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Abstract. A method of obtaining solutions of Einstein field cquations, representing rotating type {1
aull Auids is presented, One explicil solution is given and its details are discussed. The well-known
deSitrer metric is derived as a particular case. :
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1. Introduction

Spherically symmetric solutions describing nuli fluids have been widely used to discuss
gravitational collapse. It began with Vaidya {1-3] and Lindquist er al {4] describing out-
flowing radiation from collapsing spheres. Papapetrou [5] first showed that Vaidya [2]
solution can give rise to naked singularities providing a counterexample to COSIIC Censor-
ship conjecture (Penrose [6]). Bonner and Vaidya [7] have obtained the charged version of
Vaidya solution, Later this solution was used extensively to understand various aspects of
black hole formation (see Israel (8} and Plebanski and Stachel [91).

Recently Husain { 10] further generalized this solution to include null fluid with an equa-
tion of state. Wang [11] has obtained a very general sphetically symmetric null fluid solu-
tion which includes most of the known solutions.

In the present note we intend to indicate a method to study a rotating distribution of null
fluid with an equation of state. We shall begin with Wang’s expression for the energy-
momentum tensor of nuil fluid and use it along with a metric explicitly exhibiting a non-
zero rotation vector, to derive the field equations of our problem.

2. Field equations

Following Hawking and Ellis [12}, Wang has explicitly written the type Il energy momen-
tum tensor for a null fluid distribution in the form

Tow = palilis + (p + P)(Limg -+ lens) — P {n
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I; and 1, being two null vecrors satisfying the relations [n? = 1, 41" = nyn? = 0.
To describe the geometry of a rotating nult Auid distribution, we use the following gen-
eral metric introduced carlier by Vaidya et aof [13]:

ds? = 2(du + g sin ad@)di - 2L{du + gsin adB)® — M*(da® +sin? ad@®) ()
with
L= L{w, o), M = M{u,a,t), g = gla).

Here 1 is the Galilean time and if = is the Galilean radial distance then w is “retarded”
distance. u = ¢ + 7. The coordinates are ' = w,2” = o, 1% = fand 2! =
We introduce the tetrad

§' = du + gsinadf, 8% = Mdw, 6° = Msin adf, 6* = dt — Lo, €)
The metric (2} can now be expressed in the simple form
ds® = 209" — (6°)% — (8%)" = g 670",

From now on the bracketed indices denote tetrad components. We have already calcu-
lated the tetrad compenents Ryqpy of the Ricel tensor for the above metric [13]. We record
them here as ar appendix for ready reference.

The tetrad components of null vectors, {; and n; can be taken as by = (1,0,0,0) and
Tigey = (0.0,0,1). Therefore the :ehtlon (1} wiil now give the tetrad components 7} (ab)
as T = 4, 7 ey = o Loy = Tagy = p, Ty = Thay = Ty = Ty = Tiggy =
T(“) =0

So Einstein field equations

1 Ll
T)—R.Q(n.b} - ——Sﬁ-l(ﬂb))

Bian —
will now lead to
By = —87p, Risgy = Ryggy = —8mp, Biay = ~8mp (4}
and
Tamy = Biygy = Riaay = gy = Biagy = Ry =0, (5)

where F.5y are given by the expressions listed in the appendix.

Thus 1[ th metric (2) is to describe the gravitational field of & null fAluid dlstllbutzon given
by {1}, then we must solve the dlﬂetenua} equations {5) to get the metric coefficients L, M
and g.

3. A solution of the field equations

We wish to sotve the differential equations {3). Fiagy s identically zere. Next we fix our
attention the four equations
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Using the expressions for Ry, given in the appendix, it Is easy to show that the above
four equations (i.e. the vanishing of I ay, Jigyay, H(m) Rpgay) will lead us to the conclu-
sion that (i) Fgyq) does not depend on u and o and 50 is a fmetlon of t only; (i1} so alse
Reygy — LBy isa function of ¢ enly. Thus it is natural to begin with the four equations

Ruay = Rugy = flay = Faqy =0

A solution of these four equations is

M? = ( s ) (X2 4+ VD, X =u—¢(t),Y = —y,2f = go +gcoba (6}

and
4B X
L= 2A0 L S
2L = 2A() - 5y 0
with
1
B, + Ay = 5 (8}

Here ¢, A and B are functions of ¢ alone, a suffix denotes a derivative (l.e. By =
(OB/O), go = (Dg/8a) ete.) and y is defined by gda = dy.
Using {6) the expression for A4y, becomes

1 (e o\
Ry = — = 12({ 22} 1=
[44) 2 ii (d)f)p, (‘b:‘

But our field equations demand R4y = 0. One obvious solution of this equation is
${t) = t which was considered by Vaidya ef al [13]. Another interesting solution of
R(l.lf-.l) == () is ’

(9)

Bt = (o)
where b is an arbitrary constant. Therefore a general solution of the field equations (3)
is given by (6), (7), (8) and {10). Here it should be noted that the metric potential g{a)
remains undetermined.
Kerr [14] has derived a statiopary generaiization of Schwarzschild exterior solution
known as Kerr solution. For Kerr metric we have

gla) = ksinale y = —kcosa, {1

where k is an arbitrary constant related with the anguiar momentum of the rofating system.
As we are interested in rotating null ﬁmd distributions, we take g(a) as givenin (11).

