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We study the patterns formed by adding N sand-grains at a single site on an initial periodic
background in the Abelian sandpile models, and relaxing the configuration. When the heights at all
sites in the initial background are low enough, one gets patterns showing proportionate growth, with
the diameter of the pattern formed growing as N1/d for large N , in d-dimensions. On the other hand,
if sites with maximum stable height in the starting configuration form an infinite cluster, we get
avalanches that do not stop. In this paper, we describe our unexpected finding of an interesting class
of backgrounds in two dimensions, that show an intermediate behavior: For any N , the avalanches
are finite, but the diameter of the pattern increases as Nα, for large N , with 1/2 < α ≤ 1. Different
values of α can be realized on different backgrounds, and the patterns still show proportionate
growth. The non-compact nature of growth simplifies their analysis significantly. We characterize
the asymptotic pattern exactly for one illustrative example with α = 1.

PACS numbers: 89.75.Kd, 45.70.Cc, 05.65.+b

I. INTRODUCTION

In the last two decades a large amount of study has
been devoted to understanding various models of self-
organized criticality, in particular, the Abelian Sandpile
Model (ASM) (see [1, 2] for reviews). These have mainly
dealt with the critical exponents of avalanches produced
in sandpiles driven slowly in their critical steady state.
But the ASM has other interesting properties, not di-
rectly related to its critical exponents. In particular, one
sees very interesting and beautiful spatial patterns when
many sand grains are added at a single point on an ini-
tially periodic background, and we relax the configura-
tion using the ASM toppling rules. One such pattern on
a square lattice is shown in Fig. 1.

Our interest in these patterns comes from several rea-
sons. Firstly, these are analytically tractable examples
of complex patterns that are obtained from simple de-
terministic evolution rules. Of course, there are many
known examples of complex patterns obtained this way
(e.g. Conway’s game of life [3]). But a detailed character-
ization of such patterns is usually not easy. The sandpile
patterns studied here are special, as they are nontriv-
ial, but of intermediate complexity, and are analytically
tractable.

Secondly, growing sandpiles studied here are qualita-
tively different from the growth models that have been
studied in physics literature earlier, such as the Eden
model, the diffusion limited aggregation, or the sur-
face deposition [4–6]. These are the simplest models of
proportionate growth, a well-known feature of biological
growth in animals, where different parts of a growing an-
imal grow at roughly the same rate, keeping their shape
almost the same. In the models of growth studied earlier,

growth is confined to some active outer region. The in-
ner structures, once formed are frozen, and do not evolve
further in time. This is not the case for the patterns
studied in this paper. Figure 1 shows two patterns pro-
duced on the same background but with different values
of the number N of grains added. As N increases, the
pattern grows in size, but we see that while some new de-
tails emerge near the center, the relative proportions of
different parts in the outer region of the pattern remains
unchanged. As the pattern grows, different features, not
only grow in size, but also are moved in space with time.

The third motivation for our study is some intriguing
connection of these to the mathematics of discrete ana-
lytic functions. We have not explored this much, but will
discuss briefly in an appendix.

There have been several earlier studies of the spatial
patterns in sandpile models. First of them was by Liu
et.al. [7]. The asymptotic shape of the boundaries of
the patterns produced in centrally seeded sandpile model
on different periodic backgrounds was discussed in [8].
Borgne et.al. [9] obtained bounds on the rate of growth of
these boundaries, and later these bounds were improved
by Fey et.al. [10] and Levine et.al. [11]. A detailed
analysis of different periodic structures found in the pat-
terns were first carried out by Ostojic [12] who also first
noted the exact quadratic nature of the toppling function
within a patch. Wilson et.al. [13] have developed a very
efficient algorithm to generate patterns for a large num-
bers of particles added, which allows them to generate
pictures of patterns with N up to 226.

Other special configurations in the Abelian sandpile
models, like the identity [9, 14, 15] or the stable state
produced from special unstable states, also show complex
internal self-similar structures [7], which share common
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FIG. 1. (Color online.) The stable configurations for the
Abelian sandpile model on a square lattice, obtained by
adding N grains at the origin. In the initial configuration
all heights are 2. For comparison the size of the first figure
has been enlarged by a factor 2. (Details can be seen in the
electronic version using zoom in).

features with the patterns studied here. In particular,
the identity configuration on the F-lattice has recently
been shown to have similar spatial structures [15].

There are other models, which are related to the
Abelian sandpile model, e.g., the Internal Diffusion-
Limited Aggregation (IDLA) [16], Eulerian walkers (also

called the rotor-router model) [17–19], and the infinitely-
divisible sandpile [11], which also show similar structure.
For the IDLA, Gravner and Quastel showed that the
asymptotic shape of the growth pattern is related to the
classical Stefan problem in hydrodynamics, and deter-
mined the exact radius of the pattern with a single point
source [20]. Levine and Peres have studied patterns with
multiple sources in these models, and proved the exis-
tence of a limit shape[21]. Limiting shapes for the non-
Abelian sandpile has recently been studied by Fey. et.al.
[22].

The standard square lattice produces complicated pat-
terns and it has not been possible to characterize them
fully, so far. In an earlier paper [23], we considered the
pattern produced on a F-lattice (Fig. 2(a)), and deter-
mined exactly the sizes of different patches in the asymp-
totic pattern. The pattern produced by adding grains at
one site on a background with a periodic chequerboard
pattern of alternate sites with heights 1 and 0, is shown
in the Fig. 2(b). In paper [24], we studied the patterns
when sink sites are present, or when addition is made at
more than one site. In paper [25], we have studied the
effect of noise on such patterns.

