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The Biot linearized theory of fluid saturated porous materials is used to study the plane strain
deformation of a two-phase medium consisting of a homogeneous, isotropic, poroelastic half-space
in welded contact with a homogeneous, isotropic, perfectly elastic half-space caused by a two-
dimensional source in the elastic half-space. The integral expressions for the displacements and
stresses in the two half-spaces in welded contact are obtained from the corresponding expressions
for an unbounded elastic medium by applying suitable boundary conditions at the interface. The
case of a long dip-slip fault is discussed in detail. The integrals for this source are solved analytically
for two limiting cases: (i) undrained conditions in the high frequency limit, and (ii) steady state
drained conditions as the frequency approaches zero. It has been verified that the solution for
the drained case (ω → 0) coincides with the known elastic solution. The drained and undrained
displacements and stresses are compared graphically. Diffusion of the pore pressure with time is
also studied.

1. Introduction

The theory of poroelasticity studies the time-
dependent coupling between the deformation of
rock and fluid flow within the rock. The study of
deformation of a fluid-saturated porous medium
by buried sources is important for its geophys-
ical applications. Biot (1941, 1956) developed
linearized constitutive and field equations for
poroelastic media which have been used very exten-
sively (see, e.g., Wang (2000) and the references
listed therein).

Rongved (1955) derived closed-form algebraic
expressions for the Papkowich–Neuber displace-
ment potentials for an arbitrary point force act-
ing in an infinite medium consisting of two elastic
half-spaces in welded contact. Using the Rongved

solution, Heaton and Heaton (1989) obtained the
deformation field induced by point forces and point
force couples embedded in two Poissonian half-
spaces in welded contact. Kumari et al (1992) gen-
eralized the results of Heaton and Heaton (1989)
by obtaining analytical expressions for the defor-
mation field valid for arbitrary Poisson’s ratio. The
corresponding two-dimensional problem has been
discussed by Singh et al (1992).

The problem of a point source in a poroelas-
tic medium has been discussed by several
researchers (see, e.g., Chau 1996; Pan 1999;
Rice and Clearly 1976; Rudnicki 1986). The
corresponding two-dimensional case has been
considered, among others, by Rudnicki (1987),
Rudnicki and Roeloffs (1990) and Singh and Rani
(2006).
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In the present paper, we study the plane strain
deformation of a two-phase medium consisting of
a homogeneous, isotropic, poroelastic half-space
in welded contact with a homogeneous, isotropic,
elastic half-space due to two-dimensional seismic
sources embedded in the elastic half-space. We
begin with the integral expression for the Airy
stress function for a line source in an unbounded
elastic medium given by Singh and Garg (1986)
and obtain the integral expressions for stresses
and displacements in the two media, using suitable
boundary conditions at the interface. The integrals
cannot be evaluated analytically for arbitrary val-
ues of the frequency. Two particular cases are stud-
ied in detail for a dip-slip line dislocation: Case I,
when the frequency tends to infinity correspond-
ing to the undrained condition, and Case II, when
the frequency approaches zero corresponding to the
drained conditions. As expected, the results for
the drained state coincide with the corresponding
results for a source in two elastic half-spaces in
welded contact given by Singh et al (1992).

2. Theory

We consider a two-dimensional approximation in
which the displacement components (u1, u2, u3) are
independent of the Cartesian coordinate x2 so that
∂/∂x2 ≡ 0. Under this assumption, the plane strain
problem (u2 = 0) and the antiplane strain problem
(u1 = u3 = 0) get decoupled, and can therefore be
treated independently. Since the antiplane defor-
mation is not affected by pore pressure, we shall
confine our discussion to plane strain problem
only.

Let the Cartesian coordinates be denoted
by (x, y, z) ≡ (x1, x2, x3) with z-axis vertically

Figure 1. A line source parallel to the y axis located at the
point (0, 0,−h) of an elastic half-space (z < 0, Medium II)
in welded contact with a poroelastic half-space (z > 0,
Medium I).

upwards. Consider two homogeneous isotropic
half-spaces which are welded along the plane
z = 0 (figure 1). The upper half-space (z > 0) is
poroelastic and is called medium I. The lower
half-space (z < 0) is perfectly elastic and is called
medium II.

