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t-structures in the derived category of representations of quivers
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Abstract. Given a finite quiver without oriented cycles, we describe a family of algebras whose
module category has the same derived category as that of the quiver algebra. This is done in the
more general setting of ¢-structures in triangulated categories. A completeness result is shown
for Dynkin quivers, thus reproving a result of Happel [H].
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Introduction

The notion of a ¢-structure in a triangulated category is introduced in [ 1, 1-3]. Given a
t-structure in a full thick subcategory Dy, of D and a ¢-structure in the quotient, under
some hypotheses, there is a notion of glueing (= ‘recollement’ [ 1, 1-47]) which produces
a t-structure in D. We apply these constructions to the (bounded) derived category
DP(mod (A, Q)) of the category mod (A, Q) of representations of a quiver (A, Q). In§ 2 we
define ‘data’ in (A, Q) and attach them to t-structures in D°(mod (A, Q)). Our main result,
Theorem 3.3, gives a necessary and sufficient condition for the heart of this ¢-structure
to give back the derived category D®(mod (A, ). This condition is easy to verify in
practice. Some examples are given in § 5. When this condition is satisfied, Theorem 7.1
asserts that the heart of the t-structure can be identified to the category mod (B) where B
is an algebra obtained as an n-step (n = #A) tilting of the quiver algebra of (A, Q) where
(A, Q) is another quiver obtained from (A, Q) by changing the direction of some arrows.

In § 4 we prove that the intermediate t-structures that arise from disregarding tails of
‘data’ have the property that the realization functor (§ 3) is an equivalence if the final z-
structure is so. This allows us to use the inductive arguments of §6 leading to
Theorem 7.1. The fact that if (A, Q) is a Dynkin quiver then it is of finite representation
type can be used to deduce from Theorem 7.1 a completeness result for this case
(Theorem 8.5). This is related to a result of Happel {5, § 5].

1. Reflection functors R, R,
Let k be a field assumed algebraically closed. Let (A, ) be a finite quiver (:=a finite

set of vertices linked with arrows) without oriented cycles. Here A denotes the
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underlying set of vertices and Q the orientation data for the edges of the graph. A
representation V of (A, Q) assigns a vector space V, (over k) to each vertix aeA and a
linear map V:V,—V; to each arrow a—f. A morphism between two such
representations V and W is a collection of linear maps f(a): V, — W,, (x€A) satisfying
f(B) Vg =Wz f()for each arrow « — B of (A, Q). Denote by mod (A, Q) the (abelian)
category of finite dimensional representations of (A, Q) (:= 3, dim V(«) < o0).

(1.1) The category mod (A, Q) can be identified with the category of finitely generated
(left) modules over a finite dimensional k-algebra k[ A, Q] called the quiver algebra of
(A, Q) (cf. [4], §4).

If zeA, a is said to be a sink (resp. source) if there are no arrows starting at « (resp.
ending at «). If aeA, (A, s,02) is a new quiver obtained from (A, Q) by reversing the
arrows at o.

(1.2) The orientation Q in (A, Q) is called admissible if there exists an enumeration
o,,...,0, of A such that a, is a sink of (A, Q), «, is a sink of (A, 5,,Q),..., ; is a sink of
(A, Sy, 84,5, Q) (1 <i< n). In this case a;,...,a, is called an admissible enumer-
ation. All the quivers that we encounter in this article shall have an admissible
orientation.

For an introduction to triangulated categories and general notions associated with
them and their study we refer to [7] and [6]. Derived categories and derived functors
which we use here are as in [7] and [6]. Sometimes, we say triangles instead of
distinguished triangles.

If ais a sink or a source one has ‘reflection’ functors mod (A, £2) » mod (A, 5,£) which
were introduced by Gelfand, Bernstein and Ponomarev. We do not need the exact
definitions here which can be found in [3, pp. 15, 16]. However, we state here in a
convenient form the important fact that the derived functors of these reflection functors
become isomorphisms between derived categories. This fact which was proved by
Happel [5] in a more general context (namely, tiltings) was also independently proved
by the author (unpublished). The form in which we state it here is closer to the latter
version.

(1.3) It is convenient to denote an object ¥ of mod(A, Q) by {V,,...,Vz,...} (see
definition before 1.1). A complex V', d) (where d is the differential) of objects of
mod (A, Q) will be denoted by {V,,..., Vs }. Let E be the set of arrows of (A, Q)
whose end point is «. (Here, a is supposed to be a sink of (A, Q).) Then we have a
homomorphism

PreVs— Ve (1.3a)

by summing the V7 for [5: €E. Note that 1.3a is a morphism of complexes of vector
spaces. Let M be the mapping cone on the negative of the morphism 1.3a. By definition
of the mapping cone construction, we have canonical morphism M [ — 1] — left side of
1.3a {M"— M[1] is the translation functor}. Now we define V; = M'[—1] and V/,
=V, if y #a (yeA). Thus, we have a canonical morphism

V: - @E«; ek Vﬂ’
which, by projecting into summands induces morphisms

—
Ve—=Vy (for fa €E).
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We denote their negatives by Vg Va = V(= V). (Our sign conventions coincide with
those in [ V] but differ from [6] ) Also, we deﬁne ViV, — V| to be equal to the given
Vi if u and v are different from a. {V;,, VW, } is a complex of objects of
mod (A, 5,Q). We define (1.3b) R {V,,..., Vs 3 ={Vieots Vigs oo }R} is functor-
ial for morphisms of chain complexes. It takes homotopy equlvalent morphisms to
homotopy equivalent morphisms and quasi-isomorphisms to quasi-isomorphisms.
Thus, R, gives rise to a functor between the derived categories of mod (A, Q) and
mod (A, s,Q).
By the result {5, Theorem 1.6] of Happel.

PROPOSITION 1.4

Let D*(mod (A,Q)) {resp. D*(mod(A,s,Q))} denote the bounded derived category of
mod (A, Q) {resp. mod(A,s,Q)}. Then R} :DP(mod(A,Q))— Db(mod(A,s,Q)) is an
equivalence of triangulated categories.

(1.5) Dually, if « is a source, there is an analogous result. Let E be the set of arrows of
(A, Q) whose initial point is «. Then we have a homomorphism

V;——»@JGEV'}” (1.5a)

where V' is a complex of objects of mod (A, Q) as in 1.3. Let M~ be the cone on the
negative of 1.5a. We now define V, =M and V, =V, if p#a(ueA). The cone
construction yields a canonical morphism (‘B&'eb‘ V— V,, which by restriction to the
summands induces morphisms

-
Viz:Vi—V, (for af €E). (1.5b)
If 4 and v are different from «, we define
VaiVi-Vy

to be equal to the given V; in V.
We define
RAV,,..., =V Vi ) (1.5¢)

Similar to 1.4 we have

PROPOSITION 1.6
R, :DP(mod (A, ©2)) - D*(mod (A, 5,Q)) is an equivalence of triangulated categories.

Remark 1.7 One can show that R; °R} and R} °R, are naturally equivalent to the
identity functor.

(1.8) Let a be a sink of (A, Q). Let (Ay, Q) be the quiver obtained by deleting o from
(A, Q). We can regard an object of mod (Ay, Q) as an object of mod (A, Q) {resp.
mod (A, s,Q)} by extending by zero over o. This defines obvious functors
Je:mod (Ay, Qy)—mod (A, Q) and ]* mod (Ay, Qy)—>mod (A, 5,Q) which are exact
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We denote the derived functors by the same symbols. Thus we have defined

ju: D(m0d (Ay, Qy)) - D(mod (A, ), (1.8a)

e Jx:DMmod (Ay, Qy)) - D(mod (A, 5,92)). (1.8b)
We define

ji:DP(mod (Ay, Qy)) - D*(mod (A, ), (1.8¢)

by j,=R; of* where R, : D®(mod (A, 5,Q)) - D?(mod (A, Q)) is the isomorphism 1.5¢.
An object of mod (A, Q) gives rise to an object of mod (Ay, Q) by restriction. This gives
rise to an exact functor j*:mod(A, Q)— mod(Ay, Q) and its derived functor

j*:D*(mod (A, ©)) — D*(mod (Ay, ) (1.9)

Lemma 1.10

@) j is left adjoint to j*
(i) j, is right adjoint to j*.

This lemma will be proved along with Lemma 1.15 below.

We can regard a k-vector space V as an object of mod (A, Q) by setting V= 0 for
B #a(feA), V,=V and V> =0 for all arrows. This defines an obvious exact functor
i,:mod k—mod (A, Q) and its derived functor

i,.:DP(mod k)— D*(mod (A, Q2)). {1.11)

Since an object V of mod (A, Q) {resp. mod (A, 5,Q)} assigns a vector space Vv, for
each feA, we have an exact functor i':mod(A,Q)—>modk {resp. i *mod (A, 5,Q)
—mod k} defined by V¥, and derived functors

i': DP(mod (A, Q)) —» Db(mod k) (1.12)
and
7 :D*(mod (A, 5,2)) —» D*(mod k). (1.13)
We define
i*:D?(mod (A, ) = D?(mod k) (1.14)

by i*(X) = (i"*RJ }X[1])

Lemma 1.15
(i) i* is left adjoint to i,
(i) i is right adjoint to i,.
Before proving 1.10 and 1.15, we observe the easy relations

i*oi, =identity = i'°i, (1.15a)
and
j*°j, = identity = j*< . {1.15b)
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Proofof1.10 and 1.15. Let MeDP(mod(A,Q)) and NyeDP(mod (Ay, Qy)). Then one sees
from definitions that Hom (j*M, Ny) = Hom (M, j,Ny) which implies 1.10 (ii}. Also,

Hom (N, j*M)=Hom(Ny, J*R;} M)
= Hom (j,Ny, R; M)
=Hom (R, j,Ny, M)  (by 1.7)
= Hom (jNy, M) (by 1.8¢c)

which proves 1.10 (i).
LetM eD”(mod (A, Q))and VeD*(mod k). Then it is trivial to see that Hom (i, V, M)
= Hom (V, i'M). Also,

Hom (M, i, V)=Hom(R; M,R]i V) (1.4)
= Hom (R} M, (V[ —1]))
=Hom('R; M, V[—-1])
=Hom (i*M, V). (1.14).
This proves 1.15. (ged)

(1.16) The functors i*, i,, i, j, i* J« satisfy the formalism of [1, § 1.4.3] namely the
properties 1.4.3.1 thru 1.4.3.5 as can be checked easily using the definitions. That is all
that one needs to apply ‘recollement’ [1, § 1.4].

