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1. Introduction

A linear semisimple Lie group G admits nontrivial unitarizable highest weight modules precisely when

it admits holomorphic discrete series. Supposing G is such a group, it is of interest to characterise the

unitarizable ones among the set of all highest weight modules of G. We are looking for a condition which is

both necessary and sufficient for a highest weight module π of G to be unitarizable. The most desirable (and

one that would be the simplest) is to give a condition directly on the highest weight µ of the module π. The

main results of this paper (theorem A, § 3 and theorem B, § 5) give such an explicit necessary and sufficient

condition on µ, provided the infinitesimal character of π is nonsingular. In §6, we discuss the applications

of our results to the (0, p) Betti numbers of compact quotients of bounded domains.

Let G be a connected linear semisimple Lie group and let GC be the complexification of G. Assume that

GC is simply connected. Let g0 be the Lie algebra of G and let g be the Lie algebra of GC. Let K be

a maximal compact subgroup of G. Let k0 be the Lie algebra of K and k the complexification of k0. Let

g0 = k0 + p0 be the Cartan decomposition and let g = k + p be its complexification. We will denote by θ the

corresponding Cartan involution.

We now assume that the symmetric space G/K is a hermitian symmetric domain. As is well-known p can

be canonically identified with the space of (complex) tangent vectors at the identity coset eK in G/K . Let p+

be the subspace of p consisting of the holomorphic tangent vectors at eK and p− the space of antiholomorphic

tangent vectors at eK. It is well known that both p+ and p− are K submodules of p. Let b be a Cartan

subalgebra of k and rk a Borel subalgebra of k containing b. Then one knows that b is a Cartan subalgebra

of g and that rk + p+ is a Borel subalgebra of g.
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Let r be this Borel subalgebra of g. Let 4 be the set of roots of g with respect to b and let 4k and 4n be

the sets of compact and non-compact roots respectively, so that

k = b +
∑
α∈4k

gα and

p =
∑
α∈4n

gα

Here gα denotes the one dimensional space spanned by a root vector corresponding to α. Let P be the set

of positive roots defined by the Borel subalgebra r. Thus

(1.1) r = b +
∑
α∈P

gα

Pk and Pn will denote respectively the set of compact and non-compact roots in P . We denote by δ, δk and

δn half the sum of the roots in P, Pk and Pn respectively.

Let U(g) be the enveloping algebra of g and U(k) be the enveloping algebra of k. Let π be an irreducible

smooth representation of G in a space H̃. Let H be the space of K−finite vectors in H̃ so that U(g) has an

irreducible representation π in H for which H is U(k) finite.

(1.2) Definition: π is said to be a highest weight module for g (or for G) if there exists µ ∈ b∗ and v ∈ H, v 6= 0

such that

(1) For every T ∈ b, π(T )v = µ(T )v,

(2) π(Xα)v = 0 if α ∈ Pk or α ∈ −Pn.

When there is some confusion, we will specify π is a highest weight module with respect to Pk ∪ −Pn.

(1.3) Definition: π is said to be unitarizable if there exists a positive definite inner product (,) on H, such

that for every X in g0,

(π(X)v, w) + (v, π(X)w) = 0 for all v, w in H.

Problem: Describe the set of all highest weight modules for G which are unitarizable.

We will focus our attention on the set of all highest weight modules for G which have a nonsingular

infinitesimal character (see § 3 for definition).

If π is a highest weight module for G, then up to equivalence π is uniquely determined by its highest

weight µ (Definition (1.2)) and µ is uniquely determined by π. Also µ satisfies

(1.4) 2(µ, α)/(α, α) ∈ Z for every α ∈ P

and 2(µ, α)/(α, α) ∈ Z+ for every α ∈ Pk.

Moreover, to every µ satisfying (1.4) there corresponds (up to equivalence) a unique highest weight module

πµ of G whose highest weight is µ. This module is obtained as follows: Let Vµ be the finite dimensional

irreducible module for K with highest weight µ. Regard Vµ as a module for k + p− by making the action of

p− trivial. Then the highest weight module πµ is simply the unique irreducible quotient of U(g)⊗U(k+p−)Vµ.

We denote by Hµ this irreducible quotient. One can show that the action πµ on Hµ comes as the action

on K finite vectors of a suitable irreducible representation of G.
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We note that Pk ∪ −Pn is the set of positive roots with respect to another lexicographic ordering on 4.

We denote by P this system of positive roots. Recall the g verma modules Vg,P ,η with highest weight η (an

element of b∗) relative to P . Let Z(g) denote the centre of the enveloping algebra U(g). As is well-known

elements of Z(g) act by scalar multiplication on Vg,P ,η. Let χP,η denote the corresponding homomorphism

of Z(g) into C. If ω denotes the Casimir element in Z(g), then it is known that

χP,η(ω) = (η + δP , η + δP )− (δP , δP )

where δP denotes half the sum of the roots in P . Thus

(1.5) χP,η(ω) = (η − δn + δk, η − δn + δk)− (δ, δ)

as (δ, δ) = (δ, δ).

(1.6) Corollary: The Casimir acts on the highest weight module Hµ by the scalar

(µ− δn + δk, µ− δn + δk)− (δ, δ).

Proof: It is not hard to see that Hµ is precisely the irreducible quotient of Vg,P ,µ. Hence the result (q.e.d).

2. An inequality satisfied for unitarizable representations

Let π = πµ be an irreducible highest weight module for G. Let H = Hµ be the space of K finite

vectors. We assume henceforth that π is unitarizable. For the results to be stated in this section, π can be

an arbitrary irreducible unitary representation of G. Let L,L+ and L− be the spin module and the two half

spin modules for so(p) the Lie algebra of the special orthogonal group SO(p) (The symmetric bilinear form

on p ⊂ g is the restriction of the Killing form). By composing with the adjoint action of k on p, we obtained

the spin representation σ of k on L and the two halfspin representations σ± of k on L and the two half

spin representations σ± of k on L+ and L−. Recall that for every X ∈ p there is a Clifford multiplication

c(X) : L→ L. Now, H ⊗ L is a k module and we have a formal Dirac operator D : H ⊗ L→ H ⊗ L defined

by

(2.1) D =
∑

π(Xi)⊗ c(Xi).

Here the summations over an orthonormal basis for p0. There is a unique (up to a positive scalar multiple)

positive definite inner product (,) on L such that for every X in p0 and s, s′ in L,

(2.2.) (c(X)s, s′) + (s, c(X)s′) = 0.

Since we have a positive definite inner product on H, for which also

(2.3) (π(X)u, v) + (u, π(X)v) = 0

for every X in g0 and for u, v in H, we now have a positive definite inner product on H ⊗L, the product of

the ones on H and L. For u, v in H and s, s′ in L, then

(u⊗ s, v ⊗ s′) = (u, v)(s, s′).

With respect to this inner product we clearly have
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(2.4). (Dw,w′) = (w,Dw′)

for w,w′ in H ⊗ L.

Let ωk be the Casimir element in U(k). It equals -
∑
Y 2
i where Yi is a basis of k0 such that (Yi, Yj) = −δi,j

where (,) denotes the Killing form of g0.

A formula was obtained in [3, § 3] for the square of the Dirac operator. These computations also apply

to the square of the formal Dirac operator (cf. also [7, § 7]). One thus obtains

(2.5) Lemma: D2 = (π ⊗ σ)(ωk)− π(ω)⊗ 1− (δ, δ) + (δk, δk).

(2.6) Proposition: Assume that ξ is the highest weight of an irreducible k submodule of H ⊗ L. Then

(ξ + δk, ξ + δk) ≥ (µ− δn + δk, µ− δn + δk).

Proof: Let w be an element of H ⊗L contained in an irreducible k submodule of H ⊗L with highest weight

ξ. The Casimir ωk of k acts on w by the scalar (ξ + δk, ξ + δk)− (δk, δk). Thus by (2.5) and (1.6).

D2w = {(ξ + δk, ξ + δk)− (δk, δk)− (µ− δn + δk, µ− δn + δk)
+(δ, δ)− (δ, δ) + (δk, δk)}w

= {(ξ + δk, ξ + δk)− (µ− δn + δk, µ− δn + δk)}w.

Hence

(2.7) (D2w,w) = {(ξ + δk, ξ + δk)− (µ− δn + δk)}(w,w).

But (D2w,w) = (DDw,w) = (Dw,Dw).

The last quantity is non-negative since the hermitian form on H⊗L is positive definite. For the same reason

(w,w) is also nonnegative. Hence from (2.7) the assertion in the proposition follows.