2.1 Solution for poroelastic half-space

A homogeneous, isotropic, poroelastic medium can
be characterized by five poroelastic parameters:
shear modulus (G), drained Poisson’s ratio (ν),
undrained Poisson’s ratio (νu), Skempton’s coeffi-
cient (B) and hydraulic diffusivity (c). Darcy con-
ductivity (χ) and Biot–Willis coefficient (α) can be
expressed in terms of these five parameters:

χ =
9c(1 − νu)(νu − ν)

2GB2(1 − ν)(1 + νu)2
, (1)

α =
3(νu − ν)

B(1 − 2ν)(1 + νu)
. (2)

The plane strain problem for an isotropric
poroelastic medium can be solved in terms of Biot’s
stress function F such that (Biot 1956; Singh and
Rani 2006)

σ11 =
∂2F

∂z2
, σ33 =

∂2F

∂x2
, σ13 = − ∂2F

∂x∂z
, (3)

∇2(∇2F + 2ηp) = 0, (4)

(
c∇2 − ∂

∂t

)[
∇2F +

3
(1 + νu)B

p

]
= 0, (5)

where σij denotes the total stress in the fluid-
saturated porous elastic material, p the excess fluid
pore pressure (compression negative) and

η =
1 − 2ν

2(1 − ν)
α, (6)

is the poroelastic stress coefficient.
Eliminating F and p in turn, equations (4) and

(5) lead us to the following decoupled equations(
c∇2 − ∂

∂t

)
∇2p = 0, (7)

(
c∇2 − ∂

∂t

)
∇4F = 0. (8)

The general solution of equation (7) may be
expressed in the form

p = p1 + p2, (9)
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where

c∇2p1 =
∂p1

∂t
, (10)

∇2p2 = 0. (11)

Similarly, the general solution of equation (8) may
be expressed in the form

F = F1 + F2, (12)

where

c∇2F1 =
∂F1

∂t
, (13)

∇4F2 = 0. (14)

Separation of time and space variables can be
made for each of the four functions: p1, p2, F1 and
F2. Assuming the time-dependence in the form
exp(−ιωt), equations (10), (11), (13) and (14) yield

∇2p1 +
ιω

c
p1 = 0, (15)

∇2p2 = 0, (16)

∇2F1 +
ιω

c
F1 = 0, (17)

∇4F2 = 0, (18)

where p1, p2, F1 and F2 are now functions of x and
z only.

Suitable solutions of equations (15)–(18) can be
found by the method of separation of variables.
Using equations (9) and (12), we may take

p =
∫ ∞

0

(A1e
−mz + A2e

−kz)
(

sin kx
cos kx

)
dk, (19)

F =
∫ ∞

0

[B1e
−mz + (B2 + B3kz)e−kz ]

(
sin kx
cos kx

)
dk,

(20)

where

m =
(

ck2 − ιω

c

)1/2

(Re m > 0), (21)

and Ai, Bi may be functions of k. From equations
(4), (5), (19) and (20), we find

A1 =
ιω

2ηc
B1, (22)

A2 =
2
3
(1 + νu)Bk2B3. (23)

From equations (3) and (20), the stresses are found
to be

σ11 =
∫ ∞

0

[B1m
2e−mz + (B2 − 2B3 + B3kz)k2e−kz]

×
(

sin kx
cos kx

)
dk, (24)

σ33 = −
∫ ∞

0

[B1e
−mz + (B2 + B3kz)e−kz ]

×
(

sin kx
cos kx

)
k2dk, (25)

σ13 =
∫ ∞

0

[B1me−mz + (B2 − B3 + B3kz)ke−kz ]

×
(

cos kx
− sin kx

)
kdk. (26)

Corresponding to the stresses (24)–(26), the dis-
placements are given by (Singh and Rani 2006)

2Gu1 = −
∫ ∞

0

[B1e
−mz

+ {B2 + B3(2νu − 2 + kz)}e−kz ]

×
(

cos kx
− sin kx

)
kdk,

2Gu3 =
∫ ∞

0

[B1me−mz

+ {B2 + B3(1 − 2νu + kz)}ke−kz ]

×
(

sin kx
cos kx

)
dk, (27)

where

α0 =
3(νu − ν)
B(1 + νu)

. (28)