If the average initial height in a background is high, one
gets infinite avalanches, with the diameter of the pattern
becoming infinite for finite number of particles added.
Such backgrounds have been termed as ‘explosive’. In
other cases, the diameter of the pattern is finite for any
finite N , and increases as N1/d in d-dimensions. We call
such a growth as compact growth. All the patterns stud-
ied in [23–25] showed compact proportionate growth. In
this paper, we describe a remarkable class of patterns
where the diameter remains finite for any finite N , but
grows as Nα, with 1/2 < α ≤ 1. We call such growth as
non-compact proportionate growth. Characterization of
these patterns, as will be shown, is simpler than in the
compact case.

We found two classes of backgrounds, both infinite, on
a directed triangular lattice (see Fig. 4), for which the
growth is proportionate, with the growth exponent α =
1. Our numerical study shows, but we have no formal
proof, that different backgrounds belonging to the same
class produce the same asymptotic pattern. In addition,
we found infinitely many backgrounds on the F-lattice
which produce patterns with proportionate non-compact
growth. However, in these cases the growth exponent
α takes a different value, with 1/2 < α < 1 for each
member.

There are some earlier works on the growth rate of the
sandpile patterns. Different non-explosive backgrounds
for a DASM were studied in [10, 11, 26]. However, in all
these examples, studied so far, the growth of the patterns
is compact. For a DASM on a square lattice, it was
shown [26], that the pattern produced on a background
of constant height z ≤ zc − 2, is always enclosed inside a
square whose width grows as

√
N .

We also discuss the exact characterization of the pat-
tern shown in Fig. 11, one of the two asymptotic patterns
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FIG. 2. (Color online.) (a) A F-lattice with directed bonds,
and a chequerboard distribution of grains on it. Unfilled cir-
cles denote height z = 1 and filled ones z = 0. (b) The stable
configuration obtained by adding 105 grains at the origin.
Color code: red =0, white = 1. The apparent orange regions
in the picture represent the patches with checkerboard config-
uration. (Details can be seen in the electronic version using
zoom in.)

we have found with α = 1. This is described, as in the
earlier studied case of compact growth [23], in terms of
the scaled toppling function. However, the analysis of
non-compact patterns is actually simpler. Clearly, for
α > 1/d, the mean excess density of particles in the
toppled region is zero, for the asymptotic non-compact
growth patterns. The patterns are made of large re-

gions where the heights are periodic, and we call them as
patches. We find that, inside each patch, the mean den-
sity is exactly the same as in the background, and the ex-
cess grains are concentrated along the patch boundaries.
There are also some boundaries where excess grains den-
sity is negative. We show that this leads to the scaled
toppling function being a piece-wise linear function of the
rescaled coordinates. Thus, in each patch, the potential
function is specified by only 3 coefficients. In contrast,
for the compact patterns, the scaled toppling function is
a quadratic function of the coordinates in each patch [23],
and one has to determine 6 coefficients for each patch, to
determine the function fully.

We are able to reduce the problem of determining the
asymptotic pattern in Fig. 11 to that of finding the lat-
tice Green’s function on a hexagonal lattice. This is
known to be expressible as integrals that can be eval-
uated in closed form [27], and this leads to a full solution
of the problem. For the compact growth patterns studied
earlier on F-lattice [23, 24], we define a discrete analytic
function Fp(z), which is the discrete analogue of the an-
alytic function zp, for any rational value of p, and show
that the patterns can be characterized in terms of this
function.

The plan of this paper is as follows: In section II, we
discuss how different periodic background configurations
give rise to different rates of growth. In section III, we de-
scribe two classes of periodic background configurations
on a directed triangular lattice that give rise to patterns
which show proportionate growth with α = 1. In sec-
tion IV we argue that, for any pattern with non-compact
proportionate growth the rescaled toppling function is
piece-wise linear. In section V, we discuss exact char-
acterization of the simplest of the patterns with α = 1.
Patterns on the F-lattice, with 1/2 < α ≤ 1 are discussed
in section VI. Section VII contains some concluding re-
marks and a discussion about connection to tropical poly-
nomials. An appendix describes how the characterization
of these patterns involves the theory of discrete analytic
functions defined on many-sheeted discretized Riemann
surfaces.

II. THE COMPACT AND NON-COMPACT
GROWTH PATTERNS

The simplest growing patterns are found in the Manna-
type sandpile models with stochastic toppling rules [28].
In these models, when the density of particles ρo in the
background is small, the avalanches are always finite. In
the relaxed configuration, the toppled sites form a nearly
circular region (see Fig. 3). The asymptotic pattern
seems to be perfectly circular disc of uniform density,
with an average density ρ? inside the circle and ρo out-
side. The value of ρ? is independent of the background
density ρo, and is equal to the unique steady state density
of the corresponding self organized critical model with
random sites of addition, and dissipation at the bound-
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FIG. 3. The pattern produced by adding N = 105 grains at a
single site on a stochastic ASM defined on an infinite square
lattice, and relaxing the configuration. The initial configura-
tion has all sites empty. The threshold height zc = 2, and
on toppling two grains are transfered either to the vertical
or horizontal neighbors, with equal probability. Color code:
White=0, and Black=1.

ary [28]. The region inside the circle forgets about the
initial height configuration, and is in the self-organized
critical state. The boundary of the affected region is thin
with a sharp transition of density from ρ? to ρo. Then
considering that, for large N , all the added grains are
confined inside the circular region of diameter 2Λ, we get

N = (ρ? − ρo)πΛ2 + Lower order in Λ. (1)

Thus the pattern has a compact growth.
For densities ρo close to, but below ρ?, sometimes a

single particle addition can lead to very large increase in
the size of the toppled region. However, probability of
such large jumps decreases exponentially with size, and
for any finite N , with probability 1, avalanches remain
finite. As long as ρo is less than ρ?, the system relaxes,
forming a pattern whose diameter grows as

√
N . Adding

a single grain on a background of super-critical density
(ρ > ρ?) gives rise to infinite avalanches, with non-zero
probability. Then, with probability 1, such backgrounds
will lead to an infinite avalanche for some finite value
of N . In higher dimensions also, a similar behavior is
expected.