(1.16a) We recall the definition of a ‘t-structure’ [1,§1.3]. It is a data (D<° D>°)
where D<C and D?© are full subcategories of D?(mod (A, Q)) satisfying axioms (i), (ii)
and (iii) below. For any integer n write D" = D<°[—n] and D>"=D>*°[—n]

(i) Hom(X,Y)=0 for XeD<° and YeD?>!.
(i) DS°cD<'and D>°2 D>
(iii) For any X eD’(mod (A, Q)) there exists a distinguished triangle A —» X — B such
that AeD<° and BeD>'.

PROPOSITION 1.16b

Let (D5°,D;°) be a t-structure in D*(mod (Ay, Qy)) and (D5°, DZ°) a t-structure in
Db(mod k). Define

D<°={KeD*mod(A, Q))|j*KeD3° and i*KeDs°}
and
D?° = {KeD’(mod (A, Q))|j*KeDz° and iKeDZ°}.

Then (D<°, D>%) is a t-structure in D*(mod (A, Q)).
The proposition is [1, Theorem 1.4.107].

(1.17) Let (D52, D5%,) {resp. (D3L?,DZ7)} be the natural ¢-structure of
D*(mod (Ay, Qy)) {resp D”(mod(A Q))}. For the definition of natural t-structure
see [1, 1.3.2]. Let (D52, D72, be the natural s-structure of D®(mod k).
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Remark 1.17a. The functors i, iy, J* J,. are exact with respect to the natural t-
structures (i.e. D=° goes into D= and D?° goes into D>°). This is an easy consequence
of the definitions.

(1.18) In the context of Proposition 1.16b, if D§° < D9, and D5° = D59, then D <°
can also be described by

D<°={KeD3?|j*KeD§°}.
In addition one also has
D<°={KeDmod(A,Q))|j*KeDs° and i KeD5®).

These assertions will be proved below. But first we deduce from the last assertion and
1.16b (definition of D *°) the following

(1.18a) When D5°< D50, and DF° = DS, the functor i is exact with respect to the ¢-
structures (DSO, %) in D*(mod(A,Q)) and (DF° D2 °) in D*(mod (k)).

Proof of the assertions 1.18. Suppose K e D*(mod (A, Q)) and j*KeDj°. We will show
that i"KeDﬁ"a»i’K €D5° and further when this is so, K eD;,,? The last assertion
follows since Dg0 {KeDb(mod (A, Q)| j*KeD5%, and i'KeDsl,}. Recall
the deﬁmtlons of l*K i'K and R} {see resp. 1.14, 1.12 and 1.3b}. Write K =
Vo,V (") ...} in the notation of 1.3. Then we have a distinguished triangle

LoiK—»i*K—L[1] (1.19)

in D*(mod k) where L is the left side of 1.3a (i.e. the direct sum of the parts of K over
vertices adjacent to a). From the assumptions j*KeD;° and D5° < D§%,,, it follows
that LeDF? nat (=Df° by assumptlon) and aportioti L[l]eDF" The distinguished
triangles (L, i K, i*K) and ('K, i*K, L[1]) (1.19) imply that { Ke D5 %<>i* KeDS°, this
completes the proof of the second assertion in 1.18. In particular one deduces that
D<°c DL Conversely suppose KeDS0 and j*KeDs°. Then i KeD5 %, (= D% and

hence also i*KeDS°. Then, by what is already proved KeD <°. This completes the
proof of the first assertion in 1.18.

2. The t-structure associated to a data

Applying the previous constructions inductively, we will produce some t-structures
in D*(mod (A, Q)). Recall that we assume that (A, Q) does not have oriented cycles. In
addition we assume that there is at most one arrow between any two vertices. Let n be
the cardinality of A.

DEFINITION 2.1

A datain (A, Q) is a collection of n sequences ,,, a,5,..., &, (1 <p<n, 1 <v,)of not
necessarily distinct vertices of (A, Q). We assume that they satisfy the following
conditions: a, , is a sink of (A, Q); a, , is a sink of (A, 5;, Q) {here and in the sequel, 5,,Q
is abbreviation for s,"Q}. o3 2y, is asink of (A, sy, - 1y 512511 Q) (1 < p < vy). Define
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quivers (A;,Q;) and (A, Q) by (A1, Q) =(A, Q) and (A}, Q)= (A, Sy, -1y 511€2).
Let (A,,Q,) and (A, Q,) (1 < p < n) be the quivers defined inductively as follows. If
(Ag Q,)and (A,, ;) have been defined (A, , 1, €, 1) is obtained by deleting , , and all
arrows toit from (A, Q;). We assume that for each p(1 < p <n), a,, is asink of (A, Q,),

o,z isasink of (A,, 5,1Q,)... etc.... ay,, isasink of (A, Sy, - 1)+ 5525,1€2,). We then set

(Ag+15Qq+1)=Ags 155 g+ Lvg+1~1)"""Sq+1,25¢+ 1,1 Q1)

(2.2) The natural t-structure in D*(mod (A,, Q;)) {resp. D*(mod (Ag+1,Q,41))} wili be
denoted by (D9, D;>°) {resp. D%, D7 )}. We will now apply the constructions of
the previous section taking (A,Q)=(A,, Q) and (Ay, Q) =(As+1,Q,+,). More
particularly, remark 1.17a implies the following proposition.

{The functors i*,i,, 1, j., /*, jy»lxs L - J* j defined in § 1 are denoted by the same
symbols in the situation (A, Q) =(A,, Q) and (Ay, Qy) =(Ay 1, 1)}

PROPOSITION 2.3

Let (Dqﬂ, q+1) be any t-structure in D¥(mod (A, 1, Qy+,)) such that Do eDse,.
Define D50 {XeD’<°|]*XeD<° and D7O=D7'[1] where D'=
{XeD"(mod (A,,S2))Hom (Y, X)=0, VYeDs . Then (Dso DZz% is a t-structure
in D*(mod (A,,€,)), such that Ds° < D,<°.

{Recall from [1, 1.3.4] that 1f (DSO D?9%) is a t-structure then D' is the right
orthogonal of D=°}.

Remark 2.4. In the context of Proposition 2.3, the functor j: D”(mod (AqH, q“))
—D%mod (A, Q) is exact, with respect to the t-structures (D50, D20) in
D’mod(A,+,9+,) and (DS, D% in D”(mod(Aq, ') Indeed, XeDZ) =
XeD3Y, (by assumption)=j, X eD’<8 (1.17a). But as j*j, X ~ X (1.15b), Proposition
2.3=j,XeDS°. This shows j, is rzght exact (:= j,(D°) < D=°). But in the general
context of ¢ reco]lement J, isalways ‘left’ exact (:= D>° goes into D>®)—an easy fact [ 1,
Prop. 1.4.16(i)}]. Moreover, as already remarked (1.18a) in the context of Proposition
2.3, 'is exact. (Again, i is only left exact in the general context of ‘recollement’ [ 1, Prop.

1.4.16()1.)

(2.5) To apply Proposition 2.3 for the (descending) inductive construction of
(D°,DZ°) for 1 < q<n, we will transport (Dg°, D>°) to D¥(mod (A, Q,)) using an
isomorphism (described below) of D*(mod (A,, Q) w1th Db(mod (A,, ©,)). Recalling
2.1 and using 1.6, we now have

Lemma 2.5a. For 1 <pu<v,, o, is a source of (A, 4,54, 1+ 5418,). Thus, the functor
Ry, =R :DP(mod (A, 5., 5,1 Q,)) = DP(mod (A, Sy 1)-+-51,)) is an equivalence
of trlangulated categorles Let R, =R;°Rpz°---°Ry. ~1y. Then the functor R, is an

equivalence of D*(mod (A, Q) wzth D"(mod (A, Q).

We will recall briefly the notation in 1.5 where we defined R, to show

(2.6) R, is right exact with respect to the natural t-structures.
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Proof. If V,, is the cone on the morphism 1.5a, we have a distinguished triangle
Vir @z Vs Vi Vil

(with notation as in 1.5a). If ¥'e D <? for the natural t-structure then the above triangle
implies that ¥, eD=° for the natural ¢t-structure of D¥(mod k). If we recall how R is
defined (1.5), it now ensues that R, (V')eDS° for the natural t-structure of
Db(mod (A, 5,Q2)).

We can now conclude that the functor R in Lemma 2.5a is right exact with respect to
the natural t-structures, ie.,

R(D;S°) = DZ°. 2.7)
In particular, if DS° is given by Proposition 2.3, then
R(DZ%) = RY(D, %)= DSO. (2.7a)

By abuse of notation we write D<° instead of R}(D5°) and regard (D5% D>°) as a
t-structure in D®(mod (A, Q). Thus

DseDge. (2.7b)

Now we can apply Proposition 2.3 to produce a t-structure (Dfol,D>°) in
Db(mod (A,-;,9;,-,)) and so on...

(2.8) We can now define for each gl <g<n) a t-structure (D f %) in
Db(mod (A, Q) as follows. For (Do D>°) we take the image of the natural
t-structure of Db(mod(A,, Q,)) under the equlvalence R, 2. Sa): D"(mod(A Q)
——»D”(mod(A,,,Q )). Then we inductively construct (D3 °1,D>°1) (Dg2,,D29,),...,
(D£°,D7°) respectively in  D"(mod(A,_;, Q) D”(mod(A,,_z,Q,,_z)),...,
D"(mod (A, Q).

(2.9) Finally, the t-structure (D% D>°) is what we refer to in the sequel as the
‘t-structure associated to the data {a,,,...,a,, |1 <p<n}.

(2.10a) Example. The natural t-structure of DP(mod (A, Q)) can be obtained as the
t-structure associated to a data in the following way (roughly, spreading out an
admissible enumeration (1.2) of (A, Q)).

Let ay,2;,...,%, be an admissible enumeration of (A,Q). Define a data
{0p1s-e sy, |1 < < p<n}byv,=1Vpand a,, =a,. In this example (A, Q) = (A, Q,)
for all 4 and R} is the 1dent1ty functor. The t-structure associated to this data (2.9) is
simply the natural t-structure of D¥(mod (A, Q)).

