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The problem of the coseismic deformation of an earth model consisting of an elastic layer of uni-

form thickness overlying an elastic half-space due to a very long tensile fault in the layer is solved

analytically. Integral expressions for the surface displacements are obtained for a vertical tensile

fault and a horizontal tensile fault. The integrals involved are evaluated approximately by using

Sneddon’s method of replacing the integrand by a finite sum of exponential terms. Detailed numer-

ical results showing the variation of the displacements with epicentral distance for various source

locations in the layer are presented graphically. The displacement field in the layered half-space

is compared with the corresponding field in a uniform half-space to demonstrate the effect of the

internal boundary. Relaxed rigidity method is used for computing the postseismic deformation of

an earth model consisting of an elastic layer of uniform thickness overlying a viscoelastic half-space.

1. Introduction

Tensile fault representation has several important

geophysical applications, such as modelling of the

deformation fields due to dyke injection in the vol-

canic region, mine collapse and fluid-driven cracks.

Bonafede and Rivalta (1999a) provided analyti-

cal solution for the elementary tensile dislocation

problem in an elastic medium composed of two

welded half-spaces. Subsequently, Bonafede and

Rivalta (1999b) derived the solution for the elas-

tic field produced by a vertical tensile crack, open-

ing under the effect of an assigned overpressure

within it, in the proximity of the welded boundary

between two half-spaces characterized by different

elastic parameters.

Weeks et al (1968) showed how to express as

Fourier integrals the displacement and stress fields

due to an edge dislocation in a substrate overlain

by an elastic layer in welded contact. Following

Weeks et al (1968), Savage (1998) obtained the dis-

placement field for an edge dislocation in an earth

model consisting of a layer welded to a half-space in

the form of a Fourier integral. He used the symbolic

computational capabilities of the program MATH-

EMATICA (Wolfram 1991) to do the algebra and

the numerical integration routines in that program

to calculate the Fourier integral. In a recent paper,

Wang et al (2003) gave FORTRAN programs for

computation of deformation induced by earthquake

sources in a multilayered half-space.

The Airy stress function due to various two-

dimensional sources in an unbounded medium was

obtained by Singh and Garg (1986). Using these

results, Singh et al (1997) solved analytically the

two-dimensional problem of the deformation of a

layered half-space caused by a very long dip-slip

fault situated in the overlying layer. The integrals

involved were evaluated approximately by replac-

ing the integrand by a finite sum of exponential

terms (Sneddon 1951; Ben-Menahem and Gillon

1970).

In the present paper, we consider a homoge-

neous, isotropic, elastic layer of uniform thickness

overlying a homogeneous, isotropic, elastic half-

space. We consider a plane strain problem with a

very long tensile fault in the layer. It is assumed

that the surface of the layer is traction-free and the
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layer and the half-space are in welded contact. The

method used by Singh et al (1997) is employed to

calculate the displacement field caused by horizon-

tal and vertical tensile faults. The variation of the

displacement field with the distance from the fault

for different source depths is studied numerically.

The displacement fields for a uniform half-space

and a layered half-space are compared.

Viscoelastic relaxation is generally regarded as

the principal source of postseismic deformations.

Displacements produced postseismically by time-

dependent linear viscoelastic deformation may be

calculated by using the correspondence principle.

However, in this procedure, a large number of for-

ward and inverse Laplace transforms are involved.

Cohen (1980) calculated the displacement field for

a vertical rectangular strike-slip fault buried in a

viscoelastic layer overlying a viscoelastic half-space

by solving the displacement equations for a purely

elastic problem and then replacing the elastic mod-

uli by relaxed moduli appropriate to the viscoelas-

tic case. Rundle (1981) used a similar approach for

a rectangular thrust fault in a layered model.

Ma and Kusznir (1995) calculated the postseis-

mic displacements and strains for a rectangular

dip-slip fault in a three-layer medium using both

the correspondence principle and relaxed moduli

method, and found that the results were in close

agreement. According to Ma and Kusznir (1995),

the relaxed moduli method provides an accurate

and computationally efficient method of examining

postseismic relaxation.

