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RNA polymerase is one of the most important enzymes in living organizms as it controls the synthesis
of the key intermediate RNA from DNA message. Regulation of gene expression is primarily governed
by the interplay among various protein factors and this enzyme. In this review we tried to emphasize
and catalogue all the factors that are known till-date in prokaryotes, taking E. coli as a model. Structural
requirements for intricate protein-protein and protein-DNA interaction are also discussed.
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Protein factors

Introduction

Gene expression requires the transfer of genetic
information from DNA into RNA molecules, the
direct templates for protein
Transcription entails copying of a defined
portion of DNA into RNA in response to the
needs of the organism. The transcription
machinery must, therefore, be responsive to
environmental signals, and also be able to
recognize “start” and “stop” signals on the
DNA. These intricate events are precisely
performed by an enzyme called DNA-dependent
RNA polymerase (EC 2.7.7.6) or RNAP, and the
enzyme function is regulated by various
interacting factors.

synthesis.

The modern era of regulatory biology began
with Jacob and Monod’s proposal for gene

regulation by repression, induction and feedback
inhibition of enzyme activity (Monod & Jacob
1962). On the basis of the enormous body of
regulatory information available in prokaryotes,
it has been technically straightforward to
determine the sites at which regulatory proteins
act, analyze the nature of the regulatory response
and reconstruct each regulatory system using
isolated, well characterized components.
However, an obvious deficiency in our
knowledge of transcription
mechanisms in prokaryotes and eukaryotes, is
the detailed information on the structures of
the various prokaryotic and eukaryotic RNAPs.
the roles of polymerase accessory factors on
one hand, and how protein-protein interactions
influence polymerase function on the other, are

regulatory
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the arena where there is not much information
available.

In eubacteria, the synthesis of mRNA, rRNA
and tRNA is catalyzed by a single type of RNAP.
Although the enzyme has been purified from a
number of sources, much of our knowledge on
the structure and mechanism of action of this
vital enzyme comes from the enzyme purified
from Escherichia coli. Earlier biochemical studies,
followed by studies on the structure, function,
synthesis and assembly of the polymerase
subunits were made possible through the
discovery and analysis of the subunit structure
of RNAP (Burgess 1976) as well as the
introduction of genetic means to dissect the
genes involved in biosynthesis of the polymerase
subunits in Escherichia coli (Scaife 1976).

The E. coli RNAP is a hetero-multimer of a
molecular weight of approximately 460 kDa
(Chamberlin & Berg 1962). RNAP exists in two
enzymatically active forms: the RNAP
holoenzyme [o.,BB 6(w)] and the core enzyme
[o,BB o(w)] which is devoid of the ¢ - subunit
(Chamberlin 1976). In addition to the essential
subunits (o,f,p, and o) a number of proteins/
polypeptides which are strongly associated with
purified RNA polymrase have been reported.
In a recent report (Sukhodolets & Jin 1998), a
novel ATPase named RapA (RNAP-associated
protein) has been identified which copurifies
with RNAP holoenzyme as a 1:1 complex and
has homology with SWI/SNF family of
eukaryotic proteins. Amongst others is the
polypeptide designated as omega (), occurring
at a molar ratio of 0.5 to 2 per enzyme molecule,
it compurifies with both the holo and core
enzvme, and is regarded as a subunit of RNAP
(Burgess 1969). The core RNAP is capable of
polymerization of ribonucleotides, while the
holoenzyme containing the c-subunit, can also
initiate transcription at specific promoter sites
in a catalytic manner (Burgess & Travers 1970).

The genes ceding for the holoenzyme subunits
rpoA (a-subunit), rpoB (R-subunit), rpoC (B’-
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subunit), rpoD (c-subunit) and rpoZ (w-subunit)
have been located on the E. coli genome (Yura &
Ishihama 1979, Gentry & Burgess 1986). Table 1
summarizes the subunit name, map position on
the E. coli genetic map and some properties of each
of the E. coli RNAP subunits (Burgess et al. 1987)
and its associated factors.

The Subunits of RNA Polymerase

The Alpha (o) Subunit

The a-subunit, present as a dimer inE. coli RNAP,
consists of two independently folded domains: an
amino terminal domain @NTD, residues 8-235)
and a carboxy terminal domain (@CTD, residues
219-329) connected through an unstructured and/
or flexible linker of 14 amino acids (Blatter et al.
1994 , Igarashi & Ishihama 1991, Negishi et al.
1995). The alpha subunit performs at least three
critical functions: it serves as the initiator for RNAP
assembly both in vivo (Hayward et al. 1991), and
in vitro (Igarashi et al. 1991, Kimura et al. 1994,
Kimura & Ishihama 1996); it participates in
promoter recognition by sequence-specific
protein-DNA interaction (Ross et al. 1993, Rao
etal. 1994, Blatter et al. 1994); and it is the target
for transcriptional regulation by a large set of
transcriptional activator proteins (Ishihama 1992,
1993, Busby & Ebright 1997).

The principal determinats for dimerization of
o and almost all determinants for interaction ofa
with other RNAP subunits, are located withina
NTD (Kimura et al. 1994, Kimura & Ishihama,
1995a, b, Heyduk et al. 1996). In a recent study,
the X-ray crystal structure of aNTD was
determined at 2.5A° resolution (Zhang & Darst
1998) revealing the basis for the tight dimerization
of the a-subunits («NTD dimer forms an
elongated, flat structure) providing insight into the
organization of core RNAP subunits. The RNAP
o subunit serves as the initiator for RNAP
assembly subsequent to dimerization, which
proceeds according to the pathwayo + o — a,+
— o, B+ B a,pp'+ o — a,pp’ o (Ishihama 1981).
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Deletion analysis of o has indicated that the
residues between positions 21 and 235 are
involved in assembly (Kirmura et al. 1994); while
insertion analysis has been used for fine mapping
of the sites within this region required for subunit-
subunit contacts. The region around residue 80 is
involved in binding both B and B’; the region
between residues 180 and 200 plays a role in B’
binding; while o dimerization involves multiple
contact sites (Kimura & Ishihama 1995b).

