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A NEW MIXED PRECONDITIONING METHOD BASED ON THE
CLUSTERED ELEMENT -BY -ELEMENT PRECONDITIONERS

T.E. Tezduyar, M. Behr, S.K. Aliabadi, S. Mittal and S.E. Ray

ABSTRACT. We describe a new mixed preconditioning method for finite
element computations. In the clustered element-by-element (CEBE)
preconditioning, the elements are merged into clusters, and the
preconditioners are defined as series products of cluster level matrices. The
(cluster companion) CC preconditioners are based on companion meshes
associated with different levels of clustering. For each level of clustering, we
construct a CEBE preconditioner and an associated CC preconditioner. Because
these two preconditioners complement each other, when they are mixed, they
give better performance. Our numerical tests, for two- and three-dimensional
problems governed by the Poisson equation, show that the mixed CEBE/CC
preconditioning results in convergence rates which are significantly better
than those obtained with the best of the CEBE and CC methods.

1. Introduction

The element-by-element (EBE) preconditioners, which are constructed as series
products of element level matrices, have been successfully applied to several classes of
problems [1-4]. They can be used effectively with the conjugate-gradient and GMRES
[5] methods, and are highly vectorizable and parallelizable (see [3,6,7]). They can also
be used together with the implicit-explicit and adaptive implicit-explicit time-
integration schemes [4,7-9].

In the CEBE preconditioning [10,11], the elements are merged into clusters, and the
preconditioners are constructed as series products of cluster level matrices. In [10], the
CEBE preconditioning was used for solving problems governed by the Poisson
equation. In [II], the CEBE preconditioning was employed to solve compressible and
incompressible flow problems. Applications to the space-time finite element
formulations were included in [11]. To facilitate vectorization and parallel processing,
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as it is done in the grouped element-by-element (GEBE) method [6], the clusters can be
grouped in such a way that no two clusters in any group are connected. Furthermore,
depending on the number of elements in the cluster, within each cluster, elements can
again be grouped in the same way. The number of elements in each cluster can be
viewed as an optimization parameter that can be varied to minimize the computational
cost. In fact, in [12], the unsteady incompressible flow computations were performed
by using a space-time finite element formulation with a nearly optimal cluster size
which was determined by numerical experimentation.

In the construction process of the CC preconditioners, we first start with a
"primary" mesh with different levels of clustering. For each level of clustering in this
primary mesh, we define a "companion" mesh, such that each cluster of the primary
mesh forms an element of the companion mesh. We then define a CC preconditioner
based on each companion mesh, such that there is a CC preconditioner associated with
each CEBE preconditioner based on a certain level of clustering. This way, for each
level of clustering, we obtain a CC preconditioner which we expect to have more inter-
cluster coupling information then the associated CEBE preconditioner has. Conversely,
the CEBE preconditioner can be expected to have more intra-cluster coupling
information than the associated CC preconditioner has.

The mixed CEBE/CC preconditioning, first introduced by Tezduyar et al. [13], is
based on the assumption that the CEBE and CC preconditioners complement each
other, and therefore when they are mixed together they will result in better convergence
rates. The mixed preconditioning is implemented by using these two preconditioners
alternately at each inner GMRES iteration.

2. CERE (Clustered Element.by.Element) Preconditioning

In the CEBE method the elemen~ are partitioned into clusters. For example, Figure
I shows four different levels of clustering for a uniform 16 x 16 mesh. The cluster
boundaries are marked with thick lines. In the first frame each cluster consists of one
element, and therefore this would lead to an EBE method. In the last frame the cluster
size is 8 x 8; the next level of clustering after that (i.e., level 5) would lead to a direct
solution method. The CEBE preconditioning is based on approximation of the global
matrix by a sequential product of cluster level matrices. We can give two examples
(see [10,11]): 2-Pass CEBE preconditioner and Crout CEBE preconditioner.