In the models with deterministic relaxation rules there
is no simple quantifier like critical density ρ?, separating
the explosive and non-explosive backgrounds. Whether
the periodic or random background is explosive or not de-
pends in a complicated way on the built-in height correla-
tions. For example consider the BTW model on a square
lattice, where the steady state density ρ? = 17/8 = 2.125
[28]. It has been shown that a background with a ran-
dom assignment of height 3 with probability ε, on a sea

FIG. 4. A directed triangular lattice.

of constant height 2 is explosive, even for arbitrary small
value of ε [26], although the average density ρo = 2 + ε is
much less than ρ?. On the other hand, it is also possible
to construct a robust periodic background with density
arbitrarily close to maximum stable height 3 [26].

We will show that there is a large class of backgrounds,
with a range of densities, for which the growth is less than
explosive, but more than compact.

III. EXAMPLES OF NON-COMPACT GROWTH

We first discuss the patterns with α = 1. We start with
a ASM on a directed graph corresponding to an infinite
two dimensional triangular lattice, with each site having
three incoming and three outgoing arrows (see Fig. 4).
The threshold height zc = 3, for each site. If the height
at any site is above or equal to zc, it is unstable, and
relaxes by toppling: in each toppling, three sand grains
leave the unstable site, and are transferred one each along
the directed bonds going out of the site.

We consider two classes of backgrounds on this lattice:

Class I: We consider the lattice as made of trian-
gular plaquettes, which are joined together to make
tiles in the shape of regular hexagons with edges of
length l. We cover the two-dimensional plane with
these tiles. Sites that lie on the boundaries of these
hexagons are assigned height 1, and the rest of the
sites have height 2. Figure 5(a) shows the back-
ground configuration for the case l = 2.

Class II: For these backgrounds, we cover the two-
dimensional plane with tiles in the shape of equilat-
eral triangles of edge-length l. The sites that lie on
the boundaries of the triangles, and are shared by



5

FIG. 5. Examples of backgrounds of class I and II, respec-
tively. The filled circles represent height 1 and unfilled ones
height 2.

two triangles, are assigned height 1, and remain-
ing sites are assigned height 2. Sites that are at
the corners of triangular tiles, and shared by six of
them, are also assigned heights 2. The background
configuration corresponding to l = 4 is shown in
figure 5(b). The pattern made of triangular tiles
with l = 3 is same as the class I background with
hexagon of edge-length 1. Hence, only patterns
formed with triangles of edge-length l ≥ 4 will be
said to be in this class.

The patterns produced by adding N grains, where N
is large, at a single site on the two backgrounds in Fig.
5 are shown in Fig. 6 and 7. While the patterns look
quite similar, a closer examination shows that they are
not identical. In Fig. 7, there are extra lines of particles

FIG. 6. (Color online.) The class I pattern, formed by adding
N = 500 particles at the origin on the first background shown
in Fig. 5. The apparent uniform green color of the back-
ground is actually a periodic structure. Details can be viewed
in the electronic version using zoom in.

FIG. 7. (Color online.) The class II pattern, formed by adding
N = 500 particles at the origin on the second background in
Fig. 5. The apparent uniform green color of background is
actually a periodic structure. Details can be viewed in the
electronic version using zoom in.
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FIG. 8. The patterns in terms of Q (r), corresponding to
those in Fig. 6 and 7. Sites with zero Q (r) are colored white,
and non-zero are colored black. The larger patches are given
identifying labels.

within the brownish patches which break each patch into
smaller parts. In fact, with the identification of some
patches having only a point in common, as discussed
later, we can show that each patch breaks into exactly
three patches. These three parts have similar periodic
pattern, but with different orientations.

FIG. 9. (Color online.) The diameter 2Λ of the patterns as a
function of the number N of added grains. The cases shown
are (i) Class I, l = 1, (ii) Class I, l = 2, and (iii) Class II ,
l = 4. The corresponding straight line fits have slopes given
by 1.1, 2.7 and 1.7 respectively.

This differences can be seen more clearly in terms of the
net excess change in heightQ (R) in a unit cell centered at
R, where the unit cell is that of the background pattern.

Q (R) =
∑

R′∈unit cell

∆z(R+R′), (2)

where ∆z (R) is the change in height at site R. For ex-
ample in the first background in Fig. 5 a unit cell is a
hexagon of edge length l = 2, and for the second back-
ground it is a parallelogram of each side length l = 4. A
site that is on the edge of the unit cell is counted with
weight 1/2, and a site on the corner of the hexagon with
weight 1/3, and on the corner of the parallelogram with
weight 1/4. By construction, the function Q (r) is zero
inside each patch, and non-zero along the boundaries be-
tween patches. The patterns in terms of these variables,
corresponding to those in Fig. 6 and 7 are shown in Fig.
8.

We have seen that the patterns on these two classes of
backgrounds exhibit proportionate growth, i.e., all the
spatial features inside the patterns for large N , grow at
the same rate with the diameter. We define the diameter
2Λ, in general, for any pattern in this paper, as the height
of the smallest rectangle containing it. For the patterns
in Fig. 6 and Fig. 7, it is then the length of a side of
the bounding equilateral triangle. This particular choice
makes 2Λ as an integer multiple of

√
3, on the triangular

lattice. We find that for both types of backgrounds in
Fig. 5, the diameter of the pattern grows linearly with
N (Fig. 9).
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IV. PIECE-WISE LINEARITY OF THE
TOPPLING FUNCTION.