The aCTD is proposed to serve as a flexibly
tethered DNA-biding activator-binding “adaptor”
module. It is proposed to occupy different
locations at different promoters: that is, it makes
no specific contact at a simple promoter (like
lacllV5); makes specific DNA protein contacts at
promoters containing the UP element (eg.rrnBPI
promoter); and makes specific protein-protein
interactions with the activator at a promoter
having an appropriate activator (eg.lac promoter
and CAP) (Ishihama 1992, 1993, Busby & Ebright
1994). Itis possible to remove as much as 99 amino
acid from the carboxyterminus without preventing
formation of a functional holoenzymein vivo and
the region between residues 220-230 contains the
C-terminal boundary of the assembly domain
(Zou et al. 1997). However, the extreme thirteen
C-terminal residues are crucial for stabilising the
o-polypeptide against natural proteolysis
occurring approximately at residue 271. Further
work has shown that the extreme C-terminal
region of a is exposed in the holoenzyme and
substituted deletions in this region are not
commonly functional at class 1 promoters (Thomas
et al. 1997). A schematic representation of the
functional map of a subunit is represented in
figure 1.

The Beta (B) Subunit

This is the second largest subunit inE. coli and is

intimately involved in most of the known activities
of prokaryotic RNAP. Binding sites for substrates,
and inhibitors like the antibiotics, rifampicin,
streptovaricin and streptolydigin, which inhibit
initiation and elongation are located in this subunit
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(Zillig et al. 1976, Krakow et al. 1976). The
rifampicin binding site has been well characterized
and falls exclusively on the B subunit (Frischauf
& Scheit 1973, Armstrong et al. 1976). The active
site geometry has been mapped, through
fluorescence spectroscopy by using TbGTP and
rifampicin (Kumar 1990, Kumar et al. 1992,
Chatterji & Gopal 1996). Analysis of rpoB mutants
implicated B subunit in ¢ binding (Travers 1975);
ppGpp (the stringent response effector) binding
(Nene & Glass 1983); promoter interactions (Glass
et al. 1986a) and core assembly (Ishihama et al.
1990). The binding site of ppGpp has been mapped
on the B subunit and is estimated to be 27 A° from
the rifampicin binding site (Reddy et al. 1995).

It is possible to develop a composite model
towards a functional map at the B subunit on the
basis of the existing biochemical and genetic data
(Lisityn et al. 1998, Nene & Glass 1984).
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Crosslinking experiments have implicated
segments 515-660 and 1091-1107 in B subunit to
be facing the 3’ terminus of RNA in the catalytic
pocket (Markovtsov et al. 1996). Lys'®® and His'*’
of the B subunit are located on the 5 side facing
the priming nucleoside triphosphate (Grabcev
etal. 1989, Mustaev et al. 1991). The rifampicin
binding site is located upstream of the 5" face along
the exit path of the transcript (Severinov et al.
1995). The region from residue 800 to 1200 is
responsible for ppGpp binding (Reddy et al. 1995,
Chatterji et al. 1998). The C-terminal portion of the
B subunit (from 1200-1342) is required for binding
of ¢ to core (Glass et al. 1986b). Several alterations
in the N-terminal third of the f§ subunit do not
eliminate catalytic activity (Landick et al. 1990) but
are important for proper folding and assembly of
the B subunit.

Through insertion analysis it was shown that
the region between 965 to 1080 was dispensable
(Glass et al. 1986a) and the B subunit can be
tryptically digested at two major sites, Arg™® or
Lys®®, which is adjacent to the dispensable domain
(Borukhov et al. 1991). Identification of intragenic
suppressor mutations has provided evidence for
interactions between the conserved regions B
(residue 134-148) and D (548-577), and regions E
(660-678) and H (1047-1118) (Tavormina et al.
1996). Thus, residues quite distant in the primary
structure of p may interact in the tertiary structure,
raising the possibility that many of the conserved
regions of the B subunit may interact to form a
framework for the activities of the polypeptide but
may help determine promoter selectivity. Evider ce
also suggests that the B subunit may serve as an
activation target atleast in one case (Lee & Hoover
1995). A schematic representation of the functional
map of B subunit is represented in figure 1.

The Beta-prime (B") Subunit

The B’ subunit is the most basic among the
subunits of RNAP. Template binding is attributed
to the ' subunit because of its high affinity to DNA
and other polyanions as well as the inability of
0, complex to bind to DNA (Zillig et al. 1971). It
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is the only subunit that can bind to DNA by itself
(Zillig et al. 1970, 1971), and this property
presumably contributes to the non-specific DNA
binding exhibited by the core enzyme. That the
p’-subunit is responsible for template binding was
shown by means of crosslinking of poly-4-
thiothymidylic acid to holoenzyme (Frischauf &
Scheit 1973). Several bacterial mutants whose
RNAPs have impaired DNA-binding properties,
contain altered f’ subunits (Panny et al. 1974, Gross
et al. 1976, Sugiura et al. 1977). Using photo-
crosslinkable nucleotide analogs and genetic
mapping, it has been possible to identify a
conserved stretch of amino acids in thep’ subunit
(330 to 366 and 932 to 1020) that interact with the
nucleotides in the 'i+]" site (elongation site)
(Borukhov et al. 1991). A conserved motif of
NADFDGD lying between residues 400-500 in the
B’ subunit has been implicated in the binding of
Mg?* ion (binds to ‘i+1’ site) at the catalytic center
of RNAP (Zaychikov et al. 1996), and is proposed
to form the base of the cleft which forms the crucial
element of the active centre. Other sites identified
through crosslinking experiments in both 3 and
p’, probably line the surface of the cleft where the
active center is located.