It we take B(1) = 0, then (8) gives 4 = #%/20. Let us redefine the time coordinate T" by
T = —b/t. Then the metric (2) with B(t) = () takes the form
ds? = ,;, [2(du + ksin® adBydT — (v 4 cos” a){da® + sin” adf)?
—(du 4k sin® ad 3] (12)
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where r = u — 7. It can be verified that the metric (12} satisfies the field equations
fyp = Aga. A = 3/b. Here A is the cosmological constant. Therefore the background
metric (12) represenis the expanding de Silfer universe in rotating coordinates,

This shows that even when B (&) # 0t is more coavenient to use 7' as the time coordinate
instead of £. So we write the metric of our selution in the form

: { . 9 9 e . L ‘
ds? = T—: 2(du + ksin® adB)dT ~ (r* + k? cos® a)(da? + sin”® adf?)
2w (du + ksin” add)? {13)
— | — g (du -+ ksin® af .
T i R cost o '
Here a and m are functions of 7" defined by
o =2AT?/b, m = 2BT% /b, (14)
The relation (8) now becomes
D
mr=1-a+ ot (15)
1
From (4) we can determine the physical parameters p, p and p. They are given by
. L, .-
Rwbp = 2Tar — ET-?@TT —3a (16)
1 5 2m
8mbp=3a —Tayp + womu—o—" 1T 1w g — —
= 1 (r? + &% cos® o) [ ( @R )
- . 2m
-T2 =20+ — 4 Tar (17
T
and
1 i
S = e [rar = 2 (1 -0+ 2] 18
k& [ + k?cos? o) et “f T (18)

Clearly the pressure  of the null fluid is a function of time only as was (o be expectad.
The radiation densities p and p depend upon all the three variables w, T and o

The functions m and a are connected by only one relation (13). Therefore the explicit
solution of the field equations can be derived by choosing one more restriction on the
behaviour of these two functions.

One such interesting case is

Ty = 1T (19}

where [ and 7 are arbitrary constants. In this case we have '
a{T) = 1 —I{n— 2T 20
The physical parameters p, p and i for this case can be obtained from (16}, (17} and

{18). They are given by
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": b5 fr—1
Srwbp = -3 + -2—(‘”, - — 3)(n - 4T,

U — 431"

bp=341(n —2)(n - HT" " 4 gt
Srbp =3 +10n ) ) + (r? + k? cos® o)

[T — (1 - n)],

and

—Il{n - 1yrn—2

Ty T ’[2T+(nf2)-r].
(r2 4 k2 cos® a)

B fa ==
One particular case is notewaorthy. Let us assume o = 4. In this case we have
3,
Snp = —8mp = —% e p+p=0,

and

GITHT + 1)

Bt == —
K (r? 1+ k2 cos? @)

The explicit form of the line element for the case n = 4 is

92 l | .9 - 9 .3 9
g™ = Ef“% [Q(rlu + ksin® adf)dT — (r? + k7 cos® a)da® + sin® adf”)

- {1 — T3 (1 + ———I—T—-m> } (du + k sin® ad,@’)ﬂ .
o

72 4 k2 cos?

We have verified that the metric {26) satisfies the field equations

Rip = Agar, — Smdsly, Ll =0,

Zn

(22)

(24)

(25)

(26)

(27)

with A = 3/b. Thus the metric (26) represents the expanding de Sitter universe pervaded

by nuif fluid.

One may also note that when . = 1, we get g = 0. In this case we obtain a solution

corresponding to g and p only.

Many other interesting choices for the functions m{T") and a(T") satisfying the relation
(15} are possible. We have also chosen the metric potential g{«) in a particular form. But
the field equations do not put any restriction on g(er). So we can choose g{cr) in many ways.
These remarks indicate that there can be many explicit solutions of Einstein’s equations
representing fields of rotating null fluids with energy momentum tensor of type 1L For
the sake of brevity we shall not enter inta these details here. Thus we have seen that the

Kerr-NUT metric (2) is compatible with rotating type II null luid distribution,

Appendix
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Rsay = (/MM — 7 /M7
Rpyy = (g/R[(M, /M), — (f/8d).]

Resqy = —(g/M )M /M )+ (f/M7),]

R(.lfl) = L” + (.2/1"[)[1"’[“{ + (LJ\IE}L 4+ (L/“)/ﬂ"jg)l

LRy + (g/ ML + Mo /M)y + (271732,

i

R
Rpgy = LRgay + (g/MO[(2FL/M?)y — (Lo + Mo /M )]
Ry = Rpssy = (1/M)]g" (Mo /M), + ¢ (M, /A,
F2F (M, M) + A(fPLIMP) = 1 — (Mg = {D(M ) 4]
Ry = .tfl?,(,l,u + (/MA@ (L + Loyy) + 2 Ly + 2L, MM,
4 LM My — 2L M M, + 2M M,,,].

Here a suffix denotes partial derivative (e.g. A, = M /0u, Ly, = L /0y etc.) and the
variable y replaces the variable « in differentiation the defining refation being

geloy = dy,

and 2 f stands for g, + g cot .
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