Considering the proportionate growth, let us define a

rescaled coordinate ~r = ~R/Nα, where ~R ≡ (x, y) is the
position vector of a site on the lattice. The number of
topplings at any site inside the pattern, scales linearly
with N . Let us define

φ (~r) = lim
N→∞

TN (~R)

N
. (3)

We now show, using an extension of the argument given
in [23], that the function φ is linear inside periodic
patches in all the patterns with non-compact growth,
i.e., with α > 1/2. Within a patch, the function φ(~r)
is expandable in Taylor series around any point ~ro, not
on the boundary of the patch. Defining ~ro ≡ (ξo, ηo), and
∆~ro ≡ (∆ξ,∆η) we have

φ (ξo+∆ξ, ηo + ∆η)− φ (ξo, ηo)

= d∆ξ + e∆η +O
(
∆ξ2,∆η2,∆ξ∆η

)
. (4)

Consider any term of order ≥ 2 in the expansion, for
example, the term ∼ (∆ξ)2. This can only arise due to

a term ∼ (∆x)2N1−2α in the toppling function TN (~R).

Then, considering the fact that TN (~R) is an integer func-
tion of x and y, it is easy to see that this term would

lead to discontinuous changes in TN (~R) at intervals of
∆x ∼ O(Nα−1/2). As α > 1/2 for non-compact growth
patterns, this leads to a change in the periodicity of
heights at such intervals inside each patch which them-
selves are of size ∼ Nα. This would then result in many
defect lines within a patch, in the pattern at large N .
However there are no such features in Fig. 11. Therefore
inside each periodic patch, φ(~r) must be exactly linear in
~r. In fact, it turns out that the integer toppling function

TN (~R) is exactly linear inside a patch even for any finite
N , except for an additional periodic term of periodicity
equal to that of the heights inside the patch.

Another consequence of the exact linearity of the po-
tential function in each patch is that all patch boundaries
in the asymptotic pattern are straight lines.

The argument finally relies on the two observed (not
rigorously established) features of the patterns, i.e., there
is proportionate growth, and that the patterns can be de-
composed in terms of periodic patches which are them-
selves of size O (Nα).

Let us write the toppling function TN (~R) within a sin-
gle patch P as

TN (~R) = AP + ~KP · ~R+ Tperiodic(~R), (5)

where Tperiodic(~R) is a periodic function of its argument
with zero mean value. If ê1 and ê2 are the basis vectors
at the unit cell of the periodic pattern then we have

TN (~R+ ê1)− TN (~R) = ~KP · ê1,
TN (~R+ ê2)− TN (~R) = ~KP · ê2. (6)

As TN (~R) are integer valued functions, ~KP · ê1 and
~KP · ê2 can only take integer values. If ĝ1 and ĝ2 are the
unit vectors in the reciprocal space of the super lattice of
the periodic pattern,

ĝi · êj = δij i, j = 1, 2, (7)

then ~KP must be an integer linear combination of ĝ1 and
ĝ2, and can be written as

~KP = n1ĝ1 + n2ĝ2, (8)

where n1 and n2 are some integers. For example, in the
background pattern in Fig. 10, a choice of the basis vec-
tors and its reciprocal vectors is

ê1 ≡

(
3

2
,

√
3

2

)
; ê2 ≡

(
3

2
,−
√

3

2

)

ĝ1 ≡
2

3

(
−1

2
,−
√

3

2

)
; ĝ2 ≡

2

3

(
−1

2
,

√
3

2

)
. (9)

The fact that K
P

is constant inside a patch, implies that
the patches can be labeled by the pair of integers (n1, n2).

An interesting consequence of this linear dependence

of TN (~R) is that there are no transient structures within
the patches. On increasing N , if the A

P
function in-

creases, all sites in the patch P , except possibly those
at the patch boundaries, undergo same number of addi-
tional topplings.

V. CHARACTERIZING THE CLASS I
ASYMPTOTIC PATTERNS

We now discuss characterization of the asymptotic pat-
tern of class I, showing α = 1. In this section we quanti-
tatively characterize the asymptotic pattern for the case
l = 1. The background configuration is shown in Fig. 10.
A site on the triangular lattice can be labeled uniquely
by a pair of integers (p, q), such that its position on a
complex plane can be written as R = p + qω, where
ω = exp (i2π/3) is a complex cube root of unity. Then,
the height variables in the background pattern in Fig.
10, can be written as

h(p+ qω) = 2 if p+ q = 0 (mod 3),

= 1 otherwise. (10)

The average height in the background, 〈z〉 = 4/3. The
configuration of the pile produced on this background,
by adding N = 3760 grains at the origin is shown in Fig.
11.

We see that the sites toppled due to addition of the
grains are confined within an equilateral triangle. The
pattern can be thought of as a union of patches, inside
which the heights are periodic. A zoom-in showing the
height configuration with five patches meeting at a point
is shown in Fig. 12. There are only two types of periodic
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FIG. 10. The background of class I corresponding to l = 1.
The filled circles represent height z = 1 and unfilled ones
z = 2.

FIG. 11. (Color online.) The pattern produced by adding
N = 3760 grains at a single site on the background in Fig.
10, and relaxing. Details can be seen in the online version
using zoom-in

patches seen: one is like the background, where the sites
of height 2 are surrounded by sites of height 1, and the
other with heights 0 surrounded by heights 2. Then, the
average height 〈z〉 inside both types of patches are same.
In fact, it is equal to that of the background, 〈z〉 = 4/3.

The patches in the outer region of the pattern are
big, and they become smaller, and more numerous as

FIG. 12. (Color online.) An example of patch boundaries
in Fig. 11 meeting each other. Each filled hexagon repre-
sents Wigner cell around a site, and the color in them denotes
height of that site. The color code is same as in Fig. 11.

we go inwards. Along the common boundary of adja-
cent patches, we see line-like defect structures, and only
along these lines the density is different from the back-
ground. In Fig. 12, one can also see the periodicity of
the structures along the patch boundaries. Some patch
boundaries, like the horizontal boundary in Fig. 12, have
a deficit of particles compared to the background.