E. coli RNAP is a Zn-metalloenzyme and binds
to 2 moles of Zn per mole of the enzyme (Wu &
Wu 1981). One of the Zn" is present in the 8
subunit and the other in thep’ subunit (Wu & Tyagi
1987). Amino acid sequence analysis predicted the
presence of a DNA binding Zn-finger motif in the
N-terminal part of the B’ subunit (residue 68-88)
(Chatterji & Guruprasad 1988), this was later
corroborated with experimental verification
(Clerget etal. 1995). Further, it was shown that the
o-subunit crosslinks predominantly with f’
subunit, indicating their proximity in the natural
system (Gentry & Burgess 1993). Recently, the B’
subunit has been identified as the target of action
of N4SSB, an activator, that functions without
binding to DNA (Miller et al. 1997). A schematic
representation of the functional map off’ subunit
is represented in figure 1.
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The Sigma (o) subunit

Sigma factor confers sequence specific initiation
capability to the bacterial core RNAP, and therefore
has two functions; it binds to the core RNAP, and
thereafter, binds to DNA in a sequence specific
manner. There are two major families of sigmas,
those related in their protein sequence toc”, the
primary vegetative sigma factor of E. coli, and
those related to 6™, an alternative sigma factor of
E. coli, involved in transcribing nitrogen-regulated
genes (Gribskov & Burgess 1986, Helmann &
Chamberlin 1988, Lonetto et al. 1992).

A comparison of sequences of ¢ factors
belonging to the 67 family in E. coli and other
bacteria, have led to the identification of four
homologous conserved domains which can be
divided into at least 10 subdomains in terms of
function and sequence homology (Gribskov &
Burgess 1986, Helmann & Chamberlin 1988,
Lonetto et al. 1992). Domain 1 is involved in core
RNAP binding and domain 3 is thought to be
required for stability. Domain 1 is also involved
in selectivity, while subdomains 2.3, 2.4 and
domain 4 at the C-terminus are involved in the
recognition of -10 and -35 consensus sequences of
the promoter. All four subdomains of domain 2
are implicated in DNA melting, while subdomains
2.1 and 2.4 are also involved in core RNAP binding
(Gross et al. 1992). Some primary ¢ factors carry a
large non-conserved segment between domains 1
and 2. On the other hand, the * family of proteins
have two strongly conserved domains (Sasse-
Dwight & Gralla 1990).

In addition to their structural distinction, the
process of transcription initiation by holoenzymes
containing these two types of sigma factor differs.
Promoters recognized by o¢’°-containing
holoenzyme consist of two blocks of conserved
sequences located at about-10 and -35 bp, relative
to the transcription start site at + 1 and are
separated by 15-20 bp of non-conserved sequence
(Reznikoff et al. 1985). In contrast, 6> dependent
promoters are characterized by highly conserved
dinucleotides positioned near -12 and -24 bp
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relative to the +1 site and separated by only 5 bp
(Gussin et al. 1986). Moreoever holoenzymes
containing 6* type sigmas require an auxiliary
protein to form “open complexes” whereas those
containing ¢”° type sigmas are competent in this
aspect independent of the presence of any
auxiliary factor.

The affinity of 67 for free core RNAP is between
2x10° M to 5x10° M* (Wu et al. 1975, Gill et al.
1991). The interaction of o with core RNAP is
tighter in the open complex (that is, following the
binding and melting of DNA), than in free
holoenzyme (Gill et al. 1991) indicating additional
sigma-core RNAP interactions in the open
complex. Interactions between ¢ and DNA may
also stabilize the complex. In contrast, the
interaction of ¢’ with core RNAP is weaker in
elongating complex, (affinity is <5 x 10° M) (Gill
et al. 1991) than in the free holoenzyme.

Although ¢ subunit is implicated in the
primary recognition of promoter DNA sequences
it cannot bind to promoter DNA in the absence of
the core RNAP (Zillig et al. 1970, 1971). Mutational
analysis, by amino acid substitution, has
implicated conserved domain 2.4 of 67 in
recognition of the -10 hexamer and conserved
domain 4.2 of 6 in recognition of the -35 hexamer
of the promoter, respectively (Gardella et al. 1989,
Siegele et al. 1989, Zuber et al. 1989, Daniels et al.
1990, Waldburger et al. 1990, Tatti et al. 1991).
Recent studies have suggestéd that the residues
437, 440 and 441 interact with the non-template
strand of promoter DNA (Roberts & Roberts 1996,
Severinova et al. 1996, Marr & Roberts 1997). Barne
et al. (1997) have reported that an amino acid
substitution of the residue 458, which lies
downstream of domain 2.4, alters the extended -
10 recognition.

Removal of an N-terminal segment upto 100
amino acids from ¢”°, rendered the truncated ¢”
subunit capable of binding to -35 promoter
sequences even in free form (Dombroski et al. 1992,
1993). The inhibitory effect of N-terminal domin
could also be observed in trans, partial
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polypeptides of ¢”°, containing residues 1-100
could inhibit the binding of a fragment consisting
of residues 507-613 (terminal part of domain 3.1
to the C-terminus), to DNA with a -35 promoter
sequence (Dombroski et al. 1993).

The work of Gopal and coworkers (1994) have
shown that a tryptophan to glycine mutation
(W434G) at the junction of the 2.3/2.4 subdomain
of 0’ resulted in its transient DNA binding ability.
On the other hand, a mutation in the 1.1
subdomain of ¢”° led to disruption in its overall
structure, and also resulted in its transient DNA
binding ability like W434G (Gopal & Chatterji
1997). This indicated that the 1.1 subdomain might
be interacting hydrophobically with the 2.3/2.4
subdomain, thereby resulting in the exposure of
the acidic patch around the middle of the protein
and blocking of the C-terminal domain by N-
terminal domain.