(2.10b) Example. Let (A, Q) be the quiver ! -2 -3 (this is a Dynkin quiver of type
A,). If , B, v are the simple roots corresponding to the vertices 1, 2, 3 respectively then
the positive roots are a, 8, v, + B,  + y and « + B + 7. The indecomposabie objects (up
to isomorphism) of mod(A,Q) are in 1-1 correspondence with the positive roots
(according to Gabriel’s observation). We denote these indecomposable objects by V,

Vs Voo Vot 8V + o Vas 5+, respectively. Then the indecomposable objects of D®(mod (A, Q))
(up to isomorphism) are (i) {Vy[i]lieZ and Oe(e, B,7,2 + B, 8+ y,a + B+ 7)} (see for
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instance [5,4.1]). If one restricts to i>0 (resp. i<0) in (i) then one gets the
indecomposables of DS° (resp. D>°) for the natural t-structure of D®(mod (A, Q)).
The t-structure (D %, D7) in D¥(mod (A, Q)) associated to the data {(3), (2, 1), (2)} can
be described as follows. The indecomposables of D1 0 are of the form V,[i] where (i)
either@=a,y,a+p,a +f +yandi=0or (i) # =§, f + v and i > 0. The indecompos-
ables of D1> 70 are of the form V,[i] where (i) either 6 =a, y, 2 + B, B+ 7, a + B +7 and
i<Qor(i)f=fand i< 1.

(2.11) We will now define some t-structures intermediate to (D% D?°) and the
natural t-structure of D*(mod (A, Q)). They play a role in the proof of Theorem 7.1.
Fix a ¢, 1 <g<nand v such that 1 <v <v,. Define

(2.11a) Ry ,):D(mod(A,, s, +5,1Q,))— D*(mod (A,, Q,)) by R, ,, = Rji°Rp0°R,,
(2.5a). Thus for example,

(2.11b) R;, =R, (2.5a) in our earlier notation. Define (DS&,DE_&) in
D"(mod(Aq,Qq))to be the image of the natural z-structure of D”(mod( - 55182,))
in D”(mod(A Q )) under the isomorphism Rj,  and ¢ 2 itS heart Starting
with this (Dq op (v)) apply the inductive construction of Proposition 2.3 to
obtain new  t-structures (D,fol,DZO) L(D5%,D2% in  DPmod(A

q—1°
Qq— 1))’ Db(mOd (Ap Ql)) I'CSpCCthC]y

(2.11c) We will use the notation (D53, D2) to denote the t-structure (DF0, 53°)
obtained in this way. In this notation, the t-structure associated to the data

{1505 0, |1 <p<n}is (DS _4), DZO, _ 1)). One has the obvious inclusion relations
€0 <0
D5 e Di8- 1. D O ED (2.11d)

20 DDZO

20 20
and also D> o= Dq,(v_ 1y Dq,(v, JACIm

Remark (2.12). Let P be the simple projective of mod (A Sgv—1"" 541 8,) correspond-
ing to the sink «, ,. Then, the indecomposables of Dq ) are obtamed by dropping the

isomorphism class of R, _;,(P) from the indecomposables of D33 _ .

3. A necessary and sufficient condition

If (D<°, D?°) is any t-structure in D*(mod (A, Q)) denote by ¥ the full subcategory
D<°ADZ% It is an abelian category called the ‘heart’ of the ¢-structure [1, 1.3.17. If
D¥(%) denotes the bounded derived category of %, then a functor ‘real’ (‘realization’):
D¥(%) - D*(mod (A, Q)) is defined in [1, 3.1.10]. In this article, we are concerned with
the t-structures for which the functor real is an equivalence of triangulated categories.

(3.1) Recall the functors j, j,:D*(mod (A, ,Qy11))— DP(mod (A,,€;)) and
Je:DPmod (A4 1,Q,4,))— DP(mod (A,, S4v,82¢)) (2.2 and 1.8). We now define functors

Pg: DP(mod (A 1, 1)~ DP(mod (A,, Q) by
Pe=jiRg+1, (2.52).

For each p(l <p<n) define %¥(p)=the heart of the natural t-structure of

(3.1a)
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D"(mod(A »)). For simplicity of notation R,(%'(p)) will also be denoted by 4'(p).

Let &, denote the heart of (D5°, D>9) constructed in §2 (2.9).

A necessary and sufficient condition (effaceability) for the functer real to be an
isomorphism is given in [1, Prop. 3.1.16] (see 3.4 below). For the t-structure (D £°, D>?)
(2.9) we will derive a consequence of this condition. In this form, though not very
transparent, it is easy to verify in practice as will become clear with a few examples (5.1
and 5.2).

(3.2) Write V(q) for the simple object of mod (A, ;) corresponding to the vertex o,
(i.e. we have a one-dimensional vector space over the vertex a, , and null vector space
over other vertices).

Theorem 3.3. The functor real: D*(%,)— D*(mod (A, Q)) is an equivalence of trian-

gulated categories if and only if

For each p, g with 1 <p<q<n either p,op,, °---°p(V(q+ 1)) belongs to ¥'(p) or

equals j,oR,y1°(Pps1°Pps200p)V(g+1)). {Here j, is functor (1.8a, 2.2)

DYmod (A, +,,Q,.4))— D?(mod(A,, Q)))}. (3.3a)
W hen this condition is satisfied up to isomorphism the objects Ry >(p°---°p,-1)(V(q)),

(1 < g < n) are precisely all the indecomposable projectives of %,.

Proof. By (1, Prop. 3.1.16).

(3.4) A necessary and sufficient condition for real: D*(%,) - D*(mod (A, Q)) to be an
equivalence is the following:

Given A, Be%, and feHom (4, B[n]) where n > 0,3 a monomorphism (in %,)B - C
such that f has image zero under the canonical map Hom (4, B[n])— Hom (A4, C[n]).

Remark (3.5) Observe that condition 3.4 is equivalent to “the property 3.4 holds even
if one only assumes 4eD>°.”

Indeed, first if A = A'[ — m] where m > 0 then Hom (4, B[n]) ~ Hom (4’, B[m + n])
and_ so the property 34 for A’ implies the property for A. Next, suppose
AeD °~D $m+1 Then, one has a truncation triangle 7 ,(A)— 4 15, ,(4) where
rsm(A)eD? 9~ADS™and 75, ,(4)e¥,[ —m —1]. A suitable induction argument (see
the proof of 3.18) completes the proof.

(3.6) Fix p, (I<p<n). The n-p sequences o,,...,%, (P+1<qg<n) give rise
to a ¢-structure in D°(mod(A,.,, Q,,1)) via the constructlon of §2. Clearly,

<0

this coincides with what was denoted (DPH, ffl) in the inductive construction
of § 2 (2.8). The composite of the functors D"(mod Ap+ 1,241 LN DP(mod (A )

—*Db(mOd (A, Qp))i'D"(mOd (Ap—1,82,- 1))—5—1-'Db (mod (A,—1,Q,-)) >
Db(mod(A,,Q,)) s seen to be exact (using Remark 2.4) with respect to the t-structures
(D52,,D2?,) in DP(mod (A, 4,9, +,)) and (DF° D7) in D*(mod(A,Q)). {To avoid
a possible confusion, we point out here that even though R, is only right exact with
respect to the natural t-structures (by 2.7) it is exact with respect to (Dso DB") in
D*(A,,Q,) and its transport by R, denoted by the same notation (Dso D?") in
D”(mod(A,,Q N}
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(3.6a) We denote this composite by [],,. Thus, [T,,:] Db(mod (A,+1,Q,+1))
- D*(mod (A, Q)) is exact with respect to (D52,, D29,) and (D5°,D7°).

(3.7) We denote by &, the heart of the t-structure (D°, 5} °) in D*(mod (A,, Q})) and
we use the same notation ¢, for R(¥%,). By 4(p) (resp. #'(p)) we denote the heart of the
natural t-structure of D*(mod (A, Q,)) (resp. D’(mod (A, Q}))). Again R(¥'(p)) will

also be denoted by 4'(p).

(3.8) By 110 (i), Hom(j*X,j*Y)zHom(j*j*X,Y)ijom(X, Y). Thus, for
X,Ye%,.,, Il,«(X) and [I,.(Y) belong to ¥, and Hom([T, ,(X),
[1,..(Y))~Hom(X, Y) and Hom ([, (X}, IT,..(Y)[n]) ~ Hom (X, Y[n]) for neZ.

(3.9) Similarly the composite of the functors Db(mod (A, Q) ~
Dbmod (A, @) 2> DP(mod (A, Q,)) & D¥mod (A, Q3)) 2> - L5 DYmod (A4 4,

Q,.,)) is exact with respect to (D5°,D2°) and (D52, D;2,). Denote this composite
functor by [T*. As it is exact, in particular, if ¥:4 — B is a monomorphism in ¥,
then [[*¥:[T*A—-[I}B is a monomorphism in ¥,,,. We also observe that

[1}°I1,,« ~identity.

Lemma 3.10. If real: D*(&,)— D*(mod (A, Q)) is an equivalence then real: D*%,.,)
—DY(mod (A, 1,Q,+1)) is also an equivalence.

Proof. Let X, Yef?l,+1 and feHom (X, Y[n]),n>0.Let ¢:T],Y » M be a monomor-
phism in ¢, such that [](f) goes to zero under the canonical map
Hom ([T,X,I1,Y[n])»Hom([1,X, M [n]). Using Remark 3.9, we then see that

o) IDIL..Y(Y)-1JM is a monomorphism and f goes to zero under
Hom (X, Y[n])— Hom (X, [TfM[n]). Hence by {1, Prop. 3.1.16] real: D*(%,.,)
—D¥mod (A, ,,Q,+1)) is an equivalence. q-ed.

Proof of the necessity part in Theorem. By suitable induction hypothesis, we can assume
the validity of the assertion in the theorem for (A, ©2,). Using induction hypothesis and
Lemma 3.10, we conclude that for 2<p<g<n either p,°p,,° eop(Vig+ 1))
belongs to ¥'(p) or equals j R, (ppe1°--°pgV(@+1)) and furthermore R5%(V(2))
and Ry(p,o-0p,—1)(V(q)) 2<q<n) are all the indecomposable projectives of g,
(upto isomorphism).