(2.8) Corollary: Let πµ be an irreducible highest weight module for G. Assume πµ is unitarizable. Let Vµ
be the irreducible finite dimensional module of k with highest weight µ. Suppose ξ is the highest weight of an

irreducible k submodule of Vµ ⊗ L. Then,

(ξ + δk, ξ + δk) ≥ (µ− δn + δk, µ− δn + δk).

Proof: This is clear from (2.6) since Vµ ⊆ Hµ.

3. A condition on µ

Let (πµ,Hµ) be a highest weight module for G. In § 1, we observed that the centre Z(g)of U(g) acts

on the Verma module Vg,P ,η by the homomorphism χP,η : Z(g) → C. Any homomorphism χ of Z(g) into C
is of the form χP,η for a suitable element η in b∗. The homomorphism χ is said to be nonsingular if η + δP
is nonsingular, i.e. (η + δP , α) 6= 0 for any root α.
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We will now assume that the infinitesimal character of πµ is nonsingular. Since the infinitesimal character

of πµ is given by the homomorphism χP,µ, our assumption amounts to making the hypothesis µ− δn + δk is

nonsingular, i.e.

(3.1) (µ− δn + δk, α) 6= 0 for any root α.

In addition, recall that the highest weights µ of highest weight nodules for G satisfy the condition.

2(µ, α)/(α, α) ∈ Z for every α in P and

2(µ, α)/(α, α) ∈ Z+ for every α in Pk.

Let P ′ be the set of roots defined by

(3.2) P ′ = [α ∈ 4 | (µ− δn + δk, α) > 0].

Note that P ′ is the set of positive roots with respect to a lexicographic ordering. Also, observe that

(3.3) 2(µ− δn + δk, α)/(α, α) is a positive integer for every α in P ′. Let δ′ = half the sum of the roots in P ′.

Then, note that

(3.4) µ− δn + δk = λ+ δ′.

Where λ satisfies

(3.5) 2(λ, α)/(α, α) is a non-negative integer for every α in P ′. For every α in Pk, (µ, α) ≥ 0, (−δn, α) = 0

and (δk, α) > 0.

Hence

(3.6) P ′ ⊇ Pk.

Let P ′n be the set of non-compact roots in P ′ and let δ′ and let δ′n be half the sum of the roots in P ′n. Then

δ′ = δk + δ′n and so (3.4) implies

(3.7) µ = λ+ δn + δ′n

Using our assumption that πµ is unitarizable, we wish to conclude that the quantities λ and P ′n appearing

above have very special properties. We now introduce some more terminology to explain this.

(3.8). Recall that r was the Borel subalgebra of g corresponding to the positive system P . Let q be a parabolic

subalgebra of g containing r. Let

q = m + u

be the Levi decomposition of q such that m contains b. Thus u is the unipotent radical of q and m is a

reductive component of q. Let Pm be the roots of (m, b) which are contained in P . Let Pu be the roots of P

whose corresponding root
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spaces are contained in u. Thus P is the disjoint union of Pm and Pu. If P− denotes the set (−Pm) ∪ Pu
then it is known that P− is also a positive system. Set P−n to be the set of non-compact roots in P−.

(3.9). From the assumption that πµ is unitarizable, we wish to conclude the following property about the

expression µ = λ + δn + δ′n. There exists a parabolic subalgebra q containing r such that with the notation

introduced above P ′n = P−n and (λ, α) = 0 for every α in Pm.

(3.10) Example: Observe that if (µ− δn + δk, α) > 0 for every α in P , then P = P ′ and the above property

is easily seen to hold by taking q = r the Borel subalgebra itself. (Pm = empty in this case and P ′n = Pn).

This is precisely the case when πµ is a member of the holomorphic discrete series. As another illustration,

we mention the case µ = 0, so that πµ is the trivial one dimensional representation, which is unitarizable.

In this case, the property is seen to hold by taking q = g and λ = 0(Pm = P in this case and P−n = −Pn).

(3.11). We will quickly see that (λ, a) = 0 for every α in P ∩−P ′. Corollary (2.8) says that if ξ is the highest

weight of an irreducible k submodule of Vµ ⊗ L, then (ξ + δk, ξ + δk) ≥ (µ− δn + δk, µ− δn + δk). The spin

module L is self dual and one has knowledge about the highest weights of irreducible k submodules of L (cf.

[3,§ 2]). Using these one can see that the irreducible k module with lowest weight −δ′n occurs in L. Let us

denote by V−δ′n this component contained in L. Then Vµ ⊗ V−δ′n ⊆ Vµ ⊗L. If we now take ξ = µ− δ′n, then

since µ = λ+ δn + δ′n (cf. (3.7)), µ− δ′n = λ+ δn. Both λ and δn are dominant and integral with respect to

Pm. Thus there is an irreducible finite dimensional k module Vµ−δ′n with highest weight µ− δ′n. By [6, 2.6]

Vµ−δ′n occurs in Vµ ⊗ V−δ′n . Applying corollary (2.8) to ξ = µ− δ′n = λ+ δn we conclude that

(λ+ δn + δk, λ+ δn + δk) ≥ (µ− δn + δk, µ− δn + δk).

Since µ = λ+ δn + δ′n, µ− δn + δk = λ+ δ′n + δk = λ+ δ′ (cf.(3.4)). Thus

(λ+ δn + δk, λ+ δn + δk) ≥ (λ+ δ′, λ+ δ′)

i.e. (λ+ δ, λ+ δ) ≥ (λ+ δ′, λ+ δ′)

i.e. (λ, λ) + 2(λ, δ) + (δ, δ) ≥ (λ, λ) + 2(λ, δ′) + (δ′, δ′). But (δ, δ) = (δ′, δ′). so we conclude that

(λ, δ) ≥ (λ, δ′).

That is (λ, δ′ − δ) ≤ 0. But λ is dominant with respect to P ′, Hence we conclude that (λ, a) = 0 for every α

in P ∩ −P ′.
We wanted to show that there exists a parabolic subalgebra q containing r such that P ′n = P−n and

(λ, α) = 0 for every α in Pm. For any q if we define

Pm,n = the set of noncompact roots in Pm
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then

Pm,n = Pn ∩ −P−n .

Also, the assertion that P ′n = P−n is the same as the assertion

(3.12) Pm,n = Pn ∩ −P ′n.

We will now commence a long chain of arguments and eventually show that µ is of the very special type

discussed in (3.9).

Suppose Y is a subset of Pn ∩ −P ′n. We denote by qY the intersection of all parabolic subalgebras q of g

containing r such that Pm contains Y .

(3.13) Remark. For each Y ⊆ Pn ∩−P ′n qY has the following property. No semisimple ideal of the reductive

part of qY is contained in k.

The reason is the following. As is well-known the parabolic subalgebras q of g containing r are in one

to one correspondence with subsets of the set S of simple roots of P . Suppose q contains r and suppose

Y ⊆ Pm, where Pm is the set of roots of P which belong to the reductive part m of q. Suppose m has a

semisimple ideal m1 such that m1 ⊆ k. This is equivalent to the statement “Let X ⊆ S be the subset of S

corresponding to q. Then Xcan be written as a disjoint union X1 ∪ X2 such that all the roots of X1 are

compact and X1 is orthogonal to X2, i.e. (α, β) = 0 for any α in X1 and any β in X
′′

2 . But then if q2 is

the parabolic subalgebra of g containing r corresponding to X2 ⊆ S, then q2 is a proper subalgebra of q and

the set of non-compact roots in the reductive part of q2 is exactly the same as those in the reductive part

of q. In particular, Y is still contained in the set of roots of the reductive part of q2, since Y contains only

non-compact roots. Since qY is the intersection of all parabolic subalgebras q of g containing r for which

Y ⊆ Pm, it is now clear that the reductive part of qY has no semisimple ideal contained in k. This completes

the proof of (3.13).

Varying Y over the subsets of Pn ∩ −P ′n we get a collection of parabolic subalgebras

{qY | Y ⊆ Pn ∩ −P ′n}.

It should be remarked that the set Pm,n of those non-compact roots of P which are contained in the reductive

part of any q = qY may not be contained in Pn ∩ −P ′n.

(3.14). Consider the collection of those parabolic subgroups q = qY ⊆ Pn ∩−P ′n for which Pm,n is contained

in Pn ∩−P ′n. (This set is non-empty since qY , when Y is the empty set is obviously a member). Among all

such qY , choose one for which Pm,n has maximum possible cardinality.

In what follows, unless otherwise stated, q will denote this particular parabolic subalgebra and the sets

Pm,n, Pm, P
−
n , etc. (cf. (3.8)) shall all be with respect to this particular parabolic subalgebra q. We now set

(3.15) P 1 = Pk ∪ P−n .