In the present paper, we use the relaxed moduli

method for calculating the postseismic deformation

of an elastic layer of uniform thickness (represent-

ing lithosphere) overlying a viscoelastic half-space

(representing asthenosphere) caused by a very long

tensile fault in the layer. We assume that the half-

space is elastic in dilatation and viscoelastic in dis-

tortion. Consequently, only the rigidity µ

2

of the

half-space relaxes with time. For the continental

earth model ν = µ

2

/µ

1

= 2.22. We have considered

four values for the rigidity of the half-space which

correspond to ν = 2.22, 2.22/5, 2.22/10, 2.22/20.

The value ν = 2.22 refers to the crust-mantle tran-

sition and corresponds to the coseismic deforma-

tion and the values ν = 2.22/5, 2.22/10, 2.22/20

correspond to the postseismic deformation for var-

ious points of time. Displacements due to both

horizontal and vertical tensile faults are evaluated

numerically for the continental earth model for the

four values of ν mentioned above.

2. Basic equations

We consider a model consisting of a homogeneous,

isotropic, elastic layer of uniform thickness H over-

lying a homogeneous, isotropic, elastic half-space

(figure 1). We place the origin of the Cartesian co-

ordinate system (x

1

, x

2

, x

3

) ≡ (x, y, z) at the free

surface with the x

3

-axis vertically downwards. Let

λ

1

, µ

1

and λ

2

, µ

2

be the Lamé constants for the

layer and the half-space, respectively. We consider

the plane strain problem in which ∂/∂x

1

≡ 0. The

sources considered in this paper are infinitesimally

thin strips, delimited by two dislocation lines at

an infinitesimal distance ds from each other, with

opposite Burgers vectors. The solution for a dislo-

cation of finite thickness can be obtained by the

superposition of solutions for thin strips. Let there

be a long dislocation parallel to the x

1

-axis pass-

ing through the point (0, 0, h) of the layer (fig-

ure 1). As shown by Singh and Garg (1986), the

Airy stress function U

0

for a long dislocation par-

allel to the x

1

-axis passing through the point (0, 0,

h) in an infinite medium can be expressed in the

form

U

0

=

∞

∫

0

[(L

0

+ M

0

k|z − h|) sin ky

+ (P

0

+ Q

0

k|z − h|) cos ky]k

−1

e

−k|z−h|

dk,

(1)

where the source coefficients L

0

, M

0

, P

0

and

Q

0

are independent of k. Singh and Garg (1986)

have obtained these source coefficients for various

sources.

For a long dislocation parallel to the x

1

-axis act-

ing at the point (0, 0, h) of the layer (h < H),

the expressions for the Airy stress function for the

layer, U

(1)

, and the half-space, U

(2)

, are of the form

U

(1)

= U

0

+

∞

∫

0

[(L

1

+ M

1

kz) sin ky

+ (P

1

+ Q

1

kz) cos ky] k

−1

e

−kz

dk

+

∞

∫

0

[(L

2

+ M

2

kz) sin ky

+ (P

2

+ Q

2

kz) cos ky] k

−1

e

−kz

dk, (2)

U

(2)

=

∞

∫

0

[(L

3

+ M

3

kz) sin ky

+ (P

3

+ Q

3

kz) cos ky] k

−1

e

−kz

dk, (3)

where U

0

is given in equation (1) and the unknowns

L

1

, M

1

, etc. are to be determined from the bound-

ary conditions.
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Figure 1. Layer of uniform thickness H overlying a half-space with a dislocation of width ds and of infinite length parallel

to the x

1

-axis passing through the point (0,0, h) representing a (a) vertical fault; (b) horizontal fault.
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The stresses and displacements in terms of the

Airy stress function are given by (Sokolnikoff

1956)

τ

(m)