A small segment overlapping domain 2.1
(residues 361-390) was shown by deletion analysis
to be sufficient for core RNAP binding (Lesley &
Burgess 1989). Several amino acid substitution
mutations in the domains 2.1 and 2.2 of other
related o factors have shown defects in core RNAP
binding (Shuler et al. 1995, Joo et al. 1997). Recently,
protein footprinting techniques have been used to
study the subunit-subunit interaction of E. coli
RNAP. Various domains ino”, including segments
indomain 1.1, 2,3 and 4 get substantially protected
from radical attack upon binding the core RNAP
(Nagai & Shimamoto 1997) indicating that besides
the conserved domain 2, other conserved domains
may also be involved in core RNAP binding. C-
terminal truncations of 67 retaining residues 574,
556, 540 or 529 show fcurfold reduced affinity for
the core RNAP. One of these C-truncated ¢’
retaining residue 529, can promote the initiation
of transcription from the extended -10 promoter
but not from -35 dependent promoters (Kumar et
al. 1994).

The crystal structure of a tryptic fragment of
0" spanning residues 114-448, carrying a part of
the conserved domain 1.2 and all but the C-
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terminal 8 residues of conserved domain 2, reveals
an entirely helical, ‘v’ shaped protein with all the
domains of conserved primary sequence closely
associated with one another (Malhotra et al. 1996).
This fragment can bind to the core RNAP albeit
with 30-fold less affinity than intact 67, and the
resulting complex is capable of binding to the non-
template strand and promoter DNA (Severinova
et al. 1996). All these findings again suggest that
domains 1.1, 3 and 4 also contribute to core
binding. A schematic representation of the
functional map of ¢ subunit is represented in
figure 1. Recent reports also suggest that theo
subunit is represented in figure 1. Recent reports
also suggest that the 6 subunit can function as the
contact surface for activators (Hochschild 1994,
Kuldell & Hochschild 1994, Li et al. 1994,
Artsimovitch et al. 1996, Gerber & Hinton 1996).

This mechanism of intramolecular regulation
through interactions  are
indispensable to regulate the activity ofc” where
unwarranted DNA interactions may be inhibited
in the absence of RNAP, wherein DNA binding
domains are revealed only on binding to the core
RNAP.

interdomain

The Omega (w) Subunit

Omega (o) is a small protein (Mol. wt. 10,105 Da)
found associated with both core and holo E. coli
RNAP (Burgess 1969). The w protein has been
called a subunit of RNAP on the basis of its
copurification with RNAP core and holoenzyme.
When antibodies raised against @ were used to
probe fractions of an E. coli lysate fractionated by
gel filtration, it was found that the majority of®
was bound to RNAP indicating that it was not
merely an abundant contaminant (Gentry 1990).

The function of ® is unknown and unlike the
other subunits, ® is not required for transcription
either in vitro (Heil & Zillig 1970) or in vivo(Gentry
& Burgess 1989, Gentry et al. 1991). Cells deleted
for the gene encoding w (rpoZ) have been reported
to have no discernible mutant phenotypes (Gentry
& Burgess 1989, Gentry et al. 1991). The rpoZ



Kakoli Mukherjee and Dipankar Chatterji

deleted strain, however, exhibits a defect in the
degradation of ppGpp (Gentry & Burgess 1989,
Sarubbi et al. 1989), which might be due to
polaritey effect on the expression of thespoT gene,
which is in the same operon and immediately
downstream of rpoZ (Gentry & Burgess 1989).

A recent study (Dove & Hochschild 1998)
demonstrated that o can function as a
transcriptional activator when linked covalently
to a DNA-binding protein, implying that the®
protin is a component of the RNAP holoenzyme
in vivo, and that it is accessible at the surface of
the enzyme complex. Further their work has also
suggested that the amino-terminal portion of the
o protein mediates its association with the RNAP.
Interestingly, despite its not having an obvious
function, w is evolutionarily conserved among
bacteria (Gentry 1990), and crosslinds specifically
to the f’-subunit (Gentry & Burgess 1993).
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Accessory Regulatory Factors

In addition to the primary subunits ando -factors,
several accessory factors regulate the functioning
of RNAP either negatively or positively, and their
interplay has important
transcriptional control. There are three general
ways by which proteins interacting with the
transcription machinery exert regulatory
effects: (i) The binding of proteins (IHE Hu, H-NS
etc.) at regions upstream of E. coli promoters result
in the bending of DNA and enhancement of
specific steps of initiation (Schmid 1990),
(ii) Activator binding to specific sites poximal to,
or overlapping with, promoter regions facilitates
the recruitment of RNAP the the promoter
(Ptashne & Gann 1997), on account of protein-
protein contacts between the activator and o/ o/
B/B" subunits of RNAP. A large number of
regulatory proteins inE. coli adopt this mechanism

bearings on

Table 2 Activator proteins und factors that interact with RNA polymerase subunits

Subunit Effector Region of contact Operon/Gene Reference
Fnr C-terminal domain narX, ndh Ishihama 1993
OxyR " katG, oxyX, ahpC !
OmpR “ ompC !
o CAP " lac, uxuAB "
IHF " 1P, "
MelR " mel "
AraC ! araBAD "
Mu Mor " Mu mor Artsimovitch et al. 1996
o CAP Domain 4 gal P1 Kumar et al. 1992
PhoB Domain 4 pst Makino et al. 1993
A-repressor Domain 4 cl Kuldell & Hochschild
1994 Li et al. 1994
T4 MotA Domain 4 T4 motA Gerber & Hinton 1996
g™ NtrC -35 binding region ginAP2 Lee et al. 1993
C,D* " c,D* Lee & Hoover 1995
B pPGpp C-terminal domain rrn, tufB, rpl], tyrT Chatterji et al. 1998
c,Dr " C,D* Lee & Hoover 1995
p’ N4SSB C-terminal domain phage N4 genes Miller et al. 1997