The boundaries of the patches are seen more clearly in
terms of Q(R) variables, as shown in figure 8(a), where
we have labelled different patches as A,A′,B,B′... etc..

The dependence of 2Λ on N for this background is
shown in Fig. 9. We see that the diameter for the pattern
grows asymptotically linearly with N , but it grows in
bursts: it remains constant for a long interval as more
and more grains are added, and suddenly increases by a
large amount at certain values ofN . For example, atN =
3721, the 2Λ is 2276

√
3, and it jumps to a value 2408

√
3

when one more grain is added. Let Jmax(Nm) denote
the size of the maximum jump in 2Λ encountered, as N
is varied from 1 to Nm. In Fig. 13, we have plotted the
variation of Jmax(Nm) with Nm. The graph is consistent
with a power-law growth, with a power around 1/2. Thus
the fractional size of the bursts decreases for large N .

We define scaled complex coordinates r = R/N , where
R = p + qω is the complex coordinate of the site (p, q).
We define the rescaled toppling function for this pattern
as

φ (r) = lim
N→∞

√
3TN (rN)

2N
. (11)

Then it is easy to see that ∇φ = (∂ξφ, ∂ηφ) is equal to
the mean flux of particles at r. If we consider a small
line element dl ≡ (dξ, dη), then the net flux of particles
across the line dl equals N∇φ·dl. Then, the conservation
of sand grains implies that the toppling function TN (R)
satisfies the equation

∇2
◦TN (R) = δz (R)−Nδ (R) , (12)

where ∇2
◦ is the finite-difference operator on the lattice,

corresponding to the Laplacian ∇2. It is easy to see that
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FIG. 13. Jmax(N) for the background in Fig. 10 has a square
root dependence on N with a fitting function 3.25

√
x.

.

FIG. 14. The 1/R̄ transformation of the pattern in Fig. 11,
where R is the complex conjugate of R. Labels are the same
as used in Fig. 8(a).

this implies that the scaled potential function φ satisfies
the Poisson equation

∇2φ (r) = ∆ρ (r)− δ (r) , (13)

where ∆ρ (r) is the areal density of excess grains at r. It
is related to 〈∆z (r)〉, the mean excess grain density per
site by

∆ρ (r) =
2√
3
〈∆z (r)〉. (14)

The piece-wise linearity of φ simplifies the analysis of
the pattern, significantly. The potential function can be
characterized by only three parameters. Using Eq. (8),
(9) and (11), for each patch P , we can find a pair of in-

FIG. 15. The adjacency graph of patches in the pattern in Fig.
11. The vertices corresponding to the brownish and greenish
patches in the pattern are denoted by different colors. The
pair of patches labeled by the alphabets and its corresponding
primed alphabets in Fig. 8(a) are represented by same vertex
on the graph.

tegers (m,n) such that the potential in patch P is char-
acterized by

φ (r) = − 1

2
√

3

(
Dm,nr + Dm,nr

)
+ fm,n, (15)

where

Dm,n = m+ nω, (16)

and fm,n is a real number, constant everywhere inside
the patch. Here z denotes the complex conjugate of z.

Each patch is characterized by a complex number Dm,n

which is the coefficient in the potential function φ (r)
of the patch. In the complex D-plane, each patch with
labels as in Fig. 8(a) can then be represented by a point.
We connect two patches by a line if they share a common
boundary. Then the resulting figure, shown in Fig. 15,
is the adjacency graph of the patches.

We can determine the connectivity structure of this
graph, without knowing the full potential function in
each patch. We first take 1/R̄ transformation of the
pattern. This is shown in Fig. 14. Some of the big-
ger patches are denoted by capital alphabets in Fig. 8(a)
and their corresponding patches on the transformed pat-
tern in Fig. 14. The patches A and A′ in Fig. 8(a) are
adjacent to the outer region O through the same verti-
cal boundary. Matching the values of the function φ(r)
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and fixing the discontinuity in its normal derivatives at
the boundary, it is easy to see that φ(r) has the same
functional form in the patches A and A′. In fact, it is
convenient to imagine that the boundary between O and
A moved to the right by an infinitesimal amount, so that
it does not touch the patches D and I′, and then A and
A′ would actually join to form a single connected patch
A. We thus consider A and A′ as one patch, and both
can be represented as one point on the D-plane. Sim-
ilarly, we identify B and B′, C and C′, etc. Then the
adjacency graph can be constructed by joining the sites
on the D-plane, according to the adjacency of patches in
Fig. 14.

It turns out that the patches corresponding to m+n =
2 (mod3) do not appear in the pattern, and the adja-
cency graph, as shown in Fig. 15, is a hexagonal lattice
with some extra edges shown in brown color. These extra
edges connect all the vertices at same distance from the
origin (0, 0) (in the L1 metric), and also connect some of
the diagonally opposite sites on the rectangular faces of
the graph as shown in figure.

The charge density ∆ρ (r) is zero inside the patches,
and the excess grains due to addition are distributed
along the patch boundaries, leading to nonzero line
charge densities separating neighboring patches. Then
the density function ∆ρ (r) is a superposition of the line
charge densities along the patch boundaries. There are
three kinds of line charges of charge density λ = −1/

√
3,

1, and 2/
√

3.
From the electrostatic analogy, it is seen that φ (r) is

continuous across the common boundary between neigh-
boring patches, and its normal derivative is discontinuous
by an amount equal to the line charge density λ along the
boundary. Let P and P ′ be the two neighboring patches
with the equation of the boundary between them

r = |r| exp (iθ) + A, (17)

such that the patch P ′ is on the left of the boundary.
Then using the continuity condition, it is easy to show
that

Dp′ −Dp = iλ
√

3 exp (iθ) and

fp′ − fp = Re[A (Dp′ −Dp)]/
√

3, (18)

where A is the complex conjugate of A. We note that,
there are only six different types of patch boundaries in
the pattern, with angle θ an integer multiple of π/6.