(3.16). We claim that P 1 is a positive system in 4.

The simplest way to prove this is through the following argument. Under the well-known one to one

correspondence between parabolic subalgebras of g containing
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r and subsets of S, there is a unique subset X of S corresponding to our parabolic subalgebra q chosen.

(The subset X is precisely the set of simple roots of Pm). Suppose for a while g is not only semisimple but

actually simple. (This assumption is not really necessary but is made here only to illustrate the argument.

The proof in the general case is alike). Then one knows that S contains only one simple non-compact root,

say α1. Also it is known that the coefficient of α1 in the highest root in P is one. This is characteristic of

the hermition symmetric case, where Pk ∪ Pn and also Pk ∪ −Pn are both positive systems. If α1 belongs

to X (which, as was observed before, is the set of simple roots for Pm = Pm,k ∪ Pm,n) then α1 is the only

non-compact root in X and its coefficient in the highest root of Pm is one. Thus Pm,k ∪ (−Pm,n) is a positive

system for the set of roots of m with respect to b. If α1 does not belong to X then Pm,n is empty and so

again Pm,k ∪ (−Pm,n) is a positive system for the roots of m. If P̃m is any positive system for the roots of m,

then P̃m ∪Pu (where Pu is the set of all roots in P , whose root-spaces are contained in the unipotent radical

of q) is a positive system for the roots of b in g. But one sees easily that the set P 1 in (3.15) is nothing but

(3.17) P 1 = (Pm,k ∪ −Pm,n) ∪ Pu disjoint.

Thus, the assertion (3.16) is proved. As we remarked, the case when g is not simple can be treated in the

same way.

(3.18). We now let S1 be the set of simple roots of P 1. Let r1 be the Borel subalgebra of g corresponding to

P 1. Since P 1 = Pk ∪ P−n (the latter defined with respect to q) one sees at once that r1 is contained in q.

(3.19). Let X1 be the subset of S1 corresponding to q.

(3.20). We enumerate S1 as α1, α2, · · · , αi, · · · , αj in such a way that X1 = α1, α2, · · · , αi.

Remark: Even when g is simple S1 may contain more than one non-compact root.

We now show that P ′ = P 1. This will be used in the proof of 3.9.

(3.21). Suppose P ′ is not equal to P 1.

We wish to show that (3.21) leads to a contradiction, namely (3.34). If P 1 is not equal to P ′, then there

is a simple root α in S1, such that −α belongs to P ′.

However P 1 and P ′ have some common parts. Let us look at this very carefully. First of all both P 1 and

P ′ contain Pk (cf. (3.15) and (3.6)). Secondly, observe that by the choice of q made in (3.14), Pn∩P ′n ⊆ Pu,n,

where Pu,n denotes the set of non-compact roots, whose root spaces are contained in the unipotent radical

of q. But Pu,n ⊆ P 1 (cf. (3.17)). So, Pn ∩ P ′n ⊆ P 1
n , where P 1

n denotes the set of non-compact roots in P 1.

This means that all those roots which are common to −Pn and −P ′n are also common to −P ′n and −P 1
n . In

particular, a root common to −P ′n and P 1
n cannot be in −Pn ∩ −P ′n; it has to lie in
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Pn ∩ −P ′n. The root α picked out in the beginning of this paragraph is not common to P 1 and P ′.

Thus, in view of the preceding observations, we can infer two facts about this root α. First, it cannot be

a compact root; thus it has to lie in P 1
n ∩ −P ′n. So, secondly it cannot be in −Pn ∩ −P ′n but has to be

in Pn ∩ −P ′n. Without loss, we can assume that S1 has been enumerated in (3.20), in such a way that

α = αi+1. Thus,

(3.22). In the enumeration (3.20), αi+1 is a noncompact root and αi+1 ∈ Pn ∩ −P ′n.
For any positive integer e such that 1 ≤ e ≤ j, let qe denote the parabolic subalgebra of g corresponding

to the subset {α1, α2, · · · , αe} of S1. Thus qi = q (cf. (3.20)) and qi+1 denotes the parabolic subalgebra of

g corresponding to the subset {α1, α2, · · · , αi+1} of S1. Note that since qi+1 contains qi = q, afortiori

(3.23). qi+1 contains the Borel subalgebra r.

(3.24). We also claim that qi+1 is of the form qY described before (3.13) for a suitable subset Y ⊆ Pn ∩−P ′n.
In fact let Y 0 be the set Pm,n of the non-compact roots in P which belong to the reductive part of our

chosen q. then Y 0 ⊆ Pn ∩ −P ′n and q = qY 0 . If we now let Y = Y 0 ∪ {αi+1} then in view of (3.22)

Y ⊆ Pn ∩−P ′n and it is easy to see that qi+1 equals the corresponding qY . Let P i+1
m denote the set of roots

of the reductive part of qi+1 which belong to P . Let P i+1
m,n denote the set of non-compact roots in P i+1

m . The

reductive part of qi+1 contains the reductive part of qi = q and is strictly bigger than the reductive part

of q;αi+1 is a non-compact root which belongs to the reductive part of qi+1 but it does not belong to the

reductive part of qi. Thus in fact, the set of non-compact roots in the reductive part of qi is a proper subset

of the set of non-compact roots in the reductive part of qi+1. But q was chosen to be maximal having a

certain property stated in (3.14). Thus we conclude

(3.25). P i+1
m,n is not contained in Pn ∩ −P ′n.

But, evidently, by very definition, P i+1
m,n ⊆ Pn. Thus we conclude that

(3.26). there is a root β of P i+1
m,n which belongs to Pn ∩ P ′n.

The root β will be the ‘trump’ in our ‘reduction ad absurdum’. Since Pn ∩ P ′n ⊆ P 1, (cf. arguments

preceding (3.22)) β is a root in P 1, hence a non-negative integral linear combination of the simple roots S1

of P 1. In particular,

(3.27). β = A+ dαi+1, where A is a non-negative integral linear combination of the roots α1, · · · , αi and d

is a positive integer.

Note that many of the roots in {α1, · · · , αi} may be compact. To proceed with the argument, we

would like to show that A can actually be written as a nonnegative real linear combination of the set of

non-compact roots of a positive system for 4m, the roots of the reductive part m of q. To this end we will

prove a slightly more general result.
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(3.28) Lemma. Suppose g0 is any real semisimple Lie algebra. Let g0 = k0 + p0 be a Cartan decomposition

of g0. Assume that g0 has no semisimple ideals contained in k0. Let b0 be a Cartan subalgebra of k0 and

assume b0 is also a Cartan subalgebra of of g0. Let g, k, b, etc. be the complexifications. Let 4 be the set of

roots of (g, b). Let φ be any real linear form on ib0. Then there exists a positive system P in 4 such that φ

is a non-negative real linear combination of elements of Pn, the set of non-compact roots in P .

Proof. Start with any positive system P 0 in 4. Let S0 be the set of simple roots of P 0. Let S0 =

A1 ∪A2 ∪ · · · ∪At be a partition of S0 such that

At = all the non-compact roots in S0,

At−1 = all those compact roots in S0, which are connected (i.e. having a non-zero scalar product) with

some element of At,

At−2 = all those compact roots in S0 − {At ∪At−1} which are connected to At−1.

At−3 = all those compact roots in S0 −At ∪At−1 ∪At−2. which are connected to At−2, etc.

Because of the assumption that g0 has no compact factors the above procedure certainly exhausts all of

S0.

Let α1, α2, α3 · · · be an enumeration of elements of A1, β1, β2, · · · an enumeration of elements of A2, etc.

Let φ =
∑
γ∈S0 mγ γ be the unique expression for φ in terms of the basis elements {γ | γ ∈ S0};mγ are

real numbers, some negative and some non-negative. Without loss of generality we can assume that mα1 ,

the coefficient of α1 in φ is non-negative. Let q1 be the parabolic subalgebra of g corresponding to the subset

S0−{α1} of S0. Let g1 be the reductive part of q1 and u1, the unipotent radical of q1. Observe that there is

at least one non-compact root of P 0 occurring in u1; for, otherwise p ⊆ g1(6= g) which can only happen if g0

has compact semisimple ideals, contrary to what was assumed. Let ξ be a noncompact root of P 0 occurring

in u1. In particular, ξ can be written as a non-negative integral linear combination of elements of S0, such

that the coefficient of α1 is positive. We now choose a non-negative real number c such that if

(3.29). φ− cξ =
∑
γ∈S0 nγγ,

then nα1 = 0.