*C,D : C, -dicarboxylic acid transport protein D
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and are detailed in table 2 (Ishihama 1993, Busby
& Eoright 1994, 1997, Ebright & Busby 1995),
(iii) Direct activator-RNAP contacts without the
formar binding to the DNA template, can regulate
transcription as reported for the N4SSB protein
interacting with the RNAP §8’ subunit, leading to
activation of bacteriophage N4 promoters (Miller
et al. 1997). Another class of these factors are the
repressors, examples include the Trp repressor
(Ashimizu et al. 1973, Rose et al. 1973) and the lac
repressor (DeCrombrugghe et al. 1971).

Among the other important protein factors
which in*eract with RNAP are rho (p) factor, NusA,
NusG, €10, GreA and GreB, while effector
molecules include ppGpp and pppGpp. These
factors function to increase the initiation rate,
augment the elongation rate, decrease the
frequency of chain termination, release terminated
enzymes from the DNA for restarts, or rescue
RNAP from abortive termination (Greenblatt 1992,
Jones & Peterlin 1994).

The E. coli rho (p) factor is an essential
homohexameric protein composed of 47 kDa (419
amino acid) subunits that is required to mediate
transcription termination at various genomic and
bacteriophage sites (Platt & Richardson 1992, Das
1993, Nowatze et al. 1996). It serves an important
and essential function in E. coli by causing RNAP
to terminate transcription at the ends of genes and
operons, and at regulatory sites at the beginning
of operons (Platt & Richardson 1992). It also aids
in transcription termination within genes when the
cell is stressed by starvation for amino aids
(Richardson 1991). Rho-dependent terminators
have an upstream RNA component that slows
RNA chain elongation-when the polymerase is
near the 3’ endpoints. Rho also exhibits various
partial activities such as ATP binding, RNA
binding, RNA-dependent ATP hydrolysis and
ATP-dependent unwinding of RNA-DNA hybrids.
The RNA-DNA hybrid helicase activity of Rho
presumbly facilitates termination of transcription
by dissociating the RNA from its complex with
DNA template and RNAP. Genetic evidence
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suggests a direct interaction between the Rho
factor and RNAP in transcription termination, but
the P factor neither co-purifies nor co-precipitates
with RNAP by specific antibodies (Das et al. 1978,
Guarente 1979).

During the development of bacteriophages
such as T4, A, and others, the host polymerase is
altered, either by phage encoded “protein-
modifying enzymes” or by phage encoded
polypeptides which become associated with the
host enzyme and change its properties. In case of
T4 phage infection, an anti-sigma factor called
AsiA, synthesized from early RNA, binds very
tightly to E. coli 6,7° to allow gp55, a T4
bacteriophage sigma factor, to bind to and redirect
E. coli core RNAP to transcribe from T4 middle
promoters (Ouhammough et al. 1995). However,
AsiA is a coactivator of MotA-dependent middle
transcription, which also requires the 67 subunit
(Ouhammouch et al. 1995). Although several roles
have been proposed for the AsiA (Brody et al.
1995), in a recent report it has been shown that
AsiA interacts in a 1:1 stoichiometry witho " (in
the region encompassing residues 506-613, i1.e in
the -35 recognition domain) both in solution, and
as a part of the holoenzyme. Further it has been
shown that AsiA acts at a step prior to open
complex formation i.e., at the initial binding step,
it decreases the affinity for host promoters but
enhances affinity of the holoenzyme at T4 middle
promoters alongwith MotA (Pahari & Chatterji
1997, Adelman et al. 1997).

During the development of A phage, the N
polypeptide (11.6 kD) becomes associated with the
host polymerase and transforms it into a highly
processive, termination-resistant transcription
apparatus (Barik et al. 1987, Das et al. 1996). This
protein can be co-precipitated withE. coli RNAP
by anti RNAP serum (Barik et al. 1987). The N
protein can also suppress multiple p-dependent
and intrinsic terminators that are located kilobases
away from a cloned nut site (Whaler & Das 1990,
Lazinski et al. 1989). The amino-terminus of N
protein, rich in arginine, binds to the stem-loop
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structure (boxB) in the nut mRNA and contacts
RNAP through RNA looping to convert it to the
termination-resistant form (Lazinski et al. 1989,
Chattopadhyay et al. 1995). These factors are
NusA, NusB, NusG, and the ribosomal protein S10
(NusE). In addition to the N-boxB complex, each
of these factors also bind to the RNAP elongation
complex (Mason & Greenblatt 1991). NusA, NusG,
and the ribosomal protein S10 each interact with
RNAP directly as shown by affinity
chromatorgraphy (Gottesmand & Weisberg 1995).
NusB is is thought to gain access to the complex
through its ability to bind both to S10 and toboxA,

which lies upstream of boxB (Patterson et al. 1994).

The Nus factors influence cellular gene
transcription as well (Henkin 1994). Using affinity
columns containing immobilized core RNAP three
abundant E. coli RNAP binding proteins were
identified; 67, NusA and NusG (table 3)
(Greenblatt 1992, Das et al. 1996).