(3.11) Recall the functors Je» Ji:DP(mod (A;,Q,))— D*(mod (A;,Q))  and
D”(mod(Al,Q'l))(—"_!—»D”(modk) (see 1.8a, ¢, 1.11, 112 and 22). For any

KeDb(mod (A, Q})), we have a distinguished triangle
i 'K > K—j,j*K 5i, K1}

Let P be an indecomposable projective of &,. Taking K =j,P and using the
isomorphism j*j, P~ P, we have a distinguished triangle

i, i P— j,P— j, P <5i,i5,P1]. (3.12)
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Since j, is right exact [1,1.4.16i], i, is exact (loc cit) and i' is exact (1.18a). We
conclude i,i(j,P}eD5° (1.18).

(3.13) We claim that in fact i,i'(j P)e%(= D5°nDZ°).

To see this note that j, P and j, P are both indecomposable objects of D®(mod (A, Q)).
This follows, for example, from the assumption that P is indecomposable and the fact
Hom (P, j,P) = Hom (P, j*j,P) = Hom (P, P) and Hom(j, P, j, P)=Hom (j*j P, P)
= Hom (P, P).

For simplicity let us write N for i, ij,P. Thus Ne D5 °and N = H°(N)@®t<_,(N). The
map d:j,P-N[1] is a sum of two maps d:j P—H°(N)[1] and d":j, P
- (tg _1(N)[1]) If we show d” = 0, then the distinguished triangle H°(N)®t<_,(N)

—jP—j P —————+H°(N)[I] ®(r¢ -1(NM)[1] would 1mply WP =1<_{(N)® N where
N’ occurs in a distinguished triangle H°(N) >N’ —j, P 4 He (N)[1] (Note: N'#0.
For, applying j* to the last triangle 0 — j* N' - P — 0 is a distinguished triangle). Since
JiP is indecomposabile, it would follow 1< _ N =0 and N =~ H°(N)e%; as desired.

(3.13a) It remains to show d@” = 0. Indeed we will show that Hom (j, P, Y) = 0 for any
Yei, D5 ~2.Ifnot 3n > 2, such that Hom (j, P, V[n]) # 0, where V is the unique simple
object of i,%r(~modk). Let f be a nonzero element of Hom ( j*P V[n]). Since by
assumption real: D*(#,) - D*(mod (A, Q)) is an equivalence and since j, P and Ved,,
using [1, 3.1.16] 3 a monomorphism ¥ =— M in ¢, such that f goes to zero under the
map Hom(j, P, V[n])>Hom(j, P, M[n]). We have a distinguished triangle

i M—>M-j, j*M, (3.14)

which is in fact a short exact sequence 0—->i*i!M—->M —=jJ*M—-0in %, asi and Js
(and of course i, and j* also) are exact. (Here, we use [ 1, 1.2.2.1].) The monomorphism
V =— M factorizes as ¥V < i i’ M — M; this follows from the observation Vi, %y and
Hom(i,,...,j4,...)=0. Applying Hom (j,P,...) to the distinguished triangle 3.14 we
have a long exact sequence

Hom (j, P, i,iM)—Hom (j,P, M)~ Hom(j,P, j,j*M)
—Hom (j P, (i,i M)[1])» Hom (j, P, M[1])
—Hom (j, P, (j, j*M)[1]) » Hom (j, P, (i,,i M)[2])
—Hom (j, P, M[2]) » Hom (j, P, (j,j*M)[2]). (3.14a)

But, Hom (j, P, (j, j*M)[1])~ Hom (P, j*M[I} )—0 for > 1 as P is projective in
gz The long exact sequence implies Hom (j, P, (i, iM)[1])—»Hom (j, P, M[I]) is an
isomorphism for [>2. Thus f goes to zero under the map Hom(j,P, V[n])
—Hom (j, P, (i, iM )[n]) But this is impossible since the inclusion VLn*z M
actually splits (V =i i M is an inclusion in %; ~ mod k).

We have now shown d” =0 and 3.13 is proved.

For simplicity let us identify D*(mod (A, Q})) with D*(mod (A,,Q,)) using the
equivalence Rj.
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We have now a short exact sequence 0N - jP—j P—0 in %,, where N

=i, ijPei, %

If N =0 then j,P ~ j, P which is as asserted in the theorem. If N # 0, N is isomorphic
to a finite sum of copies of V, the simple object corresponding to the vertex oy, of
(A, Q). Since a,,, is a sink of (A, Q}) Vis a projective object of mod (A, Q). Here we
identify mod (A, Q;) to %'(1), the heart of the natural ¢-structure of D*(mod (A,,Q})).

(3.15) It will be shown below that if XeD”(mod(A,,Q})) is indecomposable and
Hom (¥, X)#0 then Xe%'(1).

Thus, when N #0, jPe%’'(1) which is as asserted in the theorem.

Except for 3.15 this completes the proof of the necessity part of the theorem. That j,P
is projective in g | follows from below as we assumed real: D"(? )— D?(mod (A, Q)) is
an equivalence. It remains to show 3.15.

(3.15a) It is known that for 4, Bemod (A, Q), (where, as usual, we assume Q has no
oriented cycles and it is a quiver without relations) Ext' (4, B) = Ofor [ > 1. This leads to
the fact that if X e D*(mod (A, Q)), X ~ @ (H(X))[ — []. This can also be deduced from
[5, Lemma 4.1]. This immediately implies that if Pemod(A, Q)) is projective and
XeDb(mod (A, Q)) is indecomposable then Hom (P, X) #0=>Xemod (A, Q). This
implies 3.15.

Sufficiency part in the theorem. We begin the proof of the sufficiency part by first
showing

(3.16) Assume that the condition 3.3a in Theorem 3.3 is satisfied. Let p, p, ., - p,(V(q
+ 1)) be the object of D*(mod (A,, Q,)) asin Theorem 3.3. Thenp, p, . ;- pq(V(q + 1))
belongs to %, (3.7). Furthermore Hom (p, p,+--p(V(q + 1)), X) =0, VXeD‘ -

(3.16a) Later, after we show real: D”(@I,)—+D”(mod (A,,€)) is an equivalence, the
above property can be rephrased as saying that p, p, .1 ---p,(V(g + 1)) is projective in
g,

(As usual, we identify D*(mod (A, Q,)) with D*(mod (A, Q,)) using the isomorphism
R,)

The following assertion should be considered for the case p=g + 1 of 3.16.
(3.16b) R,(V(p)) belongs to .‘9 Furthermore, Hom (Ry(V(p)), X)=0, VX f:‘Ds -1

V(p)emod (A, Q,) = D,° (2 2). By Proposition 2.3, Dso {XeD’“’I;*Xefo1
As V(p)eD,s° and ]*V(p) 0, we conclude V(p)eDso "But also V(p)eD,?° < D2O.
Hence V(p)eD<°r\D20 4,.Thus R,(V(p))eR, (gp) which, by our convention is also
written g Asa,, isa smk of (A,, Q) and V(p) is the simple object of mod (A, )
correspondmg to that vertex, V(p) is a projective object of mod(A,, Q). Thus,
Hom (V(p), X) =0, for XeD,s~*. Since DS 1 < D', 3.16b follows.

We will prove 3.16 by descendlng 1nduct10n on p. Our induction hypothesis is

(3.17) The assertion 3.16 is true for p + 1.
Write P for Ry, 1 pp41 - p(V(g+ 1)).

Recall the functors

D¥(mod(A, 41,2, 1) = D¥(mod (A, 2)) —— ', D*(mod k).

j.,j! g
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By assumption 3.3a is satisfied. So either j P = j, P, or j P€%'(p). In the first case J.Peg
since Pe%, . , and j, is exact (2.4) with respect to (DI,+ 1, D22 ) and (D50, DZ°). In the
second case j,Pe¥'(p) = D’0 But also ],PED\O as ji is right exact ['1, 1.4.16(i)]. Thus
LPE?

Forany X eD ,in the distinguished triangle i, i'X — X — j, j*X all the objects are
in D\ Lasi and Jj are exact. From the long exact sequence obtained by applying
Hom (j.P,...)to the above distinguished triangle and from the fact Hom (j,..., i,,...)
=0, we conclude that Hom(j,P, X)~ Hom(jP, j, j*X). But, Hom(],P JxJ*X)
= Hom (j*j,P, j*X) =Hom (P, j*X) =0 using induction hypothesis as j*XeD; '
Thus, Hom (j,P, X)=0. But jP=p, p,.;p,(V(g+ 1)). So 3.16 is proved.

-1

Lemma 3.18. Suppose 0—> A, - A, —» A3 —0 is a short exact sequence in .(?1, or, more
generally, suppose Ay — A, — Az is any distinguished triangle in D*(mod (A, Q)). Let mbe
any integer > 2. Let i = 1 or 3. Suppose that for any X €%, and any f eHom (4;, X[m]) 3
a monomorphism X >M in 4 1 Such that f goes to zero under the natural map
Hom (A4;, X[m])—> Hom (A;, M[m]). Then the same property also holds for i = 2.

Proof. Consider the exact sequence
v
Hom (A, X[m]) 2, Hom (4,, X[m]) 5 Hom (A, X[m]).

Let feHom (A4,, X[m]). Let X —» M’ be a monomorphism such that ¢, f goes to zero
under Hom (A, X[m])—Hom(A4,, M'[m]). Consider the commutative diagram
(where the rows are exact)

Hom (A5, X[m]) -fx—> Hom(4,, X[m]) I, Hom(4,, X[m])
'lsl 'lzl 'lll
Hom (43, M'[m]) — Hom (4,, M'[m]) —* Hom (4, M’[m]).

Since @p1,(f)=0, 7,(f) comes from feHom(A;, M'[m]). Let M'>M" be a
monomorphism such that f goes to zero under the map Hom(A4;, M'[m])
—Hom (45, M"[m]). Then the monomorphism X — M” does the job for f. q.e.d.

In view of the lemma, it suffices to prove the sufficiency part for each simple object 4.
(One can easily show that in the abelian category %,, all objects have finite length.)

Lemma 3.19. The simple objects (up to isomorphism) of g areS,,S,,...,8, where S,
=R ju' Ry jyo - Ry_ 17 jo R, V(D), where V(p) is the simple object of mod(A,,<Q,)
corresponding to the vertex o, .