(3.30). The complex Lie algebra g1 is the complexification of the real Lie algebra g1
0 = g1 ∩ g0 and g1

0 has no

compact semisimple factors.

Let us postpone the proof of this but assume it for a while.

By (3.29), φ − cξ is a real linear combination of roots of g1. Also, the semi-simple rank of g1 is strictly

less than the semisimple rank of g. Thus, using a suitable induction hypothesis, we can assume that φ− cξ

is a non-negative real linear combination of the non-compact roots of some positive system P (1) of the roots
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of g1 with respect to b. This can be done because by (3.30), g1
0 (of which g1 is the complexifica-

tion) satisfies the hypothesis of the lemma.

All we have to do now to prove the lemma is to enlarge P (1) to a positive system P of the roots of g with

respect to b, by adjoining the roots which occur in the unipotent radical of q1. For then (3.29) achieves our

aim.

It now remains to show (3.30) is true.

Suppose gc is a compact form of a complex semisimple Lie algebra g and suppose q is a parabolic subalgebra

of g. Then the intersection of q with gc is a compact real form of a reductive part of q. This is well known.

In our case gc = k0 + ip0 is a compact real form of g. Let k10 and p1
0 be the intersection of g1 with k0 and

p0 respectively. We observe that q1 and g1 are both stable under the Cartan involution θ associated to the

Cartan decomposition g0 = k0 + p0. (The reason is this: since we assumed rank of g0 = rank of k0, θ is the

inner automorphism of an element of exp b0; but b0 ⊆ m1 ⊆ q1). In view of this remark it is not hard to see

that the intersection of g1 with g0 is k10 + p1
0 and the intersection of g1 with gc(= k0 + ip0) is k10 + ip1

0. Thus

g1 ∩ g0 is a real form of g1 since g1 ∩ gc is so.

Now the real reductive Lie algebra g1
0 = k10+p1

0 has a Cartan subalgebra b0 contained in k10 and we can talk

of compact and non-compact roots. The set S0 − {α1} is the set of simple roots for an appropriate positive

system for the roots of g1 with respect to b. If g1 has a semisimple ideal contained in k1, then S0 − {α1}
can be written as a disjoint union X1 ∪X2 such that all the roots of X1 are compact and X1 is orthogonal

to X2. But this cannot be done as is seen by the way that α1 was chosen.

This completes the proof of lemma (3.28).

Applying the result of (3.28) to the quantity A on the right hand side of the equality (3.27), we see that

there is a positive system Q for the roots of m (the reductive part of the parabolic subalgebra q chosen in

(3.14)) such that

A =
∑
γ∈Qn

mγγ

where γ runs through the set Qn of non-compact roots in Q and mγ are non-negative real numbers. Thus

from (3.27) we obtain

(3.31) β = dαi+1 +
∑
γ∈Qn

mγγ.

where d,mγ are all non-negative real numbers. By the choice of q (cf, (3.14)), for every non-compact root α

in the reductive part of q, either α or - α lies in Pn ∩ −P ′n. Thus,

(3.32). If Qn = {γ1, γ2, · · · , γt} then either γj or - γj lies in Pn ∩ −P ′n.
We now enlarge Q to a positive system Q∗ for the roots of g, by adjoining to Q the set Pu of roots in the

unipotent radical of q. It should be remarked that Q∗ may not contain Pk. Let δ∗k (resp. δ∗n) be half the

sum of the compact roots (resp. non-compact roots) in Q∗. There is a unique element w of the Weyl group

of k such

(3.33) δk = w−1δ∗k .
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Then w−1δ∗n is the highest weight of an irreducible component of the spin module L for k. Since L is self-

dual, w−1(−δ∗n) is the lowest weight of an irreducible component of the spin module L. Clearly −δ∗n is in

the orbit under the Weyl group of k of this lowest weight. We denote this irreducible component by V−δ∗n .

The contradiction we are aiming at (from 3.21) is the following:

(3.34). There is an irreducible component Vξ contained in Vλ+δn+δ′n ⊗ V−δ∗n ⊆ Vλ+δn+δ′n ⊗ L for which

(ξ + δk, ξ + δk) is strictly less than (λ+ δ′, λ+ δ′) (compare with Corollary (2.8) and (3.4)).

The proof of (3.34) is also a little lengthy. We proceed as follows. Let Vφ and Vτ be two irreducible finite

dimensional modules for k with highest weights (with respect to Pk) φ and τ respectively. Let s1 and s2 be

two elements of the Weyl group Wk of k. For any root α let sα denote the element of Wk which corresponds

to the reflection associated to α. Suppose there is an element α ∈ Pk such that

s2 = sαs1

and N(s2) = N(s1) + 1, where N(s) denotes the length of s, i.e., the length of a minimal expression for s

as the product of reflections associated to simple roots in Pk. For any s ∈ Wk, let Vφ+sτ denote the unique

irreducible finite dimensional representation whose highest weight lies in the orbit of φ+ sτ . Let ωk be the

Casimir element in the enveloping algebra of k. Let Cs denote the constant by which ωk acts on Vφ+sτ . We

claim

(3.35) Cs2 ≤ Cs1 .

Also, let t be the unique element of the Weyl group Wk such that t(Pk) = −Pk. Then we also claim

(3.36). Ct ≤ Cs for any s ∈Wk.

To show (3.35), it is enough to show that φ+ s2τ is a weight of the irreducible module Vφ+s1τ . The latter

fact will follow from the following computation. On the one hand,

(3.37) sα(φ+ s1τ) = sαφ+ s2τ

= φ+ s2τ −
2(φ, α)
(α, α)

α.

On the other hand, sα(φ+ s1τ) = φ+ s1τ − 2[(φ, α)/(α, α)]α− 2[(s1τ, α)/(α, α)] α. Therefore, using (3.37)

φ+ s2τ = φ+ s1τ − 2
(s1τ, α)
(α, α)

α.

Since τ is dominant with respect to Pk and since N(sαs1) > N(s1), 2(s1τ, α)/(α, α) is a nonnegative integer.

Both φ + s1τ and sα(φ + s1τ) are weights of Vφ+s1τ . From what we said above and from (3.37) it follows

that φ + s2τ is in between sα(φ + s1τ) and φ + s1τ in the α-string of weights of Vφ+s1τ through φ + s1τ .

But the α-string of weights through a given weight of an irreducible modules is
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unbroken. Therefore φ+ s2τ is a weight of Vφ+s1τ . Thus, the claim (3.35) is proved.

Applying (3.35) successively (3.36) follows.

We will now apply (3.35) and (3.36) to φ = λ+ δn + δ′n and τ = the unique element in the orbit of −δ∗n
which is the highest weight of V−δ∗n . In particular we can conclude the following.

(3.38). let s ∈Wk be such that s−1(−δ∗n) is the highest weight of V−δ∗n . Let t ∈Wk be such that tPk = −Pk.

Let Cs (resp. Ct) be the value of Casimir ωk on Vλ+δn+δ′n−δ∗n , the representation of k whose highest weight

belongs to the orbit of λ+ δn + δ′n − δ∗n (resp. value of ωk on Vλ+δn+δ′n+ts−1(−δ∗n)).

Then

(3.39) Ct ≤ Cs.

The crucial observation in concluding the proof of (3.34), is the following lemma:

(3.40) Lemma. Let s be defined as in (3.38) and let Cs be the value of the Casimir ωk on Vλ+δn+δ′n−δ∗n .

Then Cs + (δk, δk) is strictly less than (µ− δn + δk, µ− δn + δk).

(Recall µ = λ+ δn + δ′n).

Proof. The root β chosen in (3.26) will play the key role in the proof. To understand the argument, we first

consider the case λ = 0 and we investigate the value Cs of the Casimir ωk on Vδn+δ′n−δ∗n .

Let β1, β2, · · · , βj , · · · , βr be the roots in Pn and let −β1,−β2, · · · ,−βj , βj+1, · · · , βr be the roots in P ′n.

Recall the positive system Q for the roots on m, the reductive part of q, and the positive system Q∗ for the

roots of g, which was obtained by adjoining to Q the set Pu of roots in the unipotent radical of q. The set Qn
of noncompact roots in Q is described in (3.32). Also it is clear that every root in the unipotent radical of

q belongs to P , since the Borel subalgebra of g defined by P is contained in q. From these descriptions, it is

clear that the set Q∗n, the set of non-compact roots in Q is contained in {±β1,±β2, · · · ,±βj , βj+1, · · · , βr}.
The root αi+1 ((cf.3.22)) is contained in Pn ∩ −P ′n. That is

αi+1 ∈ {β1, β2, · · · , βj}.