22

=

∂

2

U

(m)

∂z

2

, τ

(m)

23

=−

∂

2

U

(m)

∂y∂z

, τ

(m)

33

=

∂

2

U

(m)

∂y

2

,

(4)

2µ

m

u

(m)

2

= −

∂U

(m)

∂y

+

1

2α

m

∫

∇

2

U

(m)

dy,

2µ

m

u

(m)

3

= −

∂U

(m)

∂z

+

1

2α

m

∫

∇

2

U

(m)

dz, (5)

where

α

m

=

λ

m

+ µ

m

λ

m

+ 2µ

m

=

1

2(1 − σ

m

)

, (6)

∇

2

U

(m)

= τ

(m)

22

+ τ

(m)

33

, (7)

σ being the Poisson’s ratio. In equations (4) – (7),

summation is not taken over m; m = 1 is for the

layer and m = 2 is for the half-space.

We assume that the surface of the layer (z = 0)

is traction-free and the layer and the half-space are

in welded contact along the plane z = H yielding

the boundary conditions

τ

(1)

23

= τ

(1)

33

= 0 at z = 0,

τ

(1)

23

= τ

(2)

23

, τ

(1)

33

= τ

(2)

33

at z = H,

u

(1)

2

= u

(2)

2

, u

(1)

3

= u

(2)

3

at z = H. (8)

Let L

−

, M

−

, P

−

, Q

−

be the values of L

0

, M

0

,

P

0

, Q

0

, respectively, valid for z < h. Inserting

the expressions for the stresses and displace-

ments obtained from equations (1) – (5) into

the boundary conditions (8), we obtain two

sets of equations, each containing six equations

in six unknowns. In one set the unknowns are

L

1

, L

2

, L

3

, M

1

, M

2

, M

3

and in the other set the

unknowns are P

1

, P

2

, P

3

, Q

1

, Q

2

, Q

3

. These two sets

of equations have been solved by Singh et al (1997).

Using the values of the constants L

1

, L

2

etc., equa-

tions (1) – (5) yield the following expressions for

the displacements at z = 0 (Singh et al 1997)

2µ

1

u

(1)

2

=

∞

∫

0

[{

1

α

1

∆

0

[{

2δZ

3

(L

−

+ M

−

kh)

−δZ

3

M

−

}

e

−kh

− 2δZ

2

{(L

+

− M

+

kh)

− M

+

}e

−k(4H−h)

+ δZ

2

M

−

e

−k(4H+h)

+ δ

2

Z

1

{2(1 + 2kH)(L

−

+ M

−

kh)

− 4kHM

−

}e

−k(2H+h)

+ {2δ

2

Z

1

(2kH − 1)(L

+

− M

+

kh)

+ (Z

4

+ δ

2

Z

1

(4k

2

H

2

− 4kH + 1))M

+

}

× e

−k(2H−h)

]

+

M

−

α

1

e

−kh

}

cos ky

−

{

1

α

1

∆

0

[

{2δZ

3

(P

−

+ Q

−

kh)

− δZ

3

Q

−

}e

−kh

−2δZ

2

{P

+

−Q

+

kh−Q

+

}

× e

−k(4H−h)

+ δZ

2

Q

−

e

−k(4H+h)

+ δ

2

Z

1

{2(1 + 2kH)(P

−

+ Q

−

kh)

− 4kHQ

−

}e

−k(2H+h)

+ {2δ

2

Z

1

(2kH − 1)

× (P

+

− Q

+

kh) + (Z

4

+ δ

2

Z

1

(4k

2

H

2

− 4kH + 1))Q

+

}e

−k(2H−h)

]

+

Q

−

α

1

e

−kh

}

sin ky

]

dk, (9)

2µ

1

u

(1)

3

=

∞

∫

0

[{

1

α

1

∆

0

[

{2δZ

3

(L

−

+ M

−

kh)

−δZ

3

M

−

}

e

−kh

+ 2δZ

2

(L

+

− M

+

kh)