Proof. Let A be any object of %,. Consider the triangle i*i!A—->A—> Jej*A. Here
iysJgs - €tc. refer to functors between D*(mod(A,, Q,)), D*(mod (A, Q})) D”(mod k).
As we have seen before this actually comes from a short exact sequence 0—i,i id—A
—j j*A—-0in %1 Suppose A is a simple ob]ect then either A ~ j j*A and j*Aisa
simple object of g, (j Jy isexactl)or Axi, i'A. In the latter case, 4 = V(1) (or, rather,
A =~ R V(1)). By iterating we see the Va11d1ty of the assertion in the lemma. g.e.d.
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Now let i,,j,,... etc. refer to the functors between D?(mod (A, Q)
D*(mod(A,_,,Q,_;)) and D’(mod k). Then we have a short exact sequence (in
G,-1 < D mod(A,-1, Q1)) 0= i FRV(E) = iR(V(D) =iy RV (p) =0 (3.12)
Hence, we have a short exact sequence (in 4,_; < D*(mod(A,_,Q,_,)).

0 R, _ i, ij,R,V(p)—> R,_, j,R,(V(p) = R, 1 j, R, (V(p) ~0. (3.20)

Now apply j,:D?(mod(A,_,,Q,_,))—>Dmod(A,_,, »—2)) (which is exact with

n<o0 <0 20

respect to the t-structures (D%, D >9)and (D p—25 D 7~2)- Thus, we have a surjection
JeRy- RV o Ry 1 jy R,V (). (3.21)
But we also have a short exact sequence (3.12)
0-i,ij,K—jK—j K-0,
where K = R),_, j,R,V(p), which gives a surjection
iRy - JR,V(p) = jy R, - J R,V (p). (322)
Composing 3.22 and 3.21 we get a surjection
R - iR V(D)) > j 4 Ry~ 1 J4 R,V (D)
and also
Ry -2 iRy Ry V() Ry Ry - 1 Jo RV (D)
Iterating we get a surjection
1R jy+ Ry R (V(D)) > R j Ry oy Ry - 1 jo Rp(V (D).
Recalling our notation (3.1a, 3.19) this is the same as a surjection
Ri(p1opz°pp-1 XV (P)) > S, (3.23)
If K is the kernel of 3.23, then we have an exact sequence
0—K-Ri(p;-p2pp- 1)V ()= S, 0.
(3.23a) Write P, for the middle term. Thus we have a short exact sequence
0-K—-P,—»S5,—-0.

Now we will show the property

(3.24) “Ifkisaninteger > 1, X 9 , and feHom (§,, X[k])(1 < p < n) then there exists
a monomorphism X =— M in %, such that f goes to zero under Hom (S,, X[k])
—Hom(S,, M[k])” by induction on k. For k = 1, the condition is satisfied (without any
hypothesis). The morphism f occurs in a distinguished triangle

X->M-S,-5x[1].
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Since X, S,,E?1 , we conclude that Me%, and 0—»X > M > §,—0 is a short exact
sequence. The inclusion X — M does the job (the composite of adjacent morphismsin a
triangle is zero; §,—» X[1]— M[1] is a triangle).

(3.25) Now assume 3.24 is true for 1 <k < /. Then by Lemma 3.18, 3.24 is true with §,
replaced by any arbitrary Ke¥%,.

Applying Hom (.., X[I + 1]) to the triangle K - P,— S, —K[1] - P,[1], we get an
exact sequence

Hom(P,[1], X[I+1])—Hom(K[1], X[+ 1])
—Hom(§,, X[I+ 1])»>Hom(P,, X[l + 1]).

But Hom(P,[1], X[! + 1]) ~ Hom (P,, X[I]) = 0 by 3.16 (see notation in 3.23a) and
Hom(P,, X(!+ 1]) =0 also for the same reason. Thus, we have an isomorphism
Hom(K[1], X[/ +1])>Hom(S,, X[!+1]). Let feHom(S,, X[I+1]). Choose
feHom(K[1], X[1+ 1])lying over f. As Hom(K[1], X[! + 1]) * Hom (K, X[1]), by
induction hypothesis 3.25 3 monomorphism X — M which annihilates f. But we have a
commutative diagram

Hom (K[1], X!+ 1]) — Hom(S,, X[1 + 1])

|

Hom (K[1], M[1+ 1]) = Hom(S,, M[I + 1])

and clearly

—f
—0
This completes the proof of the sufficiency part of Theorem 3.3.

In particular, as remarked in 3.16a, the property 3.16 now implies that
Ri(pyp2pp-1)(V(p)) (1 < p<n) are projective objects in 4. By Lemma 3.19 and
3.23, these indecomposable projective objects are enough to cover all the simple objects

of %,. Hence they are all the indecomposable projectives.
This finishes the proof of Theorem 3.3. We illustrate with some examples in § 5.

S

4. A property of intermediate s-structures

The purpose of this section is to show that for a given data 2.1 if real: D"(?l)
— Db(mod (A, Q))is an equivalence, then it is an equivalence also for the intermediate ¢-
structures defined in 2.11. The proof is mostly a repetition of what we saw in the
necessity part of Theorem 3.3.

Fix a ¢ and v as in 2.11. We freely use the notation introduced there.

(4.1) We remark that the t-structure (D53, DZ3) in D*(mod (A, Q)) (cf. 2.11c) can
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actually be obtained as the one associated (2.9) to a data {ﬂpl,...,ﬁpv;ll <p<n}
defined as follows: Choose any admissible enumeration (1.2) y,,...,7,-4+5 Of
(Ag Sqv--+51 Q) withy, =« ., Wesetv,=v forl<p<gqgandf,, =a,forl <p<gq
andI<u<y, Putv,=v+1,f,=a,forl<u<v+ 1. Putv,=1forq<p<nand
Bpl = yp-—q +1-

When we try to do the construction of § 2 with the above f-data, the admissible
enumeration y,,..., ¥,—,+; ensures (because of 2.10a) that at level ¢ of the inductive
construction of §2, we get the natural t-structure of D*(mod(A,, s,, - 5,1 Q,)). The
remaining steps iterate on this using Proposition 2.3. These are exactly the steps which
produced (D=2, D22) in 2.11.

q,(v)? q (v)

PROPOSITION 4.2

Supposereal: D”(? ) D¥(mod (A, Q)) is an equivalence. Then property 3.3a holds for the
B-data in 4.1.

Proof. Thecase g = 1is trivial. So let ¢ > 1. Using suitable induction hypothesis we can
assume the validity of the proposition for the data {f,,,..., f,, 12 <p <n}in(A,,Q,).
Let g,,z denote the heart of the ¢-structure in D”(mod (Az, 2)5 associated to this data
and let P be an indecomposable projective in ?,,2 We have a distinguished triangle
(3.12)

iy i (jiP) > jiP = ju P> iy 1 (jP)[1],

where the functors are as in 3.11. (Incidentally, the quivers (A,,Q,), (A;,Q]) the
functors j, j*, j,, i*, i, i’ etc., appearing in the constructions with the f-data coincide
with the corresponding objects for the a-data. This is so since g > 1.) For the same
reasons as explained following 3.12, i,ij(P)eD5° and similar to 3.13 we wish to
conclude

i, 1j(P)e%s. (4.3)

The proof of this part, as detailed below, is similar to that of 3.13, if we use 3.5. Again, we
reduce to showing Hom(j, P, Y)=0 for Yei, D52 (by the same arguments as
preceding 3.13a). If Hom(j P, Y)#0 for some Yei,Df~% 3dn>2 such that
Hom (j, P, V[n]) # 0 where V is the unique simple object of i, % 7(~ mod k). Let f be a
nonzero element of Hom(j, P, V[n]) As ]*PeDf(?,) (using 2.4 for the f-data) and as

D20 < DZ°(2.11d), it follows j, PeD7°. Using 3.5,3 a monomorphism ¥ <> Min %,
such that f goes to zero under the map Hom (j, P, V[n]}) > Hom(j P, M[n]). We then
have the long exact sequence 3.14a and we still have Hom( ]JP (JJ*M)[1D)
=Hom (P, j*M[I]) =0 as P is projective in J,,z and j*MeD5°c DY (2.11d). After
this, the same arguments which foliow 3.14 show i, i'j,P€%; and finally that j,P = j, P

or j,Pe%'(1). This completes the proof of 4.2.

COROLLARY 44

If real: D"({ﬁ )—»D"(mod (A, Q)) is an equivalence and ?q (v denotes the heart of the t-
structure (D0 f(‘ﬂ,) (2.11c) then real: D® (gq w)—D(mod(A,Q)) is also an
equivalence.

4.(v)?
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Proof. This follows from 4.1, 4.2 and the sufliciency part of Theorem 3.3.

5. Some examples

(5.1) Let (A,Q) be the quiver 1—2-3-4. Consider the data {(x,),
(a219 Gzz, a23a “24)’ (a31’ (132), (a41)} = {(4)’ (39 2’ 35 l)a (2’ 3)’ (2)} Let a, B’ % 5
denote the simple roots of the Dynkin diagram {—2-3—4 corresponding to
the vertices 1, 2, 3, 4. We identify indecomposables of mod(A,€) with the
corresponding positive roots (via Gabriel's theorem). Identify mod (A, Q)),
mod(A,,Q,) etc. with the image in D*(mod (A, Q)) under composite
R, A

functors: Db(mod (A,, Q) —25D¥mod (A,, Q,)) = Db(mod (A,-,,Q,_,))
Ry A R,

L NI —1—>D”(mod (A1, Q). We will indicate the quivers (A}, Q}) {resp.
(A, Q,)} by writing the simple objects of mod (A, Q) {resp. (A, Q,)} (for the above
imbedding into D?(mod (A, €2)) in the place of the corresponding vertices.

(A, ) =(Ay, Q)= (A, Q), indicated by a—B—y—9,

(A2, Q,) a—f—y

(Az,5:1Q;) a—f+y<y[l]
(Az,522551Q5) x+B+y=@B+yi]-4
(A2, 523522821Q,) =(A;, Q3) a+f+yey[1]< B[],
(A3, Q) y[1]« B[1],
(Az,53103) = (A3, Q3) y[21-(B + )1},
Ay, Q4) =(Ag, 24) y[2].

