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ASYMPTOTIC ENUMERATION OF PARTIALLY
ORDERED SETS

DEEPAK DHAR

We define the entropy function S(p) = Limn-oo2n~2lnN(n, p),
where N(n, o) is the number of distinct partial order relations
which may be defined on a set of n elements such that a
fraction p of the possible n{n —1)/2 pairs are comparable. We
derive upper bounds to S(p) to show that S(p)<(l/2) In 2 if
p>.699.

I* Introduction* In an earlier paper [1, hereafter referred to
as I] we have studied the asymptotic enumeration of partial order
relations defined over a set of n distinct objects, subject to a con-
straint that a given fraction p of the n(n — l)/2 pairs are com-
parable. Let this number be denoted by N(n, p). We showed that
N(n, p) increases as an exponential of n2 for large n (except in the
trivial cases when p is either zero or one), and defined a function
S(p) by the equation

(1) S(ρ) = Lim 2n~2 In N(n, p) .

This function S(p) may be called the entropy function as it is re-
lated to the thermodynamic entropy of a lattice-gas with a long-
range three-body interaction. For details of this equivalence, the
reader is referred to I.

Using upper and lower bounds on S(p), we showed that S(p) is
a continuous function of p for the allowed range of p, 0 5g p <ί 1.
It is, however, not an analytic function of p. It was proved that

(2) SO*) = i-In 2 if - f s ^ - l
Δ 4 o

and

( 3 ) S(p) < —In 2 , if p ^ .083 or if p ^ 48/49 .
Δ

The equality in (2) could be proved, because in this range of p,
we derived a lower bound to S(p) which coincides with an earlier
known ^-independent upper bound due to Kleitmen and Rothschild
[2]. We conjectured that the lower bound (derived in I) gives the
exact value of S(p) for all p. This, however, could not be proved
because the corresponding upper bounds to S(p) were too weak. We
have subsequently improved the upper bounds. Using these improv-
ed bounds we can show that
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(4 ) S(ρ) < —In 2 , if p ^ .154 or p ^ .699 .

While these bounds fall short of the conjectured result

(5) S(p)<±ln2, if p<± o r if <o > - | >
Δ 4 o

they are considerably better than the earlier bounds. These can be
improved somewhat by a more extensive numerical calculation. A
substantial improvement will perhaps require a different technique.
In this paper, we report these bounds.

More recently Kleitman and Rothschild [3] have been able to
determine S(p) exactly in the range 0 <£ p <; 1/4. Their results, in
particular, imply the first part of the inequality (5). Their result
is obviously better than our bound for p < .154. However, their
method does not seem to be generalizable to higher p values.

II* Preliminaries and notation* Consider a set Sζ consisting
of n distinct elements. Let R be a partial order relation defined on
this set. We shall use the notation a ^ b(a, b e Sf) iff a is related
to 6 under R. We write α>6 iff a *> 6 and a Φ b. A pair (α, 6) is
said to be comparable iff a :> b or 6 ^ α. It is nontrivial if a Φ b.

An ordered sequence alf a2, α3, — faι of elements of &* con-
stitutes a chain of length I iff ax > α2 > α3 > ax. The rank of
an element α, denoted by r(α), is defined as the length of the long-
est chain in £f which starts with a. By r(Γ) we shall denote the
specification of rank of each of the elements of T^S^.

The 'relation R induces a decomposition into maximal disjoint
chains Clf C2, •••, Cp. (This decomposition need not be unique.) The
chains Ct are constructed as follows: C± is a longest chain in Sf.
C2 is a longest chain in £f — CΊ. C3 is longest chain in £f — Cγ — C2,
and so on. The process is continued till all the elements of S^ are
exhausted. The length of a chain C* will be denoted by l^ Clearly,
we have kl^kl^k, . Also, any element of a chain C* is incom-
parable to at least one element in each of the preceding chains
Cίf j < i.