× e

−k(4H−h)

− δZ

2

M

−

e

−k(4H+h)

+ δ

2

Z

1

{2(1 − 2kh)(L

−

+ M

−

kh)

− 2M

−

}e

−k(2H+h)

+ {2δ

2

Z

1

(2kH + 1)

× (L

+

− M

+

kh) + (Z

4

+ δ

2

Z

1

(4k

2

H

2

−1))M

+

}e

−k(2H−h)

]

− (M

−

/α

1

)e

−kh

}

× sin ky +

{

1

α

1

∆

0

[

{2δZ

3

(P

−

+ Q

−

kh)

− δZ

3

Q

−

}e

−kh

+ 2δZ

2

(P

+

− Q

+

kh)
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× e

−k(4H−h)

− δZ

2

Q

−

e

−k(4H+h)

+ δ

2

Z

1

{2(1 − 2kH)(P

−

+ Q

−

kh) − 2Q

−

}

× e

−k(2H+h)

+ {2δ

2

Z

1

(2kH + 1)

× (P

+

− Q

+

kh)

+ (Z

4

+ δ

2

Z

1

(4k

2

H

2

− 1))Q

+

} × e

−k(2H−h)

−(Q

−

/α

1

)e

−kh

}

cos ky

]

dk, (10)

where

∆

0

= −[δZ

3

+ (Z

4

+ δ

2

Z

1

+ 4δ

2

k

2

H

2

Z

1

)e

−2kH

+ δZ

2

e

−4kH

], (11)

1/δ = (2/α

1

) − 1 = 3 − 4σ

1

,

1/δ

1

= (2/α

2

) − 1 = 3 − 4σ

2

, ν = µ

2

/µ

1

,

Z

1

= 4(ν − 1)(νδ

1

+ 1), Z

2

= 4(ν − 1)(νδ

1

− δ),

Z

3

= 4(ν + δ)(νδ

1

+ 1), Z

4

= 4(ν + δ)(νδ

1

− δ).

(12)

3. Displacement field due to

a tensile fault

We consider two tensile faults: a vertical tensile

fault with dislocation in the x

2

-direction and a

horizontal tensile fault with dislocation in the x

3

-

direction.

3.1 Vertical tensile fault

The source coefficients for a vertical tensile fault

with dislocation in the x

2

-direction are (Singh and

Rani 1991)

L

−

= L

+

= M

−

= M

+

= 0,

P

−

= P

+

=

α

1

µ

1

bds

π

, Q

−

= Q

+

= −

α

1

µ

1

bds

π

,

where b is the displacement discontinuity in the

direction of the normal to the fault and ds is the

width of the line fault. On putting the source coef-

ficients into equations (9) and (10), the integral

expressions for the surface displacements are found

to be

u

(1)

2

= −

bds

2π

∞

∫

0

[

1

∆

0

{δZ

3

(3 − 2kh)e

−kh

− 2δZ

2

(2 + kh)e

−k(4H−h)

− δZ

2

e

−k(4H+h)

+ 2δ

2

Z

1

(1 − kh + 4kH − 2k

2

hH)e

−k(2H+h)

+ (δ

2

Z

1

(8kH + 4k

2

hH − 2kh − 4k

2

H

2

− 3)

−Z

4

)e

−k(2H−h)

} − e

−kh

]

sin ky dk, (13)

u

(1)

3

=

bds

2π

∞

∫

0

[

1

∆

0

{δZ

3

(3 − 2kh)e

−kh

+ 2δZ

2

(1 + kh)e

−k(4H−h)

+ δZ

2

e

−k(4H+h)

+ 2δ

2

Z

1

(2 − kh − 2kH + 2k

2

hH)e

−k(2H+h)

+ (δ

2

Z

1

(4kH + 4k

2

hH + 2kh − 4k

2

H

2

+ 3)

−Z

4

)e

−k(2H−h)

} + e

−kh

]

cos ky dk. (14)

3.2 Horizontal tensile fault

The source coefficients for a horizontal tensile fault

with dislocation in the x

3

-direction are (Singh and

Rani 1991)

L

−

= L

+

= M

−

= M

+

= 0,

P

−

= P

+

= Q

−

= Q

+

=

α

1

µ

1

bds

π

.