It is easy to check that the matching conditions along
the edges of hexagonal lattice (denoted by blue solid line
in Fig. 15) are sufficient to determine Dm,n for all the

vertices. The line charge density λ = −1/
√

3 for the
patch boundaries corresponding to these edges. Also, the
potential function φ = 0, for the vertex at the origin, and
hence, D and f both vanishes. Then using the matching
condition, it is easy to check that, the values of Dm,n are
consistent with the form in Eq. (16).

The function fm,n satisfies the discrete Laplace’s equa-
tion on the underlying hexagonal lattice of the adjacency
graph i.e.

∑
m′,n′

fm′,n′ − 3fm,n = 0 for (m,n) 6= 0, (19)

where (m′, n′) denotes the three neighbors of the vertex
(m,n) on the hexagonal lattice. This can be checked
from the concurrency condition of patch boundaries. For
example consider the edges OA, DA′ and I′A on the
adjacency graph. The corresponding patch boundaries
in the pattern intersect at the same point (Fig. 8(a)).
Then it is easy to check using the matching condition in
Eq.(18) that,

fO + fD + fI = 3fA. (20)

Similar equations hold for the other vertices.

In the region outside the pattern, where none of the
sites toppled, the potential function φ (z) = 0. This cor-
responds to m = n = 0, and f0,0 = 0. The solution of
the Laplace’s equation with the above boundary condi-
tion can be written in the following integral form [27]

fm,n =
I

4π2

∫ π

−π

∫ π

−π

1− cos (k1(2m− n)/3 + k2n)

1− (cos 2k2 + 2 cos k1 cos k2) /3
dk1dk2, for m+ n = 0 (mod 3), (21)

where I is a normalizing constant, which determines the
pattern up to a scale factor. For the sites with m+n = 1
(mod 3), fm,n are the average of those corresponding
to the neighboring sites. As an example the potential

function in region A, and C′ is

φ
A

(r) =
I

3
− ξ√

3
, (22)

φ
C′ (r) =

I

3
+

1√
3

(
1

2
ξ +

√
3

2
η

)
, (23)
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where r = ξ + iη, and i =
√
−1. Then the equation of

the patch boundary between patches A and O is

ξ = I/
√

3, (24)

and that of the boundary between patches C′ and O is
√

3ξ + 3η + 2I = 0. (25)

Equivalently, the length of an edge of the bounding equi-
lateral triangle of the pattern is equal to 2IN , for large
N .

The constant I in Eq. (21) can be calculated using
the form of the potential function near the site of addi-
tion. As noted, the function φ can be considered as the
potential due to line charges along the patch boundaries
and a point charge of unit amount at the origin. Then,
close to the origin the solution diverges logarithmically

as φ̃ (r) = − (2π)
−1

log (|r|), and the potential function
is an approximation to this solution by a piece-wise lin-
ear function. Then, there are coordinates ro inside each
patch (m,n) with |m| + |n| large, where the φ and its

first derivatives are equal to φ̃ and its first derivatives,
respectively. Then,

2
√

3
∂

∂r
φ̃ (r) |ro ' −Dm,n and

− 1

2
√

3

{
Dm,nro + Dm,nro

}
+ fm,n ' −

1

2π
log (|ro|) .

(26)

The above two equations imply

fm,n '
1

2π
log (|m+ nω|) , (27)

for |m| + |n| large. Comparing it with the Eq. (21) for
large |m| + |n| we find that the numerical constant I =

1/
√

3. This determines the potential function completely,
and thus characterizes the pattern. For example, as in
figure 8(a), the equation of the rightmost boundary of
the pattern, using Eq. (24) is x = N/3. Equations of
other boundaries of patches can be calculated similarly.
For example, the reduced coordinates of the point where
the patches D and D′ meet in Fig. 8(a), is determined
by the condition that it is a common point of patches D,
J and A′, and that the function φ is continuous.

f1,0 −
1√
3
ξ = f2,1 −

1√
3

(
3

2
ξ +

√
3

2
η

)

= f3,1 −
1√
3

(
5

2
ξ +

√
3

2
η

)
. (28)

Then using the values f1,0 = 1/3
√

3, f2,1 = 1/2
√

3, and

f3,1 = 7/6
√

3 − 1/π [27] we get the reduced coordinates
of this point as

(ξ, η) =

(
2

3
−
√

3

π
,− 1

3
√

3
+

1

π

)
. (29)

FIG. 16. The discrepancy 2∆Λ between the actual height of
bounding triangle, and the asymptotic value 2N/

√
3 plotted

as a function of N . The straight line shows a simple power-law
fit with power 3/4.

Equivalently, the height of the bounding equilateral
triangle increases as 2N/

√
3 ' 1.154N . The estimated

slope of the fitting line in Fig. 9 is 1.1, in reasonable
agreement with the theory. However, even though the
exact function Λ(N) has large fluctuations of number
theoretic origin, the estimated slope is noticeably lower
than the calculated asymptotic value. To examine this
discrepancy closer, we have plotted in Fig. 16 the dis-
crepancy 2∆Λ = 2N/

√
3 − 2Λ(N) as a function of N .

We find that this appears to increase with N as N3/4,
for large N . The reason for this behavior is not under-
stood yet.

For backgrounds, with l > 1, our numerical results sug-
gest that there is a crossover length R?(l), and initially,
for R < R?(l), the avalanches grow “explosively” in size.
As a result, the number of particles inside a disc of ra-
dius R? in the final pattern is less than that in the initial
background. The net flux of particles going out of the
disc increases with R until the radius becomes of order
R?. After this, the large-scale properties of the pattern
are the same as that of l = 1 pattern, with the num-
ber of particles added A`N , where A` is an `-dependent
constant. In particular, the size of the pattern is A` -
times the size of the pattern for l = 1 with same N . The
crossover length R? is expected to grows as

√
N .