Also, by our choice (cf. 3.20, 3.22) αi+1 is not a root in the set of non-compact roots in the reductive part

m of q. Thus we can and do arrange the enumeration {β1, β2, · · · , βj , · · · , βr} of Pn, so that in addition to

the properties already mentioned, we also have,

(3.41) Qn = {−β1,−β2, · · · ,−βe, βe+1, · · · , βf}

where f < j.

(3.42) Q∗n = Qn ∪ {βf+1, · · · , βj , βj+1, · · · , βr} and βj = αi+1(cf.(3.22)).

In addition we observe that the root β chosen in (3.26) belongs to Pn∩P ′n = {βj+1, · · · , βr}. We can assume

without loss that β is enumerated to be βj+1.
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Applying these notation and using (3.31) and (3.41) we obtain

(3.43) βj+1 = −a1β1 − · · · − aeβe + ae+1βe+1 + · · ·+ afβf + ajβj

where ai are non-negative real numbers.

With these preparations, we can now get back to analysing the value of the Casimir ωk on Vδn+δ′n−δ∗n the

irreducible representation whose highest weight lies in the orbit of δn + δ′n − δ∗n. Note that

δn = 1
2 (β1 + β2 + · · ·+ βr)

δ′n = 1
2 (−β1 − · · · − βj + βj+1 + · · ·+ βr)

δ∗n = 1
2 (−β1 · · · − βe + βe+1 · · ·+ βr).

Hence δn + δ′n − δ∗n is given by

(3.44) δn + δ′n − δ∗n =
1
2
(β1 + · · ·+ βe − βe+1 − · · · − βf − · · · − βj + βj+1 · · ·+ βr).

Several observations must be made from the expression on the right hand side of the equality in (3.44).

First of all it shows that δn + δ′n − δ∗n is a weight of the spin module L for k (cf. [3,§2]). Moreover,

(3.45). 1
2 (β1 + · · ·+ βe − βe+1 − · · · − βf − · · · − βj + βj+1 + · · ·+ βr) is not in the orbits under Wk of the

highest weights of irreducible components of L.

As we will see below, (3.45) will essentially follow from (3.43). A weight φ of the spin module L is in the

orbit of the highest weight of some irreducible component of L if and only if

(3.46) φ =
1
2
(γ1 + · · ·+ γr)

where {γ1, · · · , γr} is the set of noncompact roots in some positive system for the roots of g. It follows

easily from (3.43) that whenever {β1, · · · , βe,−βe+1, · · · − βf ,−βj} is contained in a set {γ1, γ2, · · · , γr} as

described above then -βj+1 also belongs to {γ1, · · · , γr}. In particular, {β1, · · · , βe,−βe+1,

· · · ,−βf , · · · ,−βj , βj+1, · · · , βr} cannot be the set of non-compact roots of a positive system for the roots

of g. This is enough to conclude that 1
2 (β1 + · · · + βe − βe+1 · · · − βf · · · − βj + βj+1 + · · · + βr) is not

in the Wk orbit of the highest weight of any irreducible component of L. One might wonder why can’t
1
2 (β1 + · · · + βe − βe+1 · · · − βf · · · − βj + βj+1 · · · + βr) equal 1

2 (γ1 + · · · + γr) where γ1, · · · , γr is a set as

described after (3.46). But if it were so, that would make the multiplicity of 1
2 (γ1 + · · ·+ γr) as a weight of

L equal to at least two (cf. [3, § 2]) which by [3, §2] again cannot happen.

Thus (3.45) is proved and hence by (3.44) δn+δ′n−δ∗n is a weight of the spin module L for k, but Vδn+δ′n−δ∗n

is not an irreducible component of L.

We state now a general fact. Suppose φ is a weight of an irreducible finite dimensional module Vτ with

highest weight τ . Assume that φ is not in the orbit of τ . Let Vφ be the irreducible module whose highest

weight lies in the orbit of φ. Then the value of the Casimir ωk on Vφ is strictly less than the value of ωk on

Vτ . To see this let sφ be the highest weight of Vφ where s is an element of Wk. Then sφ+
∑
mαα = τ where∑

mαα is a nonnegative integral linear combination of the
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roots in Pk, with at least one mα different from zero. Thus

(τ + δk, τ + δk) = (sφ+ δk, sφ+ δk) + 2(sφ+ δk,Σmαα) + (Σmαα,Σmαα)

which is strictly greater than (sφ+ δk, sφ+ δk). Our assertion follows from this.

On every irreducible component of L, ωk acts by (δ, δ)− (δk, δk). Thus we conclude that,

(3.47). ωk acts on Vδn+δ′n−δ∗n by a constant strictly less than (δ, δ) − (δk, δk). This completes the proof of

lemma (3.40) in the case λ = 0. In the general case we argue as follows.

Consider the irreducible finite dimensional moduleVλ+δn+δ′n−δ∗n discussed preceding (3.39).

λ+ δn + δ′n − δ∗n = λ+
1
2
(β1 + · · ·+ βe − βe+1 · · · − βf · · ·

−βj + βj+1 + · · ·+ βr).

Let Fλ be the finite dimensional irreducible module for g whose highest weight lies in the orbit (under the

Weyl group of g) of λ. Consider the k module Fλ⊗L. Let P̃ be a positive system for the roots of g. Let λ̃ be

the highest weight of Fλ with respect to P̃ and let δ̃n be half the sum of the non-compact roots in P̃ . Let Vλ̃+δ̃n

be the irreducible module for k whose highest weight lies in the orbit (under Wk) of λ̃+ δ̃n. For each P̃ , Vλ̃+δ̃n

occurs in Fλ ⊗ L. On each one of the modules Vλ̃+δ̃n
the Casimir ωk acts by the same constant, namely,

(λ̃+ δ̃, λ̃+ δ̃)−(δ̃k, δ̃k). For any other irreducible component Vξ of Fλ⊗L, the action of ωk on Vξ is strictly less

than the above constant. No element in the orbit of λ+ 1
2 (β1+· · ·+βe−βe+1 · · ·−βf−· · ·−βj+βj+1+· · ·+βr)

can be of the form λ̃ + δ̃n as described above, for the same reasons as we saw for the case λ = 0. Since

λ+ δn+ δ′n− δ∗n is equal to λ+ 1
2 (β1 + · · ·+βe−βe+1 · · · −βf · · · −βj +βj+1 + · · ·+βr) we conclude that ωk

acts on Vλ+δn+δ′n−δ∗n by a constant strictly less than (λ̃ + δ̃, λ̃ + δ̃) − (δk, δk). The latter constant is simply

(λ + δ′, λ + δ′) − (δk, δk) since λ is the highest weight of Fλ with respect to P ′. Thus the lemma (3.40) is

completely proved.

Looking at (3.39) and the lines preceding it and using lemma (3.40) we now conclude the following:

Let Vξ be the irreducible component of Vλ+δn+δ′n⊗V−δ∗n , whose highest weight ξ lies in the orbit of the sum

of λ+ δn+ δ′n and ts−1(−δ∗n) which are respectively the highest weight of Vλ+δn+δ′n and the lowest weight of

V−δ∗n (cf.[6]). Then the Casimir ωk acts on Vξ by a constant which is strictly less than (λ+δ′, λ+δ′)−(δk, δk).

In other words (ξ + δk, ξ + δk) is strictly less than (λ+ δ′, λ+ δ′). This completes the proof of (3.34).

In view of corollary (2.8) the statement (3.34) clearly implies a contradiction. Thus, the assumption

(3.21), namely, that P ′ is not equal to P 1 (cf. (3.15) for the definition of P 1) leads to (3.34) which in turn

leads to a contraditiction. Thus, we have proved P ′ = P 1. In particular, P ′n = P 1
n , which by (3.15) is equal

to P−n , the latter being defined with respect to q (cf.(3.8)).
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We have thus obtained a very explicit necessary condition on the parameter µ of an irreducible highest

weight module πµ of G, in order for πµ to be unitarizable. We have obtained this under the assumption that

πµ has a nonsingular infinitesimal character. We gather below the basic notation introduced in the course

of our proof.

We denote by r the Borel subalgebra of g defined by the positive system P . For a parabolic subalgebra

q of g containing r, we denote by m the unique reductive part of q containing the Cartan subalgebra b and

call it the reductive part of q. Let Pm be the set of roots in P which are roots of the reductive part of q.

Theorem A. Let πµ be an irreducible highest weight module for G which has highest weight µ (with respect to

Pk∪−Pn). Suppose that the infinitesimal character of πµ is nonsingular. Now assume that πµ is unitarizable.