On inserting the source coefficients into equations

(9) and (10), the integral expressions for the surface

displacements are found to be

u

(1)

2

= −

bds

2π

∞

∫

0

[

1

∆

0

{δZ

3

(1 + 2kh)e

−kh

+ 2δZ

2

khe

−k(4H−h)

+ δZ

2

e

−k(4H+h)

+ 2δ

2

Z

1

(1 + kh + 2k

2

hH)e

−k(2H+h)

+ (δ

2

Z

1

(4k

2

H

2

+ 2kh − 4k

2

hH − 1)

+ Z

4

)e

−k(2H−h)

} + e

−kh

]

sin ky dk, (15)

u

(1)

3

=

bds

2π

∞

∫

0

[

1

∆

0

{δZ

3

(1 + 2kh)e

−kh

+ 2δZ

2

(1 − kh)e

−k(4H−h)

− δZ

2

e

−k(4H+h)
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+ 2δ

2

Z

1

(kh − 2kH − 2k

2

hH)e

−k(2H+h)

+ (δ

2

Z

1

(4k

2

H

2

+ 4kH − 4k

2

hH − 2kh + 1)

+ Z

4

)e

−k(2H−h)

} −e

−kh

]

cos ky dk. (16)

4. Particular case – uniform half-space

Taking the limit H → ∞ in the expressions for

the displacement components for the layer of thick-

ness H over a uniform half-space, one can obtain

the expressions for the surface displacement com-

ponents for a uniform half-space. Thus, from equa-

tions (13) – (14), we get the following expressions

for the displacement components due to a vertical

tensile fault

u

2

=

bds

π

∞

∫

0

(2 − kh)e

−kh

sin ky dk, (17a)

u

3

= −

bds

π

∞

∫

0

(1 − kh)e

−kh

cos ky dk, (17b)

where the superscript (1) is deleted because there

is no layer. On integrating, we get

u

2

=

bds

π

[

2y

3

(h

2

+ y

2

)

2

]

, (18)

u

3

= −

bds

π

[

2hy

2

(h

2

+ y

2

)

2

]

. (19)

Similarly, taking the limit H → ∞ in equations

(15) – (16), the displacement components caused

by a horizontal tensile fault in a uniform half-space

are

u

2

=

bds

π

∞

∫

0

hk e

−kh

sin ky dk, (20a)

u

3

= −

bds

π

∞

∫

0

(1 + kh)e

−kh

cos ky dk. (20b)

Integrating, we obtain

u

2

=

bds

π

[

2h

2

y

(h

2

+ y

2

)

2

]

, (21)

u

3

= −

bds

π

[

2h

3

(h

2

+ y

2

)

2

]

. (22)

5. Numerical results and discussion

The integrals appearing in equations (13) – (16)

are of the form

∞

∫

0

G

∆

0

e

−kp

k

q

(

cos ky

sin ky

)

dk, (23)

where q = 0, 1, 2; G = −δZ

3

; p = h, 2H±h, 4H±h.

The occurrence of the factor 1/∆

0

in the integrand

makes integration by analytical methods difficult.