For a background with ` > 1, the basis vectors at the
unit cell are `ê1 and `ê2, where ê1, ê2 are the basis vectors
for ` = 1 background (see Eq. (9)). Then the recipro-
cal basis vectors are ĝ1/` and ĝ2/`. From the observed
patterns, we find that the line charge densities remain
same for any ` (see Fig. 17 for an example of the patch
boundaries). This implies that n1 and n2 in eq. (8)
are constrained to be multiples of l. Writing n1 = lm,
n2 = ln, we see that the patches can be labeled by the
same pair of integers (m,n) as in the ` = 1 case, and the
potential function φ(l) (r) for general l is related to the
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FIG. 17. An example of five patches meeting at a point, for
a pattern on the background of Class I, ` = 2. It is easy to
check that the line charge density for the vertical boundary
λ = −1/

√
3, same as in Fig. 12. The color code is same as in

Fig. 11.

l = 1 case by simple scaling:

φ(`) (r) = A`φ(1)

(
r

A`

)
, (30)

where A` is a scale factor. For ` = 2, 3, 4 and 5 the
values of A` are approximately 2.34, 3.38, 4.41 and 5.37,
respectively. We note that A` increases approximately
linearly with `.

VI. NON-COMPACT PATTERNS WITH
EXPONENT α < 1

On the F-lattice, after some experimentation, we found
that the background pattern having the periodicity of the
tiling of plane with tilted rectangles, shown in Fig. 18,
produces patterns with interesting non-compact growth.
We studied rectangles with aspect ratio l : (l+1), and the
rectangles are tilted by 45◦ to the x-axis. Two such pe-
riodic backgrounds are shown in Fig. 19. In these back-
ground patterns, the sites with height zero, are arranged
along the boundaries of tilted rectangles with two pos-
sible orientations, and rest of the sites have height one.
The stable height-patterns generated by adding N par-
ticles and relaxing the configuration on these two back-
grounds are shown in Fig. 20 and Fig. 21, respectively.
The growing boundaries of the patches in the patterns
are shown, in terms of the Q variables, in Fig. 22 and
23, respectively. Again, we see that the patch boundaries
are straight lines, with rational slopes. The plot of diam-
eter 2Λ vs N, for these two patterns are shown in Fig. 24.
We see that the growth exponent α is approximately 0.6
for figure 20 and 0.725 for figure 21. In general, value of
the exponent α is in range 1/2 < α < 1, and approaches

FIG. 18. A schematic representation of the periodic tiling
of the plane using tilted rectangles. Background height pat-
terns with such periodicities on the F-lattice give rise to non-
compact growth with the growth-exponent between 1/2 and
1

value 1 as density ρo of the background becomes close to
1.

There are unresolved areas of apparent solid color in
the patterns, taking up a sizable fraction of the total area,
e.g., two large regions of red color on both sides of Fig.
22. In these regions, the pattern appears to be complex,
suggesting either a large number of patch boundaries, or
patches of non-zero areal excess charge density. However,
the fractional area of these regions decreases with larger
N . Also on comparing patterns with different l, we have
seen that the fractional area of such regions decreases as l
increases. A more detailed study of these patterns seems
like an interesting problem for future investigations.

VII. SUMMARY AND CONCLUDING
REMARKS

In this paper, we have studied two dimensional pat-
terns formed in Abelian sandpile models by adding par-
ticles at one site on an initial periodic background, where
the diameter of the pattern grows as Nα, with α > 1/2.
Using some features observed in the pattern of adjacency
of patches as an input, we are able to determine the exact
asymptotic pattern in the specific case with α = 1, on a
class I background.

The patterns on class II backgrounds can also be char-
acterized similarly. As noted earlier, some of the patches
split into smaller parts. By using the 1/R transforma-
tion, we can again determine the structure of the adja-
cency graph. The graph for the pattern in Fig. 8(b) is
shown in Fig. 25. It is a periodic lattice where half of
the vertices of the hexagonal lattice are replaced by 3 ver-
tices (colored in brown). The exact D-values for different
patches can be easily determined. The determination of
fm,n for this pattern then requires the solution of the
Laplace’s equation on this graph. It can be shown that
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FIG. 19. The two backgrounds studied on the F-lattice. Unit
cells of the periodic distribution of particles are shown by gray
rectangular shades. The filled circles represent height 0 and
unfilled ones 1.

a slight alteration of the graph, by drawing the missing
edges in the small triangles shown in pink colors, does not
change the pattern. Then the solution of the Laplace’s
equation can be reduced to the solution of a resistor net-
work on this modified graph. The later can be further
reduced to the resistor network on a hexagonal lattice,
discussed by Atkinson et.al. [27], using the well-known
Y − ∆ transformation. We omit details of the analysis
here.

An important feature of the non-compact patterns is
that, it can be characterized by a piece-wise linear func-
tion. This characterization is simpler than that of the
patterns with compact growth, where one requires piece-
wise quadratic polynomials. We have shown that there
are infinitely many backgrounds, on which the patterns
have non-compact growth. It would be desirable to de-
termine the exact value of α for different backgrounds
showing non-compact growth studied in Sec. VI.