Next, we describe (p,0,+1 P )(V(g + 1)) (¢f. 3.3a). Recall (3.1a) p, = jiRy+, where
Ji:DP(mod (A, 11, R, 1))~ D*(mod (A, Q;)) (1.8¢). The functor j is in general easy to
write down. Identify mod(A,,,,Q,+;) and mod(A,€;) with subcategories of
DP(mod (A, Q)) as indicated previously. Let Xemod (A, +,,Q,+1)- Then Y = j X is the
extension of X obtained as follows: Let 8,,...,6, be the vertices of (Aq+1ng+l)
adjacent to a,, . Then Y(a,, ) = X(6,)® X (6,)® --- ® X (6,). The morphism Y(6;a,, ) is
the inclusion X(8;) — Y(,, ). In particular if X(f)=0fori=1,..., k then Y(x,, )=0
and jX =j,X.

For example, suppose in our example g =2. Identify mod(A,.,€,+,) and
mod(A,, Q;) with subcategories of D°(mod(A,Q)) as indicated previously. Then
JOOD =a+ B, j(B[11) = BI1] and j((B +)[1]) = .

Coming back to the description of p,p, ., ---p,(V(qg + 1)), we have

V(4)=y[2]
{V3), ps(V(4))} = {(B+ (1], BT1]}
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{V(2, p2(B+ )11, p2 8111} = {2 + B+ 7, B[1]
V), psla+ B+ ), p1(0) p1 BL11} = {60+ B+ 7 + 8, 0, B[1]}.

The conditions 3.3a are clearly satisfied; for instance p, p,p5(V{(4)) = f[1] which does
not belong to ¥'(1) (= mod (A, Q})) but pyp,p3(V(#) = j.p203(V(4)):

(5.2) Let (p, Q) be the quiver 1234, Consider the data {(4), (3,2, 1,3), (2), (1)}.
We follow the same conventions as in 5.1.

(A, Q) =(A,Q1)=(A,Q) a—f-y—9,

(A2, Q,) a—p—,

S21 a—>p+yeylil

522 a+f+y=(B+pl1]-p
(A, 523°822°52185)

=(A2,95) @+ B+n{t]-a—B,
(A3, Q) =(A;,Q5) (a+ B+ y)[1] -0,

(Ag, Q4) = (Ag, ) @+ B+l

PoPp+1 Pg(V(g + 1)) are as follows.
V{dy=(a+ B +I[1],
{V3) p3(Vd)} = {o, (B+ )11},
{V(2), p22 p2(B+ V)[11} = {B, ¢+ B,y[1]},
{V(1), 18, (2 + B), p1y[11} = {6, B, + B, (v + &)[1]}-

The condition 3.3a is not satisfied; p, p,p; V(4) =7 + 6[1]¢%' (1) and j R5p,p3V(4)
=juRoy[1] =y[1] # p1p203V(4).

6. Theorem 7.1 with hypothesis

Let A and B be finite dimensional k-algebras and M an 4 — B bimodule. Following [ B],
we say that (4, M, B) is a tilting triple if

(i) Ext'(M,M)=0. (6.1)
(i) Ext'(M, N)=0 for i >2 and Nemod (4).
(ii)) 3 an exact sequence 0— A4 — T, —» T, -0 where T, and T, are direct summands of
finite direct sums of M.
(iv) B°P? = End,(M).

One important fact is that D’(mod B) =~ D(mod A) when A is of finite cohomological
dimension, [5, §1]. We review this in a convenient form.

(6.2) Let (A, M, B) be a tilting triple. Let (D5 °, DZ®) {resp. (D3, DZ°)} be the natural
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t-structure of D*(mod B) {resp D(mod A)}. Let D5%={KeD5°Hom (M, K[l])
=0Vi>0}. Define DB =D5°[1] and D2 {LeD"(mod A)]Hom (K L)=
VKcD; 1Y Then (D5°, DZ°)is a t-structure in D”(mod A). We have D5 "1 c D;o
<= D3°. There exists an equivalence ¢:D°(mod B)— D*(mod A) such that o(D5°)
< D5°and ¢(DZ°) = DZ°. Furthermore if B is regarded as a module over itself in the
canonical way then ¢@(B)~ M. {Throughout we will assume that when M is
decomposed into indecomposables (in mod A4) the multiplicities are < 1.}

(6.3) Example. In the context of Lemma 2.5a fix a g and assume
DF ™' cR,D,<C.

Let B = A, be the quiver algebra of (A, Q) and 4 = A, the quiver algebra of (A, Q,).
Let o = R’ Db(mod A;)— D*(mod 4,). Let M, = qo(A’) Suppose

M, emod(A4,).

Then (4, My, A) is a tlltlng triple.
To see thlS write D50 = = @(D,5°) and %, = ¢(mod (A, Q). Then

<-1 R <0 <0 1
Dy 'cDy°c DS Dyt

Thus, by 3.15a any object X of mod 4 = D% D7 ° can be written as X' @ X" where
X’e.‘fB[~ 17and X”e.%, Write A = A’ @A” in thls fashion. As A’[l]e?,, mod B(B
= Aj), we have a projective resolution 0 — P} - P, — A’[1] -0 in mod B and hence a
distinguished triangle 4’— P} — P,. Also as A is pro;ectwe in mod 4, Hom (4, Y)
=0V YeDS “'. As A" is a direct summand of A and D5 ! DZ~!, Hom(4",Y)
=0V YeD !. From this we conclude that A” is projective in mod B Thus we have a
distinguished triangle.

A@A" P, @A >P, ie, AP, @A > P,. (6.3a)

But the projectives of % 5(~ mod B = mod (A, ) = mod (4y)) are direct summands of
direct sums of M ~ ¢(B). Thus 6.3a gives rise to an exact sequence 0 >4 — T, » T, -0
of the type required in 6.1 (iii). The other conditions in 6.1 are easy to verify.

<0

(6.4) For 1< p < g < n,define by descending induction on p a t-structure (5” , ﬁi J)in
Db(mod (A, Q})) and D*(mod (A,, Q,)) by

DEo={XeD<°|j*XeDs2, ).

D ~yin D*(mod (A,, Q,)) is obtained by pushing the above D = by the isomorphism R,
Here j*:Db(mod(A,, Q;,))—»D”(mod (Ap+1,Q,44)) is the functor 1.9. Also to start
induction, we define (D52, D22) to be (D,<° D.>°), the natural t-structure of

D*(mod (A,, Q;)) and its pushforward by R}, in D"(mod Ay Q)
(6.4a) We denote the heart of (D59 D2?) by 4, ,. Observe the following relation

4.p’
between the t-structures 2.11c and the above:

H <0 =0 _(D<0 p=o
(Dq.(v.,—l)’Dq,(vq—l)_(Dq\,l’ q/,l .

As a first step in proving Theorem 7.1, we will show
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PROPOSITION 6.5
Given a data 2.1, assume that

(i) real: D”(? 1 )= DP(mod (A, Q)) is an isomorphism

(i) (ii) the assumption in 6.3 is satisfied for all 4, 1 <q<n, ie, DS~ ' < R,D,S° and
Ri(Aemod (A,, Q,) (cf- 6.3), in other words Ry(P')emod (A,, Qq) for each zndecom-
posable pro;ectlve P’ of mod(A,, Q).

Thenfor 1 < g < n3afinite dtmenswnal k-algebra Aq L Such that mod A,, | R gq ! (?q »
the heart of the t-structure (D,fl?, ) F urthermore, there exists an A —Aqul 1
bimodule M +1.1 Such that (Aq I,Mq+1 1> Agr1,1) is a tilting triple.

As a technical step required in the inductive proof of 6.5, we will in fact show

PROPOSITION 6.6

Under the same hypotheses as in 6.5, 3 finite dimensional k-algebras Aq » such that
mod( p)~ s There exist A —A bimodules M such that

g+1i.,p q+1,p
A, Agyy,p) is a tilting triple

a.p* 9+1.p’

Proof. Let M, , be the tilting module of mod (4, . ;) described in 6.3 giving rise to the
tilting triple (4,41, M+, Ap+1). Thus if we identify mod (A, 4, Q) as a sub-
category of D*(mod(A,,,Q,.,)) using the isomorphism R, then M, is the
direct sum of'the projective indecomposables of mod (A, . ;, Q. ) (one copy each). Let
V(p) be the simple object of mod (A, Q;) corresponding to the sink a,,, . If j is the
usual functor D(mod(A,+1,Q,4 1)) = DP(mod(A,, Q))), set M,
= j(Mp+1)® V(p)

(6.7) We claim that M,
More generally, define

is a tilting module in mod (4,) (mod 4, ~ ¥, ,).

~

Moiip=ppPpr1-PolAgs1) (6.8)
DPp Ppr1 - Pe-1(V (@)
Dp,pg-2V(g— 1))
@ Vip)
and Zq ,=End (1\71 s

(6.9) Assume inductively on ¢ that mod 4 L= g, p the heart of (D, 2D °) forl <i<g
(and all psuch that 1 < p < I). Assume further that (4, o M,, 1.p A, 1 p) is a tilting triple
for 1 <l<gand 1 <p<land also that

DEY,={KeDS|Hom (M, , ,, K[i])=0,Vi> 0} (6.92)

(For motivation compare the above hypotheses with 6.2)
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(6.10) We wish to assert the validity of 6.9 and 6.9a replacing q by q + 1.
For this we have to show that

modA,,, ,~%,.,, for 1<p<q+1; (6.11)

q+1,p

(;l'q,p, JVIqH.,,, Zqﬂ,p) is a tilting triple and

DEY ,={KeDSHom(M,, , . K[i]) =0,Vi>0}. (6.11a)

q+1.p

First we show M,,, ,e%,, (~ mod A,,).
Let Y be a direct summand of M., ,. Then

(6.12)

(a) either Y = V(p) or
(b) Y=jR,+,(Z) where Z is a direct summand of ]\7Iq+1,p+1 and
JiDP(mod (A, 4 1,Q,.,))— D*mod(A,, Q) is the usual functor.

(This follows from 6.8). In the case 6.12(a) trivially Ye?