Then there exists a parabolic subalgebra q of g containing r such that

µ = λ+ 2δq,n

where (i) δq,n is half the sum of the non-compact roots in the unipotent radical of q, (ii) 2(λ, α)/(α, α) is a

non-negative integer for all α in P and (iii) (λ, α) = 0 for every root α in the reductive part of q.

Proof. Let P ′ be the positive system on which µ− δn + δk is positive. Then

(3.48) µ = λ+ δn + δ′n

where λ is an integral linear form, dominant with respect to P ′ and where δ′n is half the sum of the non-

compact roots in P ′ (cf. (3.7)). Let P ′n be the set of non-compact roots in P ′. For each Y ⊆ Pn ∩ −P ′n, let

qY be the intersection of all parabolic subalgebras q of g containing r, such that Y is contained in the set of

roots in the reductive part of q. For certain subsets Y , the set Pn ∩P ′n is contained in the set of roots in the

unipotent radical of qY . Choose a maximal one with this property and call this parabolic subalgebra q.

(3.49). For this q, we claim Pn ∩ P ′n is precisely the set of noncompact roots in the unipotent radical of q.

If this were not the case, we obtained a contradiction to the property (2.8) of unitarizable representations.

Namely, we obtained (3.34). Thus, the assertion (3.49) is proved. It is therefore clear that δn + δ′n = 2δq,n.

Hence by (3.48) µ = λ+ 2δq,n. It remains to show the property, (ii) and (iii) for λ.

In (3,11), we proved that (λ, α) = 0 for every α in Pn ∩−P ′n. Because of (3.49) Pu ∩−P ′n is precisely the

set of noncompact roots in Pm. We also know that the reductive part of q has no semisimple ideals contained

in k (cf.(3.18)). Thus every compact root of m is a linear combination of noncompact roots in Pm. Thus

(λ, α) = 0 for every root α in Pm. This proves (iii). Note that

P = Pk ∪ (Pn ∩ P ′n) ∪ (Pn ∩ −P ′n).

Since λ is dominant with respect to P ′ and since Pk as well as Pn ∩ P ′n are contained in P ′, (λ, α) ≥ 0 if

α ∈ Pk ∪ (Pn ∩ P ′n). If α ∈ Pn ∩ −P ′n, then we already saw (cf. (3.11)) that (λ, α) = 0. Thus (ii) is proved.

This completes the proof of theorem A.
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In the next two sections, we will see that the converse of Theorem A is also true.

4. The sufficiency of the condition

The aim of this section and the next one is to prove the following converse to theorem A.

Theorem B. Let q be a parabolic subalgebra of g containing r. Let δq,n be half the sum of the non-compact

roots in the unipotent radical of q. Let λ be a linear form such that 2(λ, α)/(α, α) is a nonnegative integer

for every α in P and such that (λ, α) = 0 for every root α in the reductive part of q. let µ = λ+2δq,n. Then

the highest weight module (πµ,Hµ) is unitarizable.

(4.1) Remark. πµ as in Theorem B, will have a nonsingular infinitesimal character. The first part in the

proof of Theorem B is the following.

(4.2) Proposition. Let (πµ,Hµ) be as in Theorem B. Let L be the spin module for k. Let ξ be the highest

weight of an irreducible k submodule of H ⊗L. Then (ξ+ δk, ξ+ δk) ≥ (µ− δn+ δk, µ− δn+ δk). Moreover, if

Vφ is an irreducible k submodule of Hµ with highest weight φ 6= µ and if Vξ is an irreducible k submodule of

Vφ⊗L with highest weight ξ, then we actually have strict inequality (ξ+δk, ξ+δk) > (µ−δn+δk, µ−δn+δk).

Proof. Our idea in proving (4.2) is to use the construction [5, § 4] where one builds a chain of U(g) modules

above g- Verma modules and takes a quotient of the biggest object of the chain to obtain modules like Hµ.

We explain this a little more now.

For the discussion below, the condition that the positive system P is adapted to the complex structure

on G/K is not needed. In fact G/K need not even admit any invariant complex structure and P could be

arbitrary.

For the parabolic subalgebra q of g, let Pu be the set of roots in the unipotent radical of q and let Pm be

the set of elements in P which are roots of the reductive part of q. Thus P = Pm ∪ Pu (disjoint). Also it

is known that (−Pm) ∪ Pu is also a positive system for the roots of g. Let σ be the unique element of the

Weyl group of g such that σP = (−Pm)∪Pu. For a while, let η be any regular integral linear form dominant

with respect to (−Pm) ∪ Pu. Set W1 = Vg,P,−η−δ. Let X equal the set of all simple roots of P which are

elements of Pm. (Thus, X is simply the set of all simple roots of Pm). For each α ∈ X, 2(−η − δ, α)/(α,α)

is a non-negative integer. Hence for each α ∈ X, the Verma module Vg,P,−sαη−δ is a proper submodule of

Vg,P,−η−δ. In fact, if we set W0 equal to the sum
∑
α∈X Vg,P,−sαη−δ, then W0 is a proper submodule of

W1 = Vg,P,−η−δ. In the construction of [5] one builds a (finite) canonical chain of U(g) modules containing

W1. The maximal object of this chain has a unique irreducible quotient. Let us here call it Dη. In [5]

it is shown that Dη is a k-finite U(g) module. From the work of [1] and [5] the module Dη, among other

properties, has the following properties relating it to Vg,P,−η−δ.

Let Pm,k (resp Pu,k) be the compact roots in Pm (resp Pu). Then Pk = Pm,k ∪ Pu,k. One knows that

(−Pm,k) ∪ Pu,k is also a positive system for the roots of k.
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Let τ (resp. t) be the unique element of the Weyl group Wk of k (regarded as a subgroup of the Weyl group

of g) such that τPk = (−Pm,k) ∪ Pu,k (resp. tPk = −Pk). For s ∈ Wk, set s′φ = s(φ + δk) − δk. In [5] it is

shown that

(4.3). (tτ)′(−η − δ) is the highest weight of a k submodule of Dη, with multiplicity one.

(4.4). If φ is the highest weight of any k submodule of Dη, then φ is of the form φ = (tr)′(−η− δ−A), where

A is a nonnegative integral linear combination of elements of P and in addition −η − δ −A is a Pk extreme

weight (cf. [1, § 2]) of W1/W0.

For (4.3), see [5, §5] and for (4.4) see [5, Prop. 4.4].

(4.5). Now suppose that (−η − δ, α) = 0 for every α in X.

Let u− be the span of the root spaces not contained in q. Then

(4.6) g = u− ⊕m⊕ u

where m (resp. u) is the reductive part of q (resp. the unipotent radical of q). If C−η−δ is the one-dimensional

weight space of W1/W0 with weight −η− δ, then the condition that (−η− δ, α) = 0 for every α in X ensures

that u · C−η−δ = 0 and m · C−η−δ ⊆ C−η−δ. Let U(u−), U(m) and U(u) denote respectively the enveloping

algebras of u−,m and u. Then U(m).U(u).C−η−δ = C−η−δ. Thus (4.6) implies U(u−).C−η−δ = W1/W0.

In particular, any weight of W1/W0 is of the form −η − δ − A, where A is a non-negative integral linear

combination of elements of Pu, the roots which occur in the unipotent radical of q.

Applying these remarks to (4.4) we obtain the following.

(4.7). Suppose (−η − δ, α) = 0 for every α in X. If φ is the highest weight of any k submodule of Dη, then

φ is of the form (tτ)′(−η − δ −A) where A is nonnegative integral linear combination of elements in Pu.

Now let Vφ be an irreducible k submodule of Dη with highest weight φ and let φ = (tτ)′(−η − δ − A) as

in (4.7). Let Vξ be an irreducible k submodule of Vφ ⊗ L with highest weight ξ.

We wish to conclude that

(4.8). (ξ + δk, ξ + δk) ≥ (η, η).

Let ψ be the lowest weight of an irreducible component of L. It is enough to prove the inequality (4.8)

when ξ is in the Wk orbit of φ+ψ. We know ψ is of the form tδ̃n is half the sum of the non-compact positive

roots of some positive system P̃ for g such that Pk ⊆ P̃ . Also, since ξ is dominant with respect to Pk and

lies in the orbit of ψ + tδ̃n, it can be shown that for any w ∈Wk,

(ξ + δk, ξ + δk) ≥ (w(φ+ tδ̃n) + δk, w(φ+ tδ̃n) + δk).

Thus to prove (4.8) it suffices to show that for some w ∈Wk,

(4.9) (w(φ+ tδ̃n) + δk, w(φ+ tδ̃n) + δk) ≥ (η, η).
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Now

φ = (tτ)′(−η − δ −A) = tτ(−η − δ −A+ δk)− δk

= tτ(−η − δ −A) + t(τδk + δk).