Let Nn(m) be the number of different partial order relations R
definable over S^f having exactly m nontrivial, comparable pairs.
Let Ωn(z) be the generating function for Nn(m), i.e.,

n(w-l)/2

(6) Ωn{z)= Σ N,(m)z'.
m=0

Let A and B be disjoint, ordered subsets of Sf. By an
ordered subset here we mean a subset whose first, second elements
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are identified. Let \A\ — i and \B\ — j. Also let r be a mapping
from the set A U B to the set of integers. Let R be a partial order
relation on A{J B. We say that R is consistent with the maximal
chain structure {A, B] and the rank function r iff there exists a
partial order relation R defined over Sf such that

( i ) R is the restriction of R to the domain A\J B.
(ii) A and B are chains under some maximal chain decomposi-

tion of Sf under R.
(iii) For all xeAUB, r{x) is the rank of x under R. We now

define

Pk(r; A, B) = The number of distinct partial order relations R,
which are consistent with the maximal chain struc-
ture {A, B}, and the rank function r, and have
exactly k comparable pairs of the form (α, b) where
aeA, beB.

Clearly, Pk(r; A, B) depends on the chains A and B only through
their lengths. Hence, we may write

(7) Pk(r; A, B) = Piitk(r) .

We further define the generating functions Pi3-(z) by

( 8 ) PiS(z) = Pdi(z) = ±zkPijfk ,
fc=0

where

( 9 ) Pij)k = max [P< i f t(r)] .
r

In eq. (9), the maximum is taken over all possible rank assign-
ments. We shall assume that n is sufficiently large so that Pijtk is
independent of n.

These polynomials P^{z) are easily determined for small values
of i and j, by exhaustive enumeration. Some low order polynomials
are listed in the appendix, where an outline of the method used for
their determination is also given. We used a computer program to
determine all the polynomials for i, j ^ 6. For higher values of i
and j, the computation time increases very sharply.

We define polynomial Pi3 (z) similarly. These are generating

functions Pijtk = Max? Piό>k{τ), where Ptίtk(r) is defined similar to
Pij,k(r), except that we do not require the chains A and B to be
maximal. These too were determined by exhaustive search.

The general properties of these polynomials Ptί(z) and Pi3'(z) are
not very obvious. For large i, with i/j held fixed, Piά(z)z~ij is ex-
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pected to behave like [g(z)]\ where g{z) is some (as yet unknown)
function of z. The study of these polynomials is interesting on its
own, but not really necessary for our discussion here.

ILL The upper bound* We may now state the main result
of this paper.

THEOREM. Let z, p, ft by any nonnegative real numbers satis-
fyίng the following conditions:

( i ) Σ«ί/i = L
( ϋ ) O^p^l.

Then S(p) ^ Max { / i } [Σ*./ΛΛ In PiS(z) -pin z].

Proof. Consider a particular decomposition of Sf in maximal
disjoint chains Clf C2 Cp. Let the lengths of these chains be
lu l2 lp respectively, where lλ ^ l2 ^ ^ lp. Consider, also, a
rank function r(£f).

Let Rr be a binary relation defined over £f satisfying the follow-
ing property for all i and j, the restriction of R' to the set CJJCj
is a partial order relation consistent with the maximal chain struc-
ture {Cu C2 Cp}, and the rank function r(&*). Clearly, not all such
relations R', define a partial order relation over the full set £f. The
enumeration of all relations satisfying the above property, gives
an upper bound on the enumeration of all partial order relations R
satisfying the above property. The relations R' are easily enumer-
ated in terms of the polynomials Pi3 (z) defined earlier, and we get
quite easily

(10) Ωn(z) £ Σ Σ [z**ι*w Π' Pi,,/*)]

In this inequality, the summations over {CJ and over r{£^) are over
all possible chain decompositions of S^ and all possible rank func-
tions r(£S). The term zhUi~1)/2 comes from the lt(lt — l)/2 compar-
able pairs in the chain Cif and P^i^z) is the contribution of the
mutual pairs between the chains C< and C3. The prime over the
product sign indicates the fact that i = j term is excluded from
the product. This inequality (10), clearly holds term by term for
each power of z.

Now, the rank of an element in Sf- can take values 1 to n.
Hence total number of possible rank assignments is certainly less
than nn. Also, the total number of ways, the set Sf may be
broken into disjoint subsets is at most 2nPn. Hence we get from
the inequality (10)
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(11) Ωn(z) £ 2nPnn
n Max [zw<-»'\ Π' Phιβ)] ,

where the maximal is taken over all possible partitions {ij of n

(Σi U = n).
Ωn(z) is a polynomial in z with positive coefficients. Hence for

all real positive values of z

(12)

Taking logarithms of both sides we get

In Nn(m) ^ In (nn 2nPn)

( 1 3 ) + Max Γ Σ li(J" ~ ^ lnz - mInz + Σ ' l n P u
φ)Ί .