3. CC (Cluster Companion) Preconditioning

Consider a mesh with different levels of clustering. For each level of clustering in
this "primary" mesh, we define a "companion" mesh, such that each cluster of the
primary mesh forms an element of the companion mesh. For example, Figure 1 can
now also be seen as showing the companion meshes associated with four different
levels of clustering. In each frame of Figure 1, the thick lines not only mark the
cluster boundaries for a certain level of clustering, but also depict the companion mesh
associated with that level of clustering. In the first frame the companion mesh is the
same as the primary mesh. In the last frame the companion mesh is a 2 x 2 mesh. The
CC preconditioner associated with a certain CEBE preconditioner is constructed based
on the companion mesh associated with the clustering the CEBE preconditioner is
based on. The details can be found in [13].
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4. Mixed CEBE/CC Preconditioning

The CEBE preconditioner has more intra-cluster coupling information than the CC
preconditioner has. The CC preconditioner, on the other hand, has more inter-cluster
coupling information. Therefore, it is reasonable to expect that when these two
preconditioners are mixed together they lead to better convergence rates. We mix these
two preconditioners by using them alternately at each inner GMRES iteration.
Recently Saad [14] has formulated a new version of the GMRES algorithm which
allows changing the preconditioner at every inner iteration. A GMRES subroutine,
based on this new formulation and made available to us by Saad, is what we use to
implement our mixed preconditioning.

In our notation, CEBE-L will represent the CEBE preconditioning based on
clustering level L, CC-L will represent the CC preconditioning based on companion
mesh L associated with clustering level L, and CEBE/CC-L will represent the mixing
of the two. It is important to realize that, once it is decided what the level L of our
preconditioning is, there is no need for any intermediate level meshes. In fact, in the
case of unstructured meshes, there is no intermediate meshes between the primary and
coarse meshes. Figure 2 shows two hypothetical meshes superimposed on each other;
a fine and a coarse one, both totally unstructured and arbitrary. In this case the
clustering is achieved by distributing the elements of the fine mesh among the
elements of the coarse mesh. Figure 2 also shows how a cluster of elements (marked
with shaded areas) forms, in an approximate sense, an element of the coarse mesh.

5. Numerical Tests

We tested the preconditioners defined in Sections 2, 3 and 4 on several test
problems governed by the Poisson equation; here we report those with zero forcing
functions (for those with nonzero forcing functions, see [13]). For all the results
reported here a Krylov space of dimension 20 was used and the initial guess for the
solution vector was set to zero. We monitor the scaled residual during the inner
iteration loop (number of inner iterations is the same as the size of Krylov space) for
one outer iteration. Details of the test problems can be found in [13].

In the tests with two-dimensional non-uniform meshes, a cylinder of unit radius is
located at the center of a 32x32 square, and the boundary conditions are non-symmetric.
Figure 3 shows, for a 128x32 primary mesh, the convergence histories for L = 3 and
4. The CEBE/CC preconditioners outperform the others. Results for a 256x64 primary
mesh for L = 3 and 4 are shown in Figure 4.

In the tests with three-dimensional uniform meshes, the domain is a rectangular
parallelepiped, discretized by trilinear brick elements. Homogeneous Dirichlet type
boundary conditions are imposed on five faces of the domain: On the sixth face, a
boundary condition of bi-quadratic form, with a maximum value of I at the center and
0 at the edges is imposed. In Figure 5, we show, for a 128x128x64 primary mesh, the
convergence of the diagonal, CEBE-4, CC-4 and CEBE/CC-4. The CEBE/CC
preconditioner achieves much higher rate of convergence than either of its two
components.
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Level 2Level

Level 3 Level 4

Four different levels of clustering for a uniform 16xl6 mesh; in each
frame the thick lines depict the cluster boundaries and the associated
companion mesh.

Figure

Figure 2. The CEBE/CC strategy for totally unstructured meshes: the fine (primary)
and coarse (companion) meshes and the cluster of elements associated to a
typical element of the coarse mesh.
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Figure 3. Convergence histories for a two-dimensional mesh of 128x32 elements.
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Figure 4. Convergence histories for a two-dimensional mesh of 2S6x64 elements.
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Figure 5. Convergence histories for a three-dimensional mesh of 128x128x64
elements.
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