We will show (4.9) for the element w = tτt.

tτtφ = t(−η − δ −A) + t(δk + τδk).

Thus,

tτt(φ+ tδ̃n) = t(−η − δ −A) + t(δk + τδk) + tτ δ̃n.

So,

(4.10) tτt(φ+ tδ̃n) + δk = t(−η − δ −A) + tτδk + tτ δ̃n.

In view of (4.10) to show (4.9) it is enough to show

(4.11) (−η − δ −A+ τδk + τ δ̃n,−η − δ −A+ τδk + τ δ̃n) ≥ (η, η).

Recall that δ̃n was half the sum of the non-compact roots of a positive system P̃ such that Pk ⊆ P̃ . Let 4m

be the set of all roots of m. Then P̃ ∩ 4m gives a positive system P̃m for 4m and clearly Pm,k ⊆ P̃m. Let

P̃ ∗ = the positive system for the roots of g obtained by adjoining to P̃m the set Pu. Set δ̃∗n = half the sum

of the non-compact roots in P̃ ∗. Clearly,

(4.12). δ̃n = δ̃∗n −B, where B is a sum of elements from Pu,n, the non-compact roots in Pu.

Also note that

(4.13). P̃k ⊆ P̃ ∗ and Pu ⊆ P̃ ∗. Every element of the Weyl group of m leaves Pu stable. In particular

τPu ⊆ Pu. In view of these remarks, the two positive systems P and τP̃ ∗k both contain Pu and differ only in

the roots of m. In particular if s is the unique element of the Weyl group of g such that sP = τP̃ ∗, then s

is actually an element of the Weyl group of m. Hence

(4.14). sPu = Pu and s can be written as a product of reflections sα where the roots α are in X.

Note also that sδ = τδk + τ δ̃∗n. We write it as

(4.15) sδ = δ + (−δ + τδk + τ δ̃∗n)

and think of it as the result obtained by applying the formula sα(λ) = λ − 2(λ, α)/(α, α) α successively to

the reflections sα in the expression for s as in (4.14). Since (−η, α) = (δ, α) for every α in X, it follows from

(4.15) that

(4.16) s(−η) = −η − δ + τδk + τ δ̃∗n
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With these preparations we can now show (4.11). Using (4.12) and (4.16), we see that

(4.17) −η − δ −A+ τδk + τ δ̃n = s(−η)−A− τB

where A and τB are both nonnegative integral linear combinations of elements from Pu. We assumed that

η was regular and dominant with respect to (−Pm) ∪ Pu. Since sPu = Pu, we see that s(−η) is dominant

with respect to (sPm) ∪ (−Pu). Thus, from (4.17) we see that

(−η − δ −A+ τδk + τ δ̃n,−η − δ −A+ τδk + τδn) ≥ (η, η)

and equality occurs only if A = 0 and B = 0.

Thus, we have shown (4.8); in fact we also proved that for equality to hold in (4.8), it is necessary that

φ = (tτ)′(−η − δ), i.e., Vφ should be the unique ‘minimal’ k-type of Dη.

We now apply these general facts to our special case to prove proposition (4.2). First of all observe that

for µ as in theorem B, the statements in proposition 4.2 for (πµ,Hµ) will follow if we prove the corresponding

statements for (π∗µ,H
∗
µ) the dual of (πµ,Hµ). We will prove the statements for (π∗µ,H

∗
µ) by identifying H∗

µ

with a ‘Dη’, described above. In fact, choose η = λ− δm + δu. Then, we claim

(4.18) Dη ≈ H∗
µ.

We will first verify

(4.19) (tτ)′(−η − δ) = −tµ

(tτ)′(−η − δ) = tτ(−η − δ + δk)− δk

= t(τ(−η − δ + δk) + δk)
= t(τ(−η − δm − δu + δk) + δk)
= t(τ(−λ− 2δu) + τδk + δk)
= t(−λ− 2δu + τδk + δk)

since τPu = Pu and τ is a product of reflections sα, α ∈ X, and (λ, α) = 0 for α ∈ X. But −2δu + τδk + δk =

−2δq,n. So, t(−λ− 2δu + τδk + δk) = t(−λ− 2δk,n) = −tµ and this proves (4.19). Now, let φ be the highest

weight of an irreducible k submodule of Dη. By (4.4) φ is of the form φ = (tτ)′(−η − δ − A) where A is

nonnegative integral linear combination of elements of P . Here, in addition −η−δ−A should be a Pk extreme

weight for W1. If V1 denotes the k− Verma module Vk,Pk,−η−η−δ contained in W1 = Vg,P,−η−δ, then the

action of the enveloping algebra gives a k module surjection U(p)⊗ V1 →W1. Hence any Pk extreme vector

of W1 has to be of the form −η − δ −A where A is a nonnegative integral linear combination of elements of

Pn. Since elements of Wk leave Pn stable, we now conclude that φ is of the form (tτ)′(−η − δ) − B where

B is a nonnegative integral linear combination of elements of Pn. This shows that D∗
η is a highest weight

module
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(with respect to Pk ∪ Pn as in Def. (1.1)) with highest weight −t((tτ)′(−η − δ)). Since (tτ)′(−η − δ) = −tµ
(by (4.19)) the assertion (4.18) follows.

To conclude the inequalities and the statements in proposition (4.2), it remains to verify (−η − δ, α) = 0

for α in X. But

−η − δ = −λ+ δm − δu − (δm + δu) = −λ− 2δu.

But by assumption (λ, α) = 0, for α in X and also it is well known that (2δu, α) = 0 for α in X. This

completes the proof of proposition (4.2). In the next section, we will use the result of proposition (4.2) and

arrive at the unitarizability of (πµ,Hµ).

5. Role of the formal Dirac operator

The purpose of this section is to prove a general unitarizability result for highest weight modules when

one known an inequality as in proposition (4.2).

Let (πµ,Hµ) be an irreducible highest weight module which admits an invariant hermitian form.

(5.1) Proposition. Let φ be the highest weight of an irreducible k submodule Vφ of Hµ and suppose that for

every k submodule Vξ contained in Vφ ⊗ L, one has (ξ + δk, ξ + δk) ≥ (µ − δn + δk, µ − δn + δk), with strict

inequality whenever φ 6= µ. Then (πµ,Hµ) is unitarizable.

The techniques of proving (5.1) are essentially the same as already employed in the proof of [4, Prop.

9.7)]. For the benefit of the reader, we will discuss below the main ingredients of that argument.

We define a filtration Hi in H = Hµ as follows. H0 is the irreduciblek module Vµ. We inductively define

Hi+1 = Hi + p+Hi. Since H is a highest weight module, H = UiHi. Now, let us normalize the Hermitian

forms on H, so that it restricts to a positive definite one on H0. Inductively, assume that it restricts to a

positive definite one on Hi. We wish to prove it restricts to a positive definite one on Hi+1.

The main tool we employ is the formal Dirac operator D : H ⊗ L → H ⊗ L, (cf. (2.1)). Clearly

D(Hi ⊗ L) ⊆ Hi+1 ⊗ L. Let L−δn be the one dimensional k submodule of L whose highest is −δn.

(5.2) Lemma. D(Hi+1 ⊗ L−δn) ⊆ Hi ⊗ L. With suitable normalizations,

(5.3) D =
∑
α∈Pn

π(Xα)⊗ C(X−α) +
∑
α∈Pn

π(X−α)⊗ C(Xα).

Clearly the part
∑
α∈Pn

π(Xα)⊗ C(X−α) annihilates Hi+1 ⊗ L−δn
. Hence to prove (5.2) it is enough to

show that p− ·Hi+1 ⊆ Hi. This can be done easily. Thus (5.2) is proved.

Take the standard hermitian form on L. Then we have a product hermitian form on H ⊗ L. One can

show that if v, w ∈ Iξ ⊆ H ⊗L, where Iξ is the isotypical k submodule of H ⊗L with highest weight ξ, then,

(5.4) (Dv,Dw) = {(ξ + δk, ξ + δk)− (µ− δn + δk, µ− δn + δk)}(v, w).
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Let H+ be the unique k-submodule of Hi which is a complement of H0. Because of the hypothesis

of the proposition (5.1) the scalar within brackets in (5.4) is a positive number whenever v, w ∈ (
⋃
iH

+
i )⊗L.

It now follows from (5.4) and (5.2) and the induction hypothesis that the hermitian form on H+
i+1 ⊗ L−δn

is positive definite. Dividing out by the +ve factor coming from L−δn
, we see that on H+

i+1 the form is +

ve definite. Since H0 and H+
i+1 are orthogonal, it now follows that on Hi+1 the form is + ve definite.