J

In the chain decomposition {CJ, let the chains of length i be Fi in
number. Since the total number of elements is n, we have

(14) ΣiFi^n.
i

The double summation on the right hand side of the inequality (13)
may be rewritten as

(15) Σ ' In Phlj(z) - Σ J ' ( F « - 1 > l n P«(«) + Σ ^pln p * ^ )

Substituting in (13) and taking the limit of large n9 with / t = i^M,
we get

(16) S(p) £ Max [Σ ΛΛ In PtJ(z) - plnz] ,
ifi\ iJ

which proves the theorem.

This theorem is not very useful for numerical calculation of
upper bounds on S(p), as knowledge of all the polynomials P^iz) is
required. For explicit calculation we use the following modified
version of the theorem.

THEOREM. Let p be any positive integer, and let z, /4 (i = 1 to
p), be any nonnegative real numbers satisfying the following con-
ditions:

(17) ί 1 )

(ii)

then
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(18) S(p) ̂  Max [ Σ L ΛΛ In QiS{z) - |O In z] ,

(19) Qίi(^) = -PtyOO , iffii^P and j Φ p) ,

(20) Q<y(«) = Pi/s) , iff (i = p or j = p) .

Proof. Express y as a union of disjoint chains of length less
than or equal to p. Then the chains of length p need not be max-
imal. Rest of the proof is as before.

We use variational calculus to maximize the right hand side of
inequality (18), and then minimize the result with respect to z, to
get the best upper bound. The constraint (17) is taken care of by
a Lagrange multiplier. This gives the equations

(21)

and

(22)

p = z

Σ[lnQ,
3=1

d ,
dz if

— \i ,

In Qu(z) ,

if ftϊ 0 .

Here λ is the Lagrange multiplier. Corresponding to any value of
z9 we first determine /* by solving the linear equations (17) and (22);
and substitute in (21) and (18) to get the corresponding value p
and S(p). By varying z, bounds for different values of p are ob-
tained. If for any value of z> the solution of equation (17) and (22)
gives negative values of /« for some i, we choose that /, to be ex-
actly zero and variationally optimize over the remaining variables.
For p = 6, the numerical results show that

(23) S(p) < — In 2 , if p^ .154 or if p > .699 ,
Δ

which is the promised result.

APPENDIX

Let A = {au a2, , α j and B = {blf b2, , bj}. The rank func-
tion r on AUB may be specified by a list of the form a^b^jb^ ,
where the elements are arranged in order of decreasing rank. Con-
sistency with the rank r implies that no element can be greater
than any element preceding it in the rank list. The exact values
of ranks assigned are not relevant. The total number of rank func-
tions to be tested is thus i+jC3-.

The relation R may be represented by two lists, of the same
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form as the rank list. For x, y eAUB, x }> y if x appears before y
in both of these lists. The computer program generates all pos-
sible relations R, and rejects those inconsistent with the rank list.

To save computation time, the maximality constraint was replaced
by the following weaker constraint: If ί ;> j , then ap > bs-i+p and
ap < bp for all p. If this condition fails, clearly the A chain is not
maximal, as we can form a chain of length (i + 1) from AUB.
Clearly, this relaxation of constraints does not affect the validity
of the bounds derived. We list below some lower order polynomials
Piά{z) and Ptj(z).

PπGO = 1

P12(z) = 1 + 2z

P22(z) = 1 + 2z + z2

Pιz(z) = l + 2z + 2z2

P25(z) = 1 + 2z + 5z2 + 6z3 + 4^4

P3d(z) = 1 + 2z + 5z2 + 6z3 + 6z4 + 4z5 + z6

Pn(z) = l + z

Pl2(z) = 1 + 2z + z2

P16(z) = 1 + 2z + 2>z2 + 4s8 + 3z4 + 2^5 + z6

P26(z) = l + 2z + 5z2 + 8z* + 14z4 + 18^5 + 22z6 + 22^7 + 21^ 8 + 16z9

+ IO2;10 + 4s11 + z12
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