(6.13) Consider the case 6.12b; i, Y =R}, (Z). The data 2.1 gives rise to a data
{o,.- -, 0, lp<t<n}in (A, Q,), for Wthh (Dfpo, 7>) is one of the intermediate ¢-
structures 2.11c (cf. 6.4a). By 3. 10 and 4.4 we conclude

real: DX, »)—=DPmod (A, Q,) is an equivalence. (6.13a)

As a consequence Theorem 3.3 can be applied. The result of this application, one
checks, is that

(i) either jR},,,(Z)e¥'(p) or (6.14)
(ii) ij;;+ 1(2) =J'*R’p+ 1(Z)-

In the latter case, an obvious descending induction on p (namely, g+1. pﬂe?q p+1)
and the fact that j, is exact with respect to the t-structures (D”H,D’pﬂ) and
(D59, D20 show that Ye#, ,. Starting the induction is taken care of by the assumption
6.5 (ii).

In the case 6.14 (i), we have jR, , 1(Z2)e¥'(p) = D’>° c D 2. Butalso j,R +1(Z)eD <0
as j, is right exact [1,1.4.16] and R, H(Z)qu 1 Thus Ji ,,H(Z)eDS"nD?"
= {9

Thls completes the proof that Mq+1 peg . Next, we show that

(Mq+1 »X)=0 for i>2andany Xemod(Aq o (6.15)

ButM,,, ,=V(@)®jR H(M“1 p+1) (6.8). As real: D”(?q l,)—->D”(mod (ApQ,)isan
equivalence (6.13a), Ext’ (Mq+ 1.p» X)=Hom (MqH > X[i]) in the derived category.
Since g = Dso €D,S° and as V(p) is a simple projective object of %'(p),
Hom(V(p) X[z]) 0 for Xeg and i>0. Hom(jR p“(MquH) XD
= Hom(RIH_l(MqJrl p+1) J X[z]) But ]"‘Xe{f‘“,+1 This allows us to conclude
Hom i} pH(M a+1.p+1h X[[]) =0, for i>1 by using the induction hypothesis
Hom(M,,, p+y, Y[{]) =0fori>land Ye¥, . ,. Starting the induction is taken care
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of by the assumption 6.5 (ii). Hom (R((A4y), Z) =0for Ze R)(D,* ~*), hence for ZeD; ~2
as DS "2 RDS (6.5 ).
This completes the proof of 6.15. Next we will show

Ext} (M1 Myi1,)=0. 6.16)

Again, this ext group is the same as_Hom (}\7Iq+ 1, 1\7¢+ 11 =
Hom(V(p)®jR,+1(Myy1,41):  VP)I1] ®jLR;+ 1My ,40[1]).  As  already
seen during the proof 6.15, Hom(V(p), M ., ,[11)=0. Also, if we assume
inductivgly Hom (Mg, q 41 Mgiq,p41[11)=0, then Hom (iR, (Mg 1 ,41)
JiRy+1(M g4 1 p+1)[11) =0. Thus we are reduged to showing Hom(j,R;,“(MqH,pH),
V(p)[1]) =0. The latter equals Hom (R}, {(M 4 1,,+1) S*V()[1]) =0, as j*V(p)=0.

This proves 6.16.

The expression 6.8 allows us to count the number of indecomposable direct
summands of M g+1,p- BY a result of Bongartz [2], we can replace the condition 6.1 (iii)
in the definition of a tilting module by

(6.17) The number of nonisomorphic indecomposable summands in M as an 4-
module equals the number of distinct simple A-modules.

Thanks to this result we can now conciude (Zq'p, M gL Zq + __l;»P) is a tilting triple.
Only 6.11a remains to be shown. The assertion mod 4,1 ,~ %, in 6.11 is then

deduced from the isomorphism ¢ in 6.2.

Proof of 6.11a. Let Keright side of 6.11a. Then in particular

Hom (j,R,, M, 1141, K[i)=0, ¥i>0. (6.18)
But Hom (j,R,, ;M4 p+1, K[i1) ~ Hom Ry M,y 515 j* K1) SO
Hom (R, M, ,+1,j*K[i])=0 Vi>0. (6.19)
Make a (descending) induction hypothesis
DRy pr1 ={KeDSL [Hom (M, q i1, K'[11) =0, Vi>0}. (6.20)
By 6.19, j*KeR,,, (D50 ,+1). Now 6.4=j,j*KeD30 ,< D,=°. Hence (6.21)
Hom (V(p), j j*K[i])=0 for i>0. (6.22)

Applying Hom (V(p), *) to the triangle j,j*(K[i])—>K[i]— i i*(K[1])—j j*(K[i

+ 1), 6.22 =>Hom (V(p), K[i]) * Hom (V(p), i, i* K [i]). By choice of K (eright side of

6.11a), Hom (V(p), K[]) =0 for i > 0. So, Hom (V(p), i, i*K [{]) =0for i > 0. Therefore
(a trivial property about the natural t-structure (D5 °, D7) in D*(mod k))

i*KeDS® and i,i*KeD50 . (6.23)

~

Now in the triangle jj*K —»K —i,i*K both jj*K and i,i*KeD3’, ,. So

Keﬁffl,p. This completes the proof of one implication in 6.11a. For the other

implication N -
Suppose KeDs9 ., so thatj*KeDgf .., (cf. 64). We have to show that
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Hom(M,,H,E,K[i]) =0,Vi>0. AsDi?, » < DS Hom (V(p), K[i]) =0, Vi > 0. Recall

(6.8) Mq+1p—V(P)@]v p+1(Mq+1 p+1) Hom(JRp+1(Mq+1 p+1 K[i])

_Hom(R,,H(Mq+1 p+1) J¥*K[i] =0 for i>0 as j*KGDq+1 »+1 and we have 6.20.
This completes the proof of 6.6 and 6.5.

7. Removing hypothesis of section 6

{(7.1) Theorem. Suppose given a data (2.1) with associated t-structure (2.9) (DE°,D29),
Assume real: D*(4,)— D*(mod (A, Q)) is an equivalence. Then the data {a,,, ... s 0y, |1
< p < nj can be modified to another data {B,,,...,B,, |1 <p<n} such that

(a) both data have the same associated t-structure
(D50, D3°).

(b). the data {B,,,...,B,,,|1<p<n} satisfies the conditions assumed in Propo-
sition 6.5.

In particular there exist finite dimensional k-algebras A(1),...,A(n) such that (i)
A(j — 1) is obtained by tilting A(j), (i) mod (4,) ~ %, and (iii) A(n) is the quiver algebra
of (A, Q) (a quiver without relations) where (A, Q) and (A, Q) have the same underlying
graph but possibly with different orientations.

Proof. Fixp,1<p<n. Suppose that the given data {a,..., %, |1 <g <n} has been
modified to another data {oj,,..., %, |1 < g <n} such that

(7.2)

(i) both data have the same associated t-structure (2.9).

(i) the condition (ii) in 6.5 is satisfied for the o data for p+1<qg<n, ie,
Ds 'S R.D,° and R(A,)e%(q) for p+1<q<n where the notations refer to
objects associated to the o data.

q1>-

We will then show that it is possible to modify {ay,,..., %y |1 <g < n} to a data
{0gs, > dqe|1 < g <n} such that

1.3

(i) both data have the same associated t-structure.
(i) the condition (ii) in 6.5 is satisfied for the «” data for p<g<n.

Obviously, we can take the data " =data o« _if for the o data
(14

(a) Dy 1< D% and
(b) any projective of ¥'(p) belongs to 4(p)

(in other words, if the condition 7.2 iii is satisfied for ¢ =p). Until the o’ data is
constructed, in the following notation the objects are associated to o’ data.

If 7.4(a) is not satisfied consider the smallest v, 1 < v < v, such that D; leD ;8) and
Dy 'y Dp o+1y where DS are defined following 2.11(b). The sink o, ,,; of
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(Aps sy “Sp, 1Q,) gives rise to a simple projective P of 7, p,(v- By the minimality of v and
2.12, one infers that

P[—1]e%(p), ie, Pe%()[1]. (1.5)

Let j j,:D%mod(A,, Q,))—»D¥mod (A,_,Q,_,)) be the usual functors. By 4.2,
either j(P)=j,(P) or j(P)e%'(p—1). The latter is impossible as it would imply
P(= j*j(P))e%(p) contradicting 7.5. Thus

FP=jsP. (7.6)

The relation Dy "1 < D f(o, and the fact P is projective in {9? w=Hom(P, X) =0 for
XeDy 2 Hence Hom(P[—1],Y)=0 for YeD; ~!. Together with 7.5, we now
conclude that

P[ —1] is projective in %(p). a7

View an object of (p) (= mod (A, Q,)) as a collection of vector spaces over vertices
of A,and linear maps corresponding to arrows. Like any nonzero projective of %(p), the
vector space corresponding to P[ — 1] is nonzero for at least one sink y of (A » Qp) The
relation 7.6 implies that there is no arrow from y to ozp oy in(A,_,Q,_,)(eg, use

description of j, in 5.1). Thus, y is a sink of (A 1) dlfferent from o

pl’ plv

(7.8) Let ¥V, be the simple object of %(p) correspondmg to the vertex y of (A, Q p). Slnce
Hom (V,, P[—1]) #0 and Pemod (A, s,,*-5,,Q})

V,emod(A,,s,, -5, Q) [1] where I< — 1. (7.9

(This follows using property 1.16a (i) in the definition of a t-structure.)

(7.10) Claim. For 1 <pu <V, V, is a simple projective of gp w- Hom(V,, X) =0 for
XeD; ™! as V, is projective in mod(A,, Q,). Also Hom(X,V,)=0 for XeD; 1
(1.16a (). Since Dp 5oy € D50, we have for XeDs;;

p(u)
Hom(V,,X)=0 and Hom(X,V,)=0. (7.10a)

The last fact=>V. eDf&, Hence V,€%,,,). Then 7. 10(a)=V, is projective in N (:
remains to show that V, is a simple object of g - Since Viisa s1mple prOJectlve of %(p),
ifYeD;%nd f:Y > V isa nonzero morphlsm then f sphts AsY 2w & D39, theabove
remark implies that if Yeg . and Y is a nonzero subobject of V, in ?p @ then Y=V,
This completes the proof of 7.10.

It is now easy to conclude that y #a,, (1 <p<V)and y=ay,,. This property
together with the fact that y is a sink of (A,_;,€Q,_;)and y #a, v, lS all we need to
construct a new data a” without changmg the associated ¢-structure 2.9.