Even numerical integration is not convenient. Fol-

lowing Singh et al (1997), we use the approxima-

tion

G

∆

0

≈ 1 − (A + Bk

2

H

2

)e

−2kH

+ (C + αk

n

H

n

)e

−βkh

, (24)

where

A = (Z

4

+ δ

2

Z

1

)/δZ

3

, B = 4δZ

1

/Z

3

,

C =

A

2

+ D(A − 1)

1 + A + D

, (25)

D = Z

2

/Z

3

, n = 1, 2, 3 . . .

and α, β(> 2) are chosen in such a way so as to

ensure a satisfactory fit. The constants α, β and

n are to be re-evaluated for each set of values of

the parameters σ

1

, σ

2

and ν. Using the approx-

imation (24), the integral (23) can be expressed

as a linear combination of known integrals. Ben-

Menahem and Gillon (1970) found that n = 2

yields a satisfactory approximation for ν = 2.22

which corresponds to the continental earth model.

The corresponding values of the constants α and β

for σ

1

= σ

2

= 0.25 are given in table 1.

Table 1. .

ν = µ

2

/µ

1

n α β

2.22 2 0.495 2.978

2.22/5 3 6.846 4.652

2.22/10 3 36.208 4.795

2.22/20 4 802.922 6.932

We study numerically the variation of the dis-

placement field at the surface with distance from

the fault, caused by a vertical tensile fault and a

horizontal tensile fault. The effect of source loca-

tion is also studied. For numerical computation, we

define the following dimensionless quantities

Y = y/h, T = H/h,

U

2

=

πh

bds

u

(1)

2

, U

3

=

πh

bds

u

(1)

3

,
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Figure 2 (a–b). (Continued)

where h is the distance of the line source from the

surface.

Figures 2(a, b, c) show the variation of the

dimensionless horizontal displacement U

2

and ver-

tical displacement U

3

at the surface with the

dimensionless distance from the fault caused by

a vertical tensile fault. These figures are for the

continental earth model at three source depths:

h = 0.1H, 0.5H and 0.9H. Broken lines show the

variation of the displacement components when the

medium is a uniform half-space and the continuous

lines show the variation of the displacement com-

ponents in the case of a layer of uniform thickness

H overlying a uniform half-space. The source in

the case of layered half-space is in the layer pass-

ing through the point (0, 0, h). In the case of a

uniform half-space, U

2

= U

3

= 0 at Y = 0 which is

also endorsed by equations (18) and (19). U

2

and

U

3

keep the same sign in the case of a uniform half-

space. However, in the case of layered half-space,

near the origin, U

3

is positive (subsidence) when

the source is near the free surface and U

3

is nega-

tive (uplift) when the source is near the interface.

Figures 2(a, b, c) also show that when the source
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Figure 2 (a–c). Variation of the dimensionless horizontal displacement (U

2

) and vertical displacement (U

3

) with dimen-

sionless horizontal distance from a vertical tensile fault for ν = 2.22 for three values of the source depth; (a) h = 0.1H, (b)

h = 0.5H, (c) h = 0.9H. The continuous lines are for a layered model and the broken lines are for a uniform half-space.

Figure 3 (a). (Continued)

is near the free surface the effect of underlying half-

space is insignificant, but when the source is near

the interface the effect is significant. U

2

and U

3

tend to zero as Y approaches infinity for all the

cases.

Figures 3(a, b, c) show the variation of the hor-

izontal displacement U

2

and vertical displacement

U

3

at the surface with the distance from the fault

caused by a horizontal tensile fault for three source

depths: h = 0.1H, 0.5H and 0.9H. From equations

(21) and (22), U

2

= 0 and U

3

= −2 at Y = 0

for the uniform half-space. However, U

2

is zero

and U

3

differs considerably from −2 at Y = 0 in

the case of a layered half-space. U

2

keeps positive

sign for uniform half-space and layered half-space.

However, U

3

is negative in the case of uni-

form half-space, but changes sign in the case of

layered half-space as we move away from the

fault. As expected, the effect of the underly-

ing medium is significant when the source is

near the interface. Moreover, for a horizontal ten-

sile fault, the horizontal component of the displace-
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Figure 3 (a–c). Same as in figure 2 but for a horizontal tensile fault.

ment is less sensitive to layering than the vertical

component.