Another interesting question is a possible connection of
this problem to tropical algebra [29]. In tropical math-
ematics, one defines operations similar to ‘addition’ and
‘multiplication’ (denoted by ⊕ and ⊗ here) by

a⊕ b = max {a, b} ,
a⊗ b = a+ b, (31)

where a, b are real parameters. Familiar properties of ad-
dition and multiplication operators, like commutativity,
associativity, existence of identity, distributive property
continues to hold in the new definition. One can then
define polynomials in several variables. The graph of a
tropical polynomial is a piecewise linear function which is
also convex. For example, consider the tropical function

f(x) = a⊗ x2 ⊕ b⊗ x⊕ c. (32)

In terms of standard algebra

f(x) = max {a+ 2x, bx, c} . (33)

The graph corresponding to this function is shown in Fig.
26

We note that for the pattern discussed in section 4, the
potential function is piece-wise linear. It seems plausible
that tropical polynomials may be useful to describe this
function. In fact, tropical geometry have been discussed
as possibly related to sandpile models [30, 31]. For small
values of N , our numerical study showed that φ is con-
vex, if restricted to one sextant. However, for larger N ,
as shown in Fig. 27, we see that φ is not convex even
within one sextant. We conclude that it is not possible
to represent the potential φ as a simple tropical polyno-
mial.
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Appendix: Relation to the theory of discrete
analytic functions

The sandpile patterns we studied are characterized in
terms of discrete analytic functions (DAF) on different
discretizations of the complex plane. For the pattern
in Fig. 11, it is the DAF on a hexagonal lattice, which
increases logarithmically at large distances as in Eq. (27).

Studies of DAF started with the work of Kirchhoff on
resistor networks [32–34], and has been studied subse-
quently by many others [35, 36]. However, we have not
encountered any work on DAF on many sheeted Riemann
surfaces. In the following we present a way to determine
DAF on a square discretization of Riemann surfaces.
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FIG. 20. The pattern produced on the first background in Fig. 19, by adding N = 2200 grains at a single site, and relaxing
the configuration. Color code: White= 1 and Black= 0. Details can be viewed in the electronic version using zoom in.

FIG. 21. The pattern produced on the second background in Fig. 19 by adding N = 600 grains at a single site, and relaxing
the configuration. Color code: White= 1 and Black= 0. Details can be viewed in the electronic version using zoom in.
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FIG. 22. The pattern in terms of Q(r), showing the bound-
aries of patches corresponding to Fig. 20. Color code:
White= 0 and Red=Non-zero. Details can be viewed in the
electronic version using zoom in.

FIG. 23. The pattern in terms of Q(r), showing the bound-
aries of patches corresponding to Fig. 21. Color code:
White= 0 and Red=Non-zero. Details can be viewed in the
electronic version using zoom in.

Consider a square grid of points z = mε + inε, where
m,n are integers and ε is the lattice spacing. Let
f (mε, nε) be a complex function defined at every site on
the grid. The function f is defined to be discrete analytic
[37] if it satisfies the discrete Cauchy Riemann condition

f (z3)− f (z1)

z3 − z1
=
f (z4)− f (z2)

z4 − z2
, (A.1)

at all elementary squares on the grid as shown in Fig. 28.
In complex analysis, simple examples of analytic func-

tions are zn, and any polynomial of zn is also analytic.
For DAF, it is clear, using the linearity of equation (A.1),
that sum of DAF is also discrete analytic. However, not
all positive integer powers of z are discrete analytic. It

FIG. 24. The change in diameter as a function of N , for the
patterns on the two backgrounds in Fig. 19. The numerical
results fit well with straight lines of slope 0.6 and 0.725, for
the backgrounds one and two, respectively.

FIG. 25. The adjacency graph of the patches in the pattern
in Fig. 8(b). The vertices corresponding to the brownish
and greenish patches in the pattern (Fig.7) are denoted by
different colors.

is easy to check that the functions 1, z, z2, z3 are dis-
crete analytic, but z4 is not. We can however construct
polynomial functions of Re(z) and Im(z), that are dis-
crete analytic. Two such examples are z4 − zzε2 and
z5 − 5z2zε2/2.

We define a function Fn(z, ε) as a homogeneous poly-
nomial in z, z and ε, of degree n, which is a DAF. Using
homogeneity, we have

Fn(z, ε) = anFn(
z

a
,
ε

a
), (A.2)
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FIG. 26. Graph corresponding to the tropical function in
equation (32)

FIG. 27. (Color online.) Three dimension plot of the integer
toppling function TN (x, y) for a triangular pattern like in Fig.
11, but with N = 800. The plot shows a zoomed-in section
in the region y ≥ 0 and y +

√
3x ≥ 0.

and then using a = ε, we can express Fn(z, ε) in terms
of Fn(z, 1). This fixes Fn(z, ε) up to a multiplicative
constant. The normalization is fixed by requiring that
as ε tends to zero, Fn (z, ε) → zn. Then using Cauchy
Riemann conditions it is easily seen that Fn(z, ε), for all
integers n ≥ 0, has a series expansion in ε2 of the form

Fn(z, ε) = zn
[
1 +

ε2

z2
g
(n)
1 (

z

z
) +

1

2!

ε4

z4
g
(n)
2 (

z

z
) + · · ·

]
,

(A.3)

FIG. 28. A square grid on the complex plane.

where

g
(n)
1 (x) = − 1

n− 3

(
n

4

)
x, (A.4)

g
(n)
2 (x) =

7!

(4!)2
1

n− 6

(
n

7

)
x2, (A.5)

g
(n)
3 (x) = − 10!

(4!)3
1

n− 9

(
n

10

)
x3 − 27

n− 7

(
n

8

)
x,

(A.6)

and so on. For an integer n, this series will terminate
after a finite number of terms, and all of them can be
determined iteratively.

It is possible to analytically continue the functions for
rational values of n. For example,

g
(n)
1 (x) = − Γ(n+ 1)

4!Γ(n− 2)
x. (A.7)

Then, this analytic continuation of Fn(z, ε) provides us
the discrete analytic functions which in the limit |z| →
∞ grows as zn, for any real positive values of n. It is
interesting to note that the function Dm,n, used in [23] to
characterize the pattern in Fig. 2(b), is equal to F1/2(z =
m + in, ε = 1), up to a multiplicative constant. The
patterns in the presence of a line of sinks, or near wedges
studied in [24] involve other rational values. For example,
for the pattern near a line sink, one requires the function
F1/3(z, 1).
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