form $(t\tau)'(-\mu \delta \sum_{\varphi \in P} m_{\varphi}\varphi) \mid \mathfrak{b}$ where m_{φ} are nonnegative integers.

Proof By (4.13), we know that $W_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$ is nonzero and \mathfrak{k} -finite. By (4.6) the vector v_{m+1} of W_{m+1} does not belong to W_X . The image of v_{m+1} in $W_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$ is $P_{\mathfrak{k}}$ extreme of weight $(t\tau)'(-\mu-\delta) = -t(\tau\mu+\tau\delta-\tau\delta_{\mathfrak{k}}-\delta_{\mathfrak{k}})$ (which is dominant by (3.7)) and this image generates an irreducible \mathfrak{k} -module with highest weight $-t(\tau\mu+\tau\delta+\tau\delta_{\mathfrak{k}}-\delta_{\mathfrak{k}})$ with respect to $P_{\mathfrak{k}}$.

Based on the preceding sections one can complete the proof of the theorem in the same way as [3, Theorem 1].

It is easy to conclude from (5.6) that $W_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$ has a unique proper maximal $U(\mathfrak{g})$ submodule and hence $W_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$ has a unique nonzero quotient $U(\mathfrak{g})$ module which is irreducible. We denote this $U(\mathfrak{g})$ module by $D_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$. The following theorem is now immediate from (5.6).

(5.7) Theorem Let $\mu \in F(P'': \mathfrak{q}, \mathfrak{r})$. Up to equivalence there exists a unique \mathfrak{k} -finite irreducible $U(\mathfrak{g})$ module $D_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$ having the following property: The finite dimensional irreducible $U(\mathfrak{k})$ module with highest weight $-t(\tau \mu + \tau \delta - \tau \delta_{\mathfrak{k}} - \delta_{\mathfrak{k}})$ (with respect to $P_{\mathfrak{k}}$) occurs with multiplicity one in $D_{P'':\mathfrak{q},\mathfrak{r}}(\mu)$ and the action of $U^{\mathfrak{k}}$ on the corresponding isotypical $U(\mathfrak{k})$ submodule is given by the homomorphism $\chi_{P,-\mu-\delta}$.

The uniqueness follows from the well known theorem of Harish Chandra [4]: An irreducible \mathfrak{k} - finite $U(\mathfrak{g})$ module M is completely determined by a nonzero isotypical $U(\mathfrak{k})$ submodule of M and the action of $U^{\mathfrak{k}}$ on it.

REFERENCES

- [1] I.N. BERNSTEIN, I.M. GELFAND and S.I. GELFAND: Structure of representations possessing a highest weight (in Russian). Funct. Anal. and appl. 5(1) (1971) 1-9.
- [2] J. DIXMIER: Algebres Enveloppantes, Gauthier-Villars, Paris, 1974.
- [3] T.J. ENRIGHT and V.S. VARADARAJAN: On an infinitesimal characterization of the discrete series. *Ann. of Math.* 102 (1975) 1-15.
- [4] HARISH-CHANDRA: Representations of a semisimple Lie group II, *Trans. A.M.S.* 76 (1954) 26-65.
- [5] V.S. VARADARAJAN: Lie groups, Lie algebras and their representations. *Prentice-Hall*, 1974.
- [6] D.N. VERMA: Structure of some induced representations of complex semisimple Lie algebras. Bull A.M.S. 74 (1968) 160-166.
- [7] N.R. WALLACH: Harmonic Analysis on Homogeneous Spaces. *Marcel Dekker, Inc., New York*, 1973.
- [8] G. WARNER: Harmonic Analysis on Semisimple Lie Groups I Springer-Verlag, New York. 1972.

(Oblatum 13-VII-1976)

Tata Inst. Fund. Research School of Math. Bombay, 400005 India