This proves proposition (5.1).

Now, combining together proposition (4.2) and proposition (5.1), we have proved theorem B, since the

modules in question are known to posses invariant hermitian forms.

6. Applications to (0, p) Betti numbers: Remarks

Let Γ be a discrete subgroup of G so that Γ\G/K is a compact locally symmetric hermitian domain. The

(0, p) Betti number of Γ\G/K is a certain sum over the class of irreducible unitary highest weight modules

(π,H) for G, having the same infinitesimal character as the trivial one-dimensional representation of G

(cf.[2]). If such a module (π,H) has a nonzero contribution to the (0, p) Betti number, then necessarily,

(6.1). dim (Homk(∧np+,H)) 6= 0.

In particular, (π,H) has to be a module for the adjoint group of g0. Morevoer, since (π,H) has the same

infinitesimal character a the trivial one-dimensional representation of G, the infinitesimal character of π is

regular. Using theorem A and theorem B, we obtain the following.

(6.2) Proposition. Let q be a parabolic subalgebra of g containing r. Let µ = 2δq,n, the sum of all the

non-compact roots in the unipotent radical of q. The highest weight modules (πµ,Hµ) obtained this way

for the various q consist precisely of the set of irreducible unitary highest weight modules for G having the

same infinitesimal character as the trivial one-dimensional module.

(6.3). Let q be as in proposition (6.2) and let µ = 2δq,n. when is Homk(∧pp+,Hµ) nonzero? It is nonzero if

and only if p is exactly the number of non-compact roots in the unipotent radical of q.

Suppose p is the number of non-compact roots in q and let Xa1 , · · · , Xap
be the corresponding root

vectors. The vector Xa1 ∧ · · · ∧ Xap
in ∧pp+ has weight µ. If β is a positive compact root, then for

1 ≤ i ≤ p, either [Xβ , Xai
] = 0 or else, [Xβ , Xai] is a scalar multiple of Xaj

, 1 ≤ j ≤ p, j 6= i. Hence ad

(Xβ)(Xa1 ∧ · · · ∧ Xap
) = 0. Thus Xa1 ∧ · · · ∧ Xap

is a highest weight vector with highest weight µ. This

proves Homk(∧pp+,Hµ) 6= 0.

Conversely, suppose Homk(∧pp+,Hµ) 6= 0. Then there exists an irreducible k module Vφ with highest

weight φ such that Vψ ⊆ ∧pp+ and Vφ ⊆ Hµ. Since ∧pp+ ⊆ L ⊗ L∗, we have Homk(Vφ ⊗ L,L) 6= 0. Hence

we can find an irreducible k module Vξ with highest weight ξ such that Vξ ⊆ Vφ ⊗ L and Vξ ⊆ L. Since

Vξ ⊆ L, (ξ + δk, ξ + δk) = (δ, δ)(cf.[3, § 2]).
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Note that since Hµ has the same infinitesimal character as the trivial one-dimensional module, (µ− δn +

δk, µ− δn + δk) = (δ, δ).

Thus (ξ+δk, ξ+δk) = (µ−δn+δk, µ−δn+δk). As we already have Vξ ⊆ Vφ⊗L and Vφ ⊆ Hµ, we conclude

from proposition (4.2) that Vφ = Vµ. Thus Homk(∧pp+, Vµ) 6= 0. But if s is the number of non-compact

roots of q, then as we already saw Homk(∧sp+, Vµ) 6= 0. Thus, Homk(∧pp+,∧sp+), 6= 0. This can happen

only if p = s. Thus (6.3) is proved.

Since the multiplicity of Vφ in ∧pp+ can be at most one, in the course of the above argument, we have

actually proved

(6.4). The space Homk(∧pp+,Hµ) in (6.3) has dimension exactly one.

The Betti numbers of Γ\G/K, have been studied through representation theory by Matsushima, Hotta-

Wallach, Borel - Wallach, Zuckerman and Casselman-Schmid. In particular if r is the real rank of G and if

1 ≤ p < r, their results show that the (0, p) betti number must be zero. Combining this with our observations

in this section, we should expect that if 1 ≤ p < r, thee does not exist any parabolic subalgebra containing

the Borel subalgebra r for which p is the number of non-compact roots in the unipotent radical of q. In

fact, when we set out to verify this, case by case, we see that this is always the case; occasionally (e.g.

SO0(n, 2), SO∗(2n) and the exceptionals) we even get sharper results. We list below the result of doing this

exercise.

(6.5) G = SU(m,n)(m ≥ n). Real rank = n.

In the Dynkin diagram there are m+ n− 1 vertices α1, α2, · · ·αm+n−1 enumerated in the ‘usual’ way. The

unique non-compact root is αm. Let q be the maximal parabolic subalgebra defined by (α2, α3, · · · , αm+n−1).

The cardinality of Pu,n (non-compact roots in the unipotent radical of q) is n. There is no parabolic

subalgebra q containing r for which 1 ≤ #Pu,n < n.

(6.6) G = SO∗(2n)(n > 3). Real rank = r = [
1
2
n].

The Dynkin diagram has vertices α1, · · · , αn with αn and αn−1 forming a wedge at αn−2. The unique

non-compact root is αn. The unique non-compact root is αn. Let q be the maximal parabolic subalgebra

defined by (α2, · · · , αn−1, αn). Then the cardinality of Pu,n is n − 1. There is no other q containing r for

which, 1 ≤ #Pu,n ≤ n− 1. The (0, p) Betti numbers in this case vanish for 1 ≤ p < n− 1, even though real

rank is [ 12n].

(6.7). G = SO(n, 2)(n > 2). Real rank = 2. Let (α1, α2 · · · ) be the vertices in the Dynkin diagram. Any

possible wedge (which only occurs if n is even) is supposed to be at the right end. The unique non-compact

simple root is α1. Let q be the maximal parabolic subalgebra defined by omitting the last simple root.

Then cardinality of Pu,n = [(n + 1)/2], the integral part of [(n + 1)/2]. There is no parabolic subalgebra q

containing r for which 1 ≤ #Pu,n < [(n+1)/2]. Hence, the (0, p) Betti numbers vanish for 1 ≤ p < [(n+1)/2].

(6.8). G = Sp(n,R). Real rank = n. The vertices in the Dynkin diagram are (α1, α2, · · · , αn) and αn is the

unique non-compact simple root. Let q be the
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maximal parabolic subalgebra of g defined by (α2, · · · , αn). Then cardinality of Pu,n is n. There is no

other parabolic subalgebra q containing r for which 1 ≤ #Pu,n ≤ n. Therefore, in this case, we do not get

vanishing of (0, p) Betti numbers sharper than those already known.

(6.9). G = the unique real form of E6, whose symmetric space is hermitian. The real rank is 2.

The dimension of p+ is 16. The Dynkin diagram has vertices (α1, α2, α3, α4, α5, α6) where the part

(α1, α2, α3, α4, α5) is of type A5 and α6 is connected to α3. The unique non-compact simple root is α1.

Let q be the parabolic subalgebra of g defined by omitting α5. The cardinality of Pu,n is 8. There is no

othr parabolic subalgebra q containing r of g for which 1 ≤ #Pu,n ≤ 8. Thus, in this case the (0, p) Betti

numbers vanish for 1 ≤ p < 8 (even though real rank is 2). As q varies the set of numbers #Pu,n that

we get is precisely (0, 8, 11, 12, 13, 14, 15, 16). Thus, the (0, p) Betti numbers vanish also for p = 9 and p = 10.

(6.10). G = the unique real form of E7, whosesymmetric space is hermitian. The real rank is 3. The dimen-

sion of p+ is 27. The set of numbers Pu,n as q (containing r) varies is precisely (0, 17, 21, 22, 23, 24, 25, 26, 27).

Thus the (0, p) Betti numbers vanish for 1 ≤ p < 17 and for p = 18, 19, 20. These cases cover all irreducible

hermitian symmetric spaces.

(6.11) Remark. In the case of G = Sp(n,R), the numbers #Pu,n as q varies consist precisely of the set

{0}∪{n+(n− 1)+ · · ·+(n− i) | i = 0, 1, 2, · · · , n− 1}. Thus if p does not belong to this set the (0, p) Betti

number is zero. In the case of G = SU(m,n), the set of numbers #Pu,n is precisely {mn−m′n′ | 0 ≤ m′ ≤
m, 0 ≤ n′ ≤ n,m′ and n′ are integers } and so the (0, p) Betti numbers vanish if p is not in this set. Similar

descriptions can be obtained for the cases also.
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