Define v} _v,for1<l<n l#p—1,p, vy y=v,_;+1landv,=v, -1 alv_m,vfor
l#p—1,pand 1 <v < v Definethe oc;’, 1,4 Sequence by ad301n1ng y _]ust beforea;, , ,
in the «,_, , sequence. Define the o, , sequence by dropping «;,,(=7) from the of
sequence In other words, o _ 1,_.ap 1, ,for I1<i<v,_y, ap 1y =7 and o L4,
=a, e , While, 07, =0, for 1<V, a] ,—cpo,for v <I<v -1

(A Qq) 1s the same for both data for 1 €g< < n, g #p. (A, ) is the same for both data for

1

-1



212 R Parthasarathy

I<g<sng#p—1.(A,Q,)for the «’ data is obtained by reflecting with respect to the sink y of
(A, Q,) for the & data. We identify D¥mod (A, Q) for the o” data with D¥(mod (AP, Q) for
the o data using the reflection functor at y. Similar remarks apply to (A,_;,Q;,_,) and
D¥(mod (A, -, Q,_1)). With these identifications the t-structures (D<0 D>°) in the inductive
construction of Proposmon 2.3 coincide for both data for all ¢, 1 < g < n.

Recall that we are trying to modify the o/ data to make it satisfy 7.4a (forgetting 7.4b
for a while) in addition to 7.2 (i) and (1i).

Note that the «” data constructed above satisfies 7.2 (i) and (ii). If it still does not
satisfy 7.4(a) we repeat all the steps following 7.4 starting with this «” data in place of the
ol data. At each stage of this iteration (as long as 7.4a is not satisfied) the length of the
o4 Sequence falls by one. So eventually after a finite number of steps 7.4a and 7.2 (i), (ii)
are all satisfied.

Without loss of generality (or by changing notation) we can now assume that the o’
data satisfies 7.4a and 7.2 (i), (ii).

Now suppose 7.4(b) is not satisfied. Let P be an indecomposable projective of %’ (p)
and suppose P¢%(p) so that PeDS ~1, Because of 7.4a, Hom (P, X) =0 if XeD\ -
Thus P[ —~1]e%(p)andis a prOJectlve of 4(p). Repeating the steps after 7.5, we produce
another data which satisfies 7.2 (i), (ii) and for which the length of the oy, 4 S€quence is
one less than the length of the «;, , sequence. (This new a” data also satisfies 7.4a, but we
don’t have to prove it; if it doesn’t satisfy 7.4a, iterate the steps following 7.4a, b.)

Clearly, by iterating these steps, eventually we arrive at a data satisfying 7.3 (i) and
(ii). This completes the proof of Theorem 7.1. q.e.d.

8. Completeness in the case of a Dynkin quiver

In this section, we show that all non-degenerate t-structures (see definition below) arise
as the t-structure associated to a data if (A, Q) is a Dynkin quiver. Theorem 2 then
enables us to reprove a resuit of Happel.

We need some preparation, for which the assumption that (A, Q) is a Dynkin quiver
is not needed. Recall the functors i, j,, ... etc. Also recall that (D5 °, D7 ©) is the natural
t-structure of D¥(mod k). A t-structure (D=9 D>9) is said to be non-degenerate if
(D <™ and (,,D>™. (cf. [1, 1.3.7]) both consist of the zero objects.

Lemma 8.1. Let a be a sink of (A, Q). Define (Ay, Qy) as in 1.8. Let (D=9, D>®) be the
natural t-structure of D*(mod (A, Q)). { Thus, in particular, i, (D5 °) = D<° and i, (D7 °)
= D>} Now, let (D<°, D/°) be any t-structure of D*(mod (A, Q)) such that (i) D=°

=D<° and (i) i, (D5°) = D<°. Then there is a umque t-structure (Dg° DZ°) in
D¥mod(Ay, Qy)) such that D<= D3O {(D5°,DZ) is the natural t-structure of
Db(mod (Ay, Qy)} and D<= {KeD$°|]*KeD<°} Ds° is given by D3°
= {XeD¥mod (A, Q)| j, XeD<0).

Proof. Let T¢yo(K)—»K—17,,(K) denote the truncation triangle of any
KeD¥mod (A,Q)) with respect to the t-structure (D<°,D>9). (f<o(K)eD<° and
£, ,(K)eD>1.

(8.2) Let XeD*(mod(Ay,Qy)). Let K=j,X. Then T¢o(K)~j,i*(f<o(K)) and
T21(K) & jo j* (T3 1(K)).
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The morphism ¢ 4(K) — K induces isomorphism Hom (L, T¢ 5(K)) - Hom (L, K)for
LeD<°. This follows from the triangle 75 (K)[ —1] > T¢o(K)—>K - 15 ,(K), since
Hom(L,*)=0 for the two extreme objects (1.16a (i)). Hom(i,(..),K)
=Hom(i,(.), j,X)=Hom(,i'j,X)=0. Thus,

Hom (L, T<o(K)) =0 if Lei (D). (8.2a)
Since D0 < D=0, i!(f<,(K))eD5sO. By 8.2a, therefore,
Hom (i,i'(f<o(K)), f<o(K)) =0. (8.2b)

In particular, in the triangle i, i'(f<o(K)) —»r<O(K) = jo J¥(T<o(K)) the first morphlsm
is zero. The last fact actually implies that i,i'(f<o(K)) =0: indeed, Hom (i,i'(f< o(K)),
i 1(t<0(K))—>Hom(z*z (T< oK), -c<0(K)) is the zero map; but it also has to be an
isomorphism as Hom (i, (..), j,(..)) =

As i i'(f<o(K)) =0, it follows T 0(K) =, j*(T<o(K)). As 75 (K) is the cone on
T<o(K)— K, itfollows also that j, j*(75 {(K)) = ¥ ;(K). This completes the proof of 8.2.

~Since Js is a fully faithful functor 8.2 implies that we can define a ¢-structure

(Dg° D050 in D¥mod(Ay,Qy)) by D5®={XeD¥modtA,, Q) j, XeD<°} and
D§®={X|j,XeD>°}. The assumption that D<° c D=0 then implies D3° < DSO.

Let KeD<°. In the triangle i, i’ 'K->K —jeJ K i, 0 'K[1] both extremes belong to
D<° (since (D) < D<°) Thus, KeD\°¢>] j*KeD<°. Thus, D<°
={KeD<|j, j*KeD <%} ={KeD<°|j*KeD3°}.

To complete the proof of Lemma 8.1, we leave the uniqueness part to the reader.

For the remaining part we assume that (A, Q) is a Dynkin quiver.

Let (D<°, D>°) be any non-degenerate ¢-structure in D*(mod (A, Q)). Replacmg if
necessary by (D <™, D>™) for some meZ, we can assume without loss that DS D<o,

(8.3) The indecomposables of D <° are obtained by dropping a finite number, say I, of
indecomposables of D<°.

Mod (A, Q) has only finitely many indecomposables (as (A, Q) is Dynkin) and any
indecomposable of Db(mod (A, Q)) is of the form K[i] where Kemod (A, Q) and ieZ.
Since (D<°,D>9) is non-degenerate, 3n, such that m> n0=>K [m] ¢D >0 for any
indecomposable of mod (A, Q). Thus, D% D> ™ hence DS ™ < D<°. Thus the
indecomposables of D <° missing in D<%are all to be found in ¥u¥[1]u---V¥[n,
—1]. This yields 8.3.

Letay,...,a, o, beany sequence of vertices of (A ) such that «, is a sink of (A, Q)
and for 1 <igl, o, is a sink of (A,s;- ). {Here, 5;=s,.}_ We now use a
construction aiready encountered in 2.11. For 1 Sp<i+, deﬁne (D Lup D? H (,‘)) to be
the image of the natural t-structure of Db(mod (A, s,---s;Q)) under the composnc
isomorphism R e---oR; where R} :D¥(mod (A, s;-- sJ!))—»Db(mod (A, 55-1--5:2))
is the isomorphism given by Proposmon 1.6. Also we set (D1 {0y D1 (0)) = (D<0 D>9)
the natural t-structure of D*(mod (A, Q).

Choose vy, 1 <v; <I+1, such that D0 DFQ _;,and D<0¢ DY, Such a v,
exists (cf. 8. 3 and 2.12). The data we are looking for (having as associated ¢-structure
(D<o, D>°) shall have «,,=o, for 1<pu<v,. Apply LemmaB8.l taking
(A, s, —y--5,Q) instead of (A, Q) and %, instead of a. As (D<°,D>%) is non-
degenerate it is easy to see that (D ,70, D; 0y given by Lemma 8.1 is non-degenerate. We
can use induction on #A to assume that (DU ° Pz 79 is given by a data



214 R Parthasarathy

{@p.15- s 0, 12<p<n} in (Ay,Qy). Then it follows from Proposition 2.3 and
Lemma 8 1 that (D<°D>% s the t-structure associated to the data
{10005, 11 <p<n}.

Thus we have proved the following

PROPOSITION 8.4

Let (A, Q) be a Dynkin quiver. Let (D<°, D*°) be the natural t-structure in D*(mod (A, Q)
and (D<°, D>°) any non-degenemte t-structure. Assume, as we may, that D<° c D<0,
Then 3 a data {ap 12 8py | LS p<n} in (A, Q) for which the associated data (2.9)
coincides with (D<° D 5> 0,

Using Theorem 7.1, we have now the following result.

Theorem 8.5. Let (A, Q) be a Dynkin quiver. Let (D<o, D>°) be a non-degenerate t-
structure in D¥(mod (A, Q)), with heart 4. Assume real: D*(&)— D*(mod (A, Q)) is an
equivalence. Then there exist finite dimensional k-algebras A1),..., A(n)(n =#A) such
that (i) A(j —1) is obtained by tilting A(j) (ii) mod (A~ 4 and (111) A(n) is the quiver
algebra of (A, Q) (a quiver without relations) where (A, Q) has the same underl ying Dynkin
graph as (A, Q) but possibly with different orientations.

In [5, §5] similar results have been enunciated by D Happel, who proves the
following: suppose (A,Q) is a Dynkin quiver. Let A be an algebra such that
Db(mod A) =~ D*(mod k [A, Q]). Then A is isomorphic to an iterated tilted algebra of
Dynkin type. In fact one can choose a sequence of APR tilts.
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