NusA was originally identified genetically as
a protein transcriptional
antitermination by the N protein of bacteriophage
A (Friedman & Baron 1974) and further
biochemical studies indicated that NusA is an
adapter that couples the N protein to RNAP

involved in
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(Greenblatt 1981). The identification of NusA led
to studies showing that NusA induces pausing by
RNAP at certain sites (Landick & Yanofsky 1987)
and is a transcription termination factor at some
terminators (Schimdt & Chamberlin 1987, Barik
etal. 1987). Thus, NusA is both a termination factor
and a confactor required for antitermination by
N.

The ribosomal S10 protein or NusE, was
isolated as a component of transcription initiation
or elongation complexes in the absence of any
elongation factor, but immobilized S10 was unable
to bind RNAP (Mason & Greenblatt 1991). The
NusB protein, however, bound selectively to S10
and S10 probably therefore, interacts with DNA-
bound RNAP and couples NusB to RNAP.

NusG is an E. coli elongation factor which was
identified through its requirement for
antitermination by Nin vitro (Li et al. 1992). Like
NusA and 510, NusG also binds to RNAP (Li et al.
1992), and is essential for Rho to functionin vivo
(Sullivan & Gottesman 1992). NusG also becomes
important for termination by Rhoin vitro under
conditions of elevated ionic strength where Rho
does not work well on its own.

Table 3 Some protein-protein interactions in transcription detected by protein affinity chromatogr (Greenblatt 1992)

Ligand Interacting protein Apparent  Actual References
Kd(M) Kd (M)

Bacteriophage A N protein E. coli NusA 5x 107 3 x 107 Greenblatt and Li (1981)
E. coli NusA E. coli RNA polymerase 107 3x10% Greenblatt and Li (1981)
E. coli rNA polymerase E. coli o™ - 3x10"  Lietal (1992)

E. coli NusA 3x10% Lietal. (1992)

E. coli NusG - - Li et al. (1992)
E. coli NusG E. coli rho factor 10° - J. Li (unpubl.)
E. coli ribosomal protein S10 E. coli NusB 3x10° 107 Mason et al. (1992)
E. coli NusB E. coli ribosomal protein 510 - 107 Mason et al. (1992)
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Pausing sites function as regulatory elements
in both eukaryotes and E. coli. The RNAP can
escape these sites if the nascent transcritpt in the
elongation complex is cleaved and repolymerized
(Das 1993, Eick et al. 1994). Although the cleavage
reaction itself is probably mediated by the core
polymerase, protein factors that promote the
cleavage reaction have been identified. InE. coli,
the GreA and GreB proteins are associated with
the RNAP and promote the release of di-
ribonucleotides and tri-ribonucleotides and of
longer oligoribonucleotides (upto 18 nucleotides
long), respectively, depending on the type of
ternary elongation complex (tEC) (Borukhov et al.
1992, 1993, Nudler et al. 1994). In addition to the
antiarrest activity, GreA is believed to have a proof
reading role in transcription because it facilitates
the removal of misincorporated nucleotides (Erie
et al. 1993). Both Gre factors act independently to
suppress elongation arrest. The two factors also
differ in that GreA can rescue the elongation
complex only if added before the arrest took place,
whereas GreB can act both before and after the
arrest (Borukhov et al. 1992, 1993). GreA and GreB
factors are proteins of low abundance whose
content in the total soluble fraction of E. coli is less
than 0.01% (w/w) and 0.002% (w/w) respectively,
and its purification involves multiple steps
(Borukhov & Goldfarb 1996). The susceptibility of
different TEC to hydrolytic reactions induced by
GreA and GreB varies substantially depending on
the length of the transcript, its sequence and the
condition of RNAP in ternary complexes
(Borukhov & Goldfarb 1996).

Among the other proteins which are copurified
with RNAP or co-precipitated alongwith RNAP
by treatment with anti-RNAP antibodies, are the
“tau” (1) proteins (Burgess 1976). Molecular
weights of this class of proteins are ~100 kD. Most
RNAP preparations purified under mild
conditions contain three major species of
analogous proteins. The middlet protein can be
separated from RNAP by glycerol gradient
centrifugation or by gel filtration in the presence
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of high salt concentrations. The large 1 protein
separates from polymerase after phosphocellulose
chromatography (obtained in the flowthrough
fraction). Enzymes eluted at higher salt
concentrations contain increasing amounts of
small 1 proteins. The smallt proteins interfere with:
and decrease core enzyme activity (Ishihama et
al. 1980). Recently, it has been shown that the t
protein is identical to RapA, a novel RNAP
associated protein which is a homolog of the SW1/
SNF family of eukaryotic proteins whose members
are involved in transcription activation,
nucleosome remodelling and DNA repair
(Sukhodolets & Jin 1998). Though the exact
function of RapA is yet to be determined, this 110
kD protein interacts with RNAP both physically
(binds to RNAP) and functionally (the ATPase
activity of RapA is stimulated by RNAP).

The 6 subunit required for transcription of most
of the genes expfessed in the exponential growth
phase is 67, the product of the rpoD gene. Upon
entry into stationary phase, the ¢ subunit is
replaced with 6* or o* (encoded by rp0S). The
concentration of ¢’°, which is around 700
molecules per cell, in exponential phase remains
constant even though the frequency of
transcription of genes under the control of o™
decreases by more than 10-fold (Ishihama 1991).
In a recent report, a fraction of the ”° subunit in
stationary phase cell extracts was found to exist
as a complex with a novel protein designated Rsd
(Jishage & Ishihama 1998). The authors have
shown that intracellular levels of this protein
increase during transition from exponentia: to
stationary phase. Purified Rsd could interact with
only 67 amongst different o-factors in vitro, at or
downstream of region 4 of 6”°. It could also, inhibit
o”’-driven in vitro promoter-specific transcription
to various extents depending on the promoters
used. Rsd is possibly an anti-factor forc” or ¢”.

