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ABSTRACT: A quasi-static axisymmetric solution is obtained of the fully coupled diffusion-deformation system of 
equations for a poroelastic half-space possessing anisotropic permeability and compressible solid and fluid 
constituents. This solution is used to study analytically the deformation of a half-space by surface loads. The problem 
of normal disc loading is discussed in detail. The effects of the compressibility of the solid and fluid constituents and 
the anisotropy in permeability are studied numerically. 

1 Introduction 

Deformation of a poroelastic half-space by surface loads has been studied extensively (see, e.g., Wang, 2000). 
However, in most of the investigations, the permeability is assumed to be isotropic. On account of the sedimentation 
process producing horizontal stratification planes, the permeability in the horizontal and vertical directions may differ. 
Therefore, it is useful to investigate the effect of the anisotropy in permeability on the quasi-static deformation of a 
half-space by surface loads. Recent studies on the deformation of a poroelastic half-space with anisotropic 
permeability include Chen (2004, 2005) and Singh et al. (2007). While Chen (2004) assumed the solid constituents of 
the poroelastic medium to be incompressible, Chen (2005) assumed both the fluid and solid constituents as 
incompressible. Singh et al. (2007) discussed the consolidation of a poroelastic half-space with anisotropic 
permeability and compressible constituents by two-dimensional surface loads. 

The purpose of the present paper is to study the quasi-static deformation of a poroelastic half-space by axisymmetric 
surface loading. The permeability in the vertical direction may be different from the permeability in the horizontal 
direction. The fluid and solid constituents are assumed to be compressible. The problem of normal disc loading is 
discussed in detail. An explicit analytical sol ution in the Laplace-Hankel transform domain is obtained. Schapery’s 
formula (Schapery, 1962) is used for the Laplace transform inversion and the extended Simpson’s rule for the Hankel 
transform inversion. Detailed numerical computations are performed to study the effects of the anisotropy in 
permeability and the compressibility of the fluid and solid constituents. 

2 Governing equations 

Let (r, θ, z) denote the cylindrical polar coordinates and (u
r
, u

θ
, u

z
) the corresponding displacement components. For 

axial symmetry, ∂ / ∂ θ ≡ 0. A poroelastic material with compressible fluid and solid constituents can be characterized 
by four constitutive constants. Let these constants be: the shear modulus (G), the drained Poisson’s ratio (ν), the 
undrained Poisson’s ratio (ν

u
) and the Biot-Willis coefficient (α). For axial symmetry we have the following governing 

equations in which σ denotes the total stress tensor and p the pore pressure. 
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2.1 Equilibrium equations 
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2.2 Constitutive equations 
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2.3 Darcy’s law 

   q
r
 = -χ

r
 ∂ p / ∂ r, q

θ
 = 0, q

z
 = -χ

z
∂ p / ∂ z (6) 

where q is the fluid flux and (χ
r
, χ

z
) is the Darcy conductivity in the (r, z) direction. 

2.4 Fluid diffusion equation 

   
2

2

2

2 1
z
p

r
p

rr
p

zr ∂
∂+








∂
∂+

∂
∂ χχ  = 





 +∈

∂
∂

p
Mt
1

α  (7) 

where 

   M = 
( )

( ) ( )u

uG
ννα

νν
2121

2
2 −−

− . (8) 

3 Solution 

A solution of the governing equations can be obtained by following a modified version of the procedure used by 
Rajapakse and Senjuntichai (1993) and elaborated by Wang (2000, Sect. 9.6). We define the Laplace 

transform ( )s,z,rf
~ of a function ( )t,z,rf by the relation 

   ( ) ( )∫ dtet,z,rfs,z,rf~ st
∞

−=
0

. (9) 

Omitting the details, the Laplace transform of the solution of the governing equations which is bounded for zà∞ can 
be expressed in the form  
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Three arbitrary constants, A1,  A2 and A4, appear in the solution. These constants can be determined from the 
boundary conditions. 

4 Normal disc loading 

Consider a poroelastic half-space z ≥ 0 with z-axis vertically downwards. Suppose a total normal  

force Q
0 
is uniformly applied over a circular surface area (z = 0, r ≤ a). If the surface is permeable and the load is 

applied in the positive z-direction, the boundary conditions yield 
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Figure 1. Effect of the permeability anisotropy on the time-settlement. 
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at z = 0. Using the boundary conditions, we obtain 
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Explicit expressions for the pore pressure and the vertical displacement are: 
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Figure 2. Effect of the compressibility of the solid constituents on the time-settlement. 
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5 Numerical results 

The solution obtained is in the Laplace-Hankel transforms domain. We have used Schapery’s approximate formula 
(Schapery, 1962) for the Laplace transform inversion. The Hankel transform inversion has been performed 
numerically by using the extended Simpson’s rule. 

We have computed the surface settlement u
z
 at the centre of the disc load (r = z = 0) and pore pressure at various 

points on the z-axis (central line). We define the following dimensionless quantities  
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Figure 1 shows the time-settlement W for five values of the permeability anisotropy parameter γ for Ruhr sandstone (ν 
= 0.12, ν

u
 = 0.31, α = 0.65). When γ = 1, the vertical permeability is equal to the horizontal permeability. We notice 

that the permeability anisotropy has no effect on the initial settlement or the final settlement. However, if the 
horizontal permeability χ

r
 is greater than the vertical permeability χ

z
, the permeability anisotropy accelerates the 

consolidation process. Figure 2 depicts the effect of the value of the Biot-Willis coefficient α on the time-settlement W 
for γ = 1, ν = 0.25, ν

u
 = 0.27. For a poroelastic material with incompressible solid constituents, α = 1. As α decreases, 

the compressibility of the solid constituents increases. Figure 2 shows that the compressibility of the solid 
constituents accelerates the consolidation process. The influence of the value of the undrained Poisson’s ratio ν

u
 on 

the time-settlement W is displayed in Figure 3 for γ =1, ν = 0.12, α = 0.65. It is known that ν ≤ ν
u
 ≤ 0.5. The upper limit 

ν
u
 = 0.5 corresponds to a poroelastic material with incompressible fluid constituents. As expected, the final settlement 

is independent of the value of ν
u
. However, the compressibility of the fluid constituents of the poroelastic medium has 

a strong influence on the consolidation process. The initial settlement for a compressible fluid cons tituents model is 
greater than the initial settlement for the corresponding incompressible fluid constituents model. 
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Figure 3. Effect of the compressibility of the fluid constituents on the time-settlement. 
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Figure 4. Effect of the permeability anisotropic on the diffusion of the pore pressure. 

Figure 4 shows the effect of the permeability anisotropy on the diffusion of the pore pressure at the point r = 0, z = 2a. 
The pore pressure vanishes in the drained state (T à ∞). Moreover, anisotropy has no effect in the undrained state 
(T à 0). From Figure 4 we notice that instead of decreasing monotonically with time, the pore pressure rises above 
the initial undrained value before it decays to zero as T à ∞. This is in accordance with the Mandal-Cryer Effect 
(Cryer, 1963). This effect is more pronounced at greater depths and for smaller values of the permeability anisotropy 
parameter γ = ( ) 21

zr / χχ . Since, in general, χ
r
 > χ

z
, the theoretical prediction of the Mandel-Cryer Effect may get 

diluted in materials with anisotropic permeability. 
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