For calculating the postseismic deformation, we

use the relaxed rigidity method employed earlier by

Cohen (1980); Rundle (1981) and Ma and Kusznir

(1995). We assume that the layer is purely elas-

tic, but the underlying half-space is viscoelastic.

Therefore, for calculating the postseismic deforma-

tion, we express the displacements in terms of the

rigidity (µ

2

) and the bulk modulus (k

2

) of the half-

space, assume that the bulk modulus k

2

remains

constant for all times, but the rigidity µ

2

relaxes

with the passage of time. Since the layer is assumed

to be elastic, µ

1

and k

1

also remain constant.

Consequently, as the rigidity µ

2

of the half-space

relaxes with time, the ratio ν = µ

2

/µ

1

decreases.

We have calculated the postseismic deformation

for ν = 2.22/5, 2.22/10 and 2.22/20. It was found

that for ν = 2.22, the value n = 2 yields a satis-

factory approximation; however, this value is not

suitable in the other cases considered. The values of

the constants n, α and β which were found suitable
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Figure 4. Variation of the dimensionless (a) horizontal displacement, (b) vertical displacement with the dimensionless

horizontal distance from a vertical tensile fault for h = 0.5H for four values of the rigidity ratio ν = µ

2

/µ

1

. The ratio

ν = 2.22 corresponds to the coseismic deformation and the ratios ν = 2.22/5, 2.22/10, 2.22/20 correspond to the postesismic

deformation at various points of time after the earthquake.

for different values of ν are given in table 1. In

all cases it was assumed that, before relaxation,

σ

1

= σ

2

= 0.25.

We study numerically the variation of the dis-

placement field at the surface with distance from

the fault caused by a vertical tensile fault and

a horizontal tensile fault for ν = 2.22, 2.22/5,

2.22/10, 2.22/20 and h = 0.5H. Figure 4(a) shows

the variation of the dimensionless horizontal dis-

placement U

2

at the surface with the dimension-

less horizontal distance from the fault for h = 0.5H

caused by a vertical tensile fault for four val-

ues of the rigidity contrast, viz., ν = µ

2

/µ

1

= 2.22,

2.22/5, 2.22/10, 2.22/20. The value ν = 2.22

corresponds to the unrelaxed rigidity of the under-

lying medium and, therefore, gives the coseismic
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Figure 5. Same as in figure 4 but for a horizontal tensile fault.

displacement. The values ν = 2.22/5, 2.22/10 and

2.22/20 correspond to the relaxed rigidity of the

underlying medium at different points in time after

the earthquake and give the postseismic displace-

ment. We observe that the horizontal displacement

vanishes at the origin (epicentre) for all values of

ν. For large epicentral distances the magnitude

of the horizontal displacement increases with the

decrease in the value of ν. The horizontal displace-

ment tends to zero as the epicentral distance tends

to infinity for all values of ν. Figure 4(b) shows

the variation of the dimensionless vertical displace-

ment U

3

at the surface with the horizontal distance

from the fault due to a vertical tensile fault for

h = 0.5H. For large epicentral distances the mag-

nitude of the vertical displacement increases with

the decrease in the value of ν, i.e., for large times.

The vertical displacement tends to zero as the epi-

central distance approaches infinity for all values

of ν.

Figure 5(a) shows the variation of the horizontal

displacement U

2

at the surface with the distance

from the fault for h = 0.5H due to a horizontal

tensile fault. We observe that U

2

= 0 at the origin
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for all values of rigidity contrast. The maximum

value of the horizontal displacement decreases with

the decrease in the value of ν, i.e., as the rigidity

of the lower half-space relaxes with time. More-

over, for small values of ν, i.e., for large times,

there appears a bulge (a second maximum) in the

curve for the horizontal displacement away from

the fault. Figure 5(b) shows the variation of the

vertical displacement U

3

with the horizontal dis-

tance from the fault due to a horizontal tensile fault

for h = 0.5H. U

3

tends to zero as the horizontal

distance approaches infinity for all values of ν.
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