A novel ATPase was found in most partially
purified RNAP by different methods (Ishihama
etal. 1976). Isolated ATPase did not rebind to
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RNAP under the conditions tested nor to DNA.
However, the morphology of the ATPase as well
as the ATP hydrolyzing activity indicated that it
was the groE protein which is involved in the
morphogenesis of several bacteriophages
(Hendrix 1979). The synthesis of this ATPase was

transiently stimulated if the culture temperature

was shifted up (Yamamori et al. 1978).
Copurification of the two proteins, RNAP and
ATPase probably simply indicates a similarity of
physical and chemical properties between the two
proteins. Later work by Ziemienowicz and co-
workers (1993) showed that the GroEL chaperone
protein can protect purified E. coli RNAP
holoenzyme from heat inactivation. In this
protection reaction, the GroES protein is not
essential, but its presence reduces the amount of
GroEL required.

The stringent-starvation protein (SSP) of
molecular weight 225 kD synthesized
predominantly under extreme amino acid
starvation (Reeh et al. 1976) was found to be stably
associated with purified RNAP (Ishihama & Saitoh
1979). This protein binds to the holoenzyme but
not tc the core enzyme, and inhibits its activity
with some template DNA and under certain salt
conditions. Induction of the strigent response,
causes a dramatic increase in the intracellular
levels of two unusal guanosine nucleotides,
initially termed MSI and MSII (Cashel 1969). These
were later identified as 3’-pyrophosphate
derivatives of GDP, guanosine-5" -diphosphate-3’
-diphosphate (ppGpp) and GTP, guanosine-5" -
triphosphate-3’-diphosphate (prpGpp),
respectively.

Thus, from the above discussion it becomes
apparent that a clear understanding of the
reversible and dynamic interplay between RNAP
and a variety of regulatory factors and effectors is
essential, not only in determining the functional
interconversion and structural alteration of the
RNAP and in the control of transcriptionper se,
but also perhaps in the coordinate control of other
processes such as DNA replication and cell
division.
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Regulation of Synthesis and Assembly of RNA
Polymerase

(a) Regulation of RNA Polymerase Synthesis

The level of RNAP limits transcription, and thus
the control of RNAP formation is a major facet in
the control of cell growth (Ishihama et al. 1976).
The number of core enzyme molecules in anE. coli
cell is approximately 2,000 (Ishihama et al. 1976,
Ishihama 1991), whereas there are more that 4,000
genes on the E. coli chromosome to be transcribed
at widely varying rates (Ishihama 1991, Blattner
et al. 1997). The concentration of ¢ during the
exponential stage is about 700 molecules per cell,
as measured by immunoprecipitation of
radiolabelled cell extracts (Iwakura & Ishihama
1974) or Western blot analysis with specific
antibodies (Jishage & Ishihama 1995, Jishage et al.
1996). In growing cells, at any given moment,
about two-thirds (about 1,300-1,400 molecules) of
the core enzyme are actively involved in
elongation of transcripts, and are therefore, devoid
of ¢ and are associated with the chromosome.
Therefore, most of the remaining core enzyme
(around 600-700 molecules) is likely to be
associated with 6”°. When E. coli cells are exposed
to a nutritional or temperature shift, a specific
regulatory mechanism seems to operate
immediately to adjust the core RNAP enzyme
concentration to the level characteristic of the post
shift rate of growth (Nakamura & Yura 1975).
However, the kinetic patterns of response vary
with nature of change in growth conditions.

The lack of gene dosage effect, stimulation of
RNAP synthesis when exposed to rifampicin, and
mutations that affected the level of active RNAP
but stimulated the rate of subunit synthesis,
particularly the B and §’ subunits implicated an
autogenous regulation of RNAP synthesis (Yura
& Ishihama 1979, Lang-Yang & Zubay 1981). A
direct demonstration of the autogenous regulation
model was provided when the in vitro synthesis
of B and B’ subunits in a coupled transcription-
translation system, was specifically repressed by
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the addition of either holoenzyme or the o, f
complex, while none of the individual subunits
or the core RNAP was found to have significant
repressor activity (Taketo et al. 1978, Fukuda et al.
1978). It was later shown that the feedback
regulation was at the level of translation (Kajitani
et al. 1980, Peacock et al. 1982). A limitation of BB’
synthesis results in a 2-3 fold increase in the
translational efficiency of BB’ synthesis (Dennis et
al. 1985). While the induction of RNAP
overproduction is characterized by an initial large
burst of BB’ synthesis, followed by a gradual
decrease as the concentration of RNAP increases,
indicating that RNATP feedback regulation controls
BB’ synthesis in vitro (Bedwell & Nomura 1986).

(b) Assembly of RNA Polymerase Subunits

Despite its large molecular size and complex
subunit composition theE. coli RNAP holoenzyme
can be reversibly dissociated into ¢ subunit and
core polymerase (0,8’ ®) and can be separated by
passage through phosphocellulose or the cationic
resin Biorex 70 (Lowe et al. 1979). The first
successful attempts to reconstitute RNAP from
isolated individual subunits were made in early
70s, all of them involved denaturation through
dialysis of RNAP against concentrated (6-7M) urea
or guanidinium hydrochloride solution, resulting
in complete loss of activity (Heil & Zillig 1970,
Ishihama 1972, Lowe & Malcolm 1976). When such
a denatured enzyme was diluted 100-200 fold into
a buffer, enzyme activity was partially restored
indicating renaturation of the dissociated enzyme.
Presence of a thiol compound and glycerol during
denaturation protects the enzyme from
irreversible inactivation (Lill & Hartmann 1970).
Dialysis of denatured core enzyme at 4°C yields
an inactive complex, generally called “premature
core enzyme”, which is converted in a time
dependent process upon incubation at 37°C and
in the presence of either DNA or o subunit, to the
native RNAP. The rate limiting step inin vitro
reconstitution is the activation (“maturation”) of
the premature core enzyme (Harding & Beychok
1974, Palm et al. 1975, Levine et al. 1980).
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Another breakthrough was brought about after
two decades. Following sequencing, cloning and
establishment of the transient overexpression
systems for individual subunits of RNAP, another
approach of obtaining highly purified wild-type
and mutant RNAP became possible using
reconstitution and assembly of recombinant RNAP
from individually overexpressed and purified
subunits (Zalenskaya et al. 1990, Igarashi &
Ishihama 1991, Fujita & Ishihama 1996).
Subsequent refinement has suggested that the
presence of both ¢ factor and ZnCl, (10 uM) led to
higher yields with an optimal molar ratio of the
subunits o : B :p’ : 6 being 2: 8: 4 : 1, rather than
the stoichiometric2:1:1:1 (Borukhov & Goldfarb
1993). Use of a hexahistidine-tagged a derivative
has been utilized to perform an efficient
recombinant reconstitution of RNAP, where crude
recombinant B, B’ and 67 subunits from inclusion
bodies were incubated with tagged-o and the
resulting, reconstituted, recombinant RNAP was
purified by batch-mode, metal-ion-affinity
chromatography (Tang et al. 1995, Kashlev et al.
1996). The histidine tag technology also allows the
study of mechanisms of transcription, by allowing
one to trap defined intermediates of initiation,
elongation, and termination (Kashlev et al. 1996).

Reconstitution from individual recombinant
subunits produced by cloning and high level over-
expression of individual subunit genes, permits
construction of mutant RNAP derivatives
(Zalenskya et al. 1990, Kashlev et al. 1990, Igarashi
& Ishihama 1991, Mustaev et al. 1991, Lee et al.
1991, Martin et al. 1992, Zou et al. 1992, Severinov
etal. 1993, Tang et al. 1994) including lethal mutant
derivatives (Kashlev et al. 1992, Igarashi &
Ishihama 1991, Mustaev et al. 1991, Lee et al. 1991
martin et al. 1992). Recombinant reconstitution is
an extremely powerful tool for genetic dissection
of RNAP structure and function.

The concept of reconstitution of subunits of
RNAP proceeding by a process of self-association
was proved by in vitro experiments. Mixtures of
o, B; a, B’: and B, B’ subunits dialyzed against
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reconstitution buffer and analyzed by glycerol
gradient centrifugation, showed that aggregates
of subunits o and B (2:1), as well as  and B’ (1),
butnota and B’ are formed. Addition of B’ subunit
to preformed o, aggregate followed by dialysis
against reconstitution buffer and incubation at
37°C, results in an enzymatically active complex
with sedimentation coefficient similar to that of
the native core enzyme. In contrast, the preformed
aggregate of BB’ subunits ’does not form an
enzymatically active complex, indicating that
isolated subunits assemble in a sequential process
(figure 2) (Ishihama & Ito 1972, Palm et al. 1975,
Kumar 1981).

Since then, several lines of evidence suggested
that subunit assemblyin vivo proceeds in the same
sequence as that found in vitro. The assembly
intermediates involved in in vitro reconstitution
are present not only in assembly-defective strains
of E. coli (Taketo & Ishihama 1976, 1977) but also
in wild-type strains, pulse-labelled enzyme
subunits are integrated into the polymerase
structure in the order expected from the assembly
sequence (Ito et al. 1975). Moreover, most
temperature-sensitive p and B’ mutants were
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found to accumulate one or more assembly
intermediates at high temperature (Taketo &
Ishihama 1976, 1977).

The concept that the assembly of RNAP is
controlled, was strengthened by the finding that
newly synthesized B and B’ subunits in stationary
phase cells of wild-type E. coli are degraded
without being assembled into the enzyme
structure, though the pre-existing polymerase
formed in log phase cells remains undegraded
during the stationary phase (Kawakami et al.
1979). There is also a decrease in the synthesis rate
of the a subunit as E. coli cells cease to grow
exponentially. Thus, the abortive subunit assembly
in the stationary phase cells can be attributed at
least in part, to the lack of an initiatinga dimer.
The amount of functional RNAP (core enzyme)
which is nucleoid bound varies depending on
growth phase; 60-70% in log phase cells to 30-40%
during the linear phase or early stationary phase
(Kawakami et al. 1979). The increase in the
cytoplasmic pool of unused RNAP and the
concomitant decrease in the rate of subunit
synthesis in early stationary phase is again
consistent with autogenous regulation of RNAP
synthesis.

Step Reaction

I a+a T= a2

1 a,+p —» a,f

111 0,8+ P === 0PB’' (premature core)

v a, PP’ —3—-—7 E (native core complex) n

o,pp' + DNA— E.DNA (core-DNA complex)

a,pp' +0 —» Eo (holoenzyme)

maturation

Figure 2 Maturation of E. coli RNA polymerase from individual subunits
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Eukaryotic RNA Polymerase

Unlike bacterial polymerase, eukaryotic RNA
polymerase is a complex enzyme made up of at
least 11 subunits, producing a total mass greater
than 500 kDa (Woychik et al. 1990). The two large
subunits are conserved in amino acid sequence
across species from bacteria to man and are
believed to play fundamental roles in RNA
synthesis (Allison et al. 1985). Structure of RNA
polymerase enzyme from any species is not very
well characterized, apart from T7 bacteriophase
RNA polymerase, which is a sing'> polypeptide
chain and its X-ray structure is known (Chung et
al. 1990). However, two dimensional crystal
structure over positively charged lipid bilayer for
E. coli and yeast RNA polymerase II are reported
in literature (Darst et al. 1988, Darst et al. 1991).
Interestingly, both the structures show an arm-like
projection surrounding a cleft about 25A in
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