Darcy’s flux in the z-direction (q) is given by

q = −χ
∂p

∂z

= χ

∫ ∞

0

(mA1e
−mz + kA2e

−kz)
(

sin kx
cos kx

)
dk,

(29)

where equation (19) has been used.
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Table 1. Source coefficients for various sources [α′ = 1/{2(1 − ν′)}].
Upper or lower

Source S1 S2 solution

Single couple (23) − ∈ F23

2π
∈ α′ F23

2π
Upper

Single couple (32) ∈ F32

2π
∈ α′ F32

2π
Upper

Double couple (23) + (32)
(F23 = F32 = D23) 0 ∈ α′ D23

π
Upper

Centre of rotation (32)–(23)
(F23 = F32 = R23)

∈ R23

π
0 Upper

Dipole (22) (1 − α′)
F22

2π
−α′ F22

2π
Lower

Dipole (33) (1 − α′)
F33

2π
α′ F33

2π
Lower

Centre of dilatation (22) + (33)
(F22 = F33 = C0) (1 − α′)

C0

π
0 Lower

Double couple (33)–(22)
(F22 = F33 = D′

23) 0 α′ D
′
23

π
Lower

Tensile dislocation in x2-direction α′ T0

π
−α′ T0

π
Lower

Tensile dislocation in x3-direction α′ T0

π
α′ T0

π
Lower

2.2 Solution for elastic half-space

A homogeneous isotropic elastic medium can be
characterized by two elastic parameters: shear
modules (G′) and Poisson’s ratio (ν ′). The plane
strain problem for an isotropic elastic medium can
be solved in terms of the Airy stress function Φ
such that

σ′
11 =

∂2Φ
∂z2

, σ′
33 =

∂2Φ
∂x2

, σ′
13 = − ∂2Φ

∂x∂z
,

(30)

∇2∇2Φ = 0, (31)

where σ′
ij are the stress components.

Let there be a line source parallel to the y-axis
passing through the point (0, 0,−h) of the elastic
half space (z < 0, figure 1). As shown by Singh
and Garg (1986), the Airy stress function for a line
source parallel to the y axis passing through the
point (0, 0,−h) in an unbounded isotropic elastic
medium can be expressed in the form

Φ0 =
∫ ∞

0

(S1 +S2 ∈ kZ)e−∈kZ

(
sin kx
cos kx

)
dk

k
, (32)

where
Z = z + h, ∈= ±1, (33)

the upper sign is for Z > 0 and the lower sign
for Z < 0. The source coefficients S1 and S2

are independent of k. Singh and Garg (1986)
have obtained these coefficients for various seis-
mic sources. These are listed in table 1 for
ready reference. The upper or lower solution
in the last column of table 1 refers to equa-
tion (32). We use the notation of Ben-Menahem
and Singh (1981) for labelling various sources.
Thus, (23) denotes the single couple in the x2x3-
plane with forces in the x2-direction and F23 is
the corresponding moment; (23) + (32) denotes
the double couple in the x2x3-plane; (32)–(23)
denotes the centre of rotation in the x2x3-plane;
(22) denotes the dipole in the x2-direction of
strength F22; (22) + (33) denotes the centre of
dilatation and (33)–(22) denotes the double couple
whose forces bisect the angles between the dipoles
(22) and (33). In table 1, we have included the
source coefficients for a tensile dislocation as well
for which T0 = G′bds, where b is the displace-
ment discontinuity and ds is the width of the
dislocation.

For a line source parallel to the y-axis (figure 1)
acting at the point (0, 0,−h) of the elastic half-
space (z < 0) which is in welded contact with the
poroelastic half-space (z > 0), the Airy stress func-
tion for the elastic half-space may be taken to be
of the form

Φ = Φ0 +
∫ ∞

0

(C1 + C2kz)ekz

(
sin kx
cos kx

)
dk, (34)
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where the unknowns C1, C2 are to be determined
from the boundary conditions and Φ0 is given by
equation (32).

From equations (30), (32) and (34), we obtain
the following expressions for the stresses in the
elastic half-space (z < 0):

σ′
11 =

∫ ∞

0

[{S1 + S2(−2+ ∈ kZ)}e−∈kZ

+ {C1 + C2(2 + kz)}kekz ]

×
(

sin kx
cos kx

)
kdk, (35)

σ′
33 = −

∫ ∞

0

[(S1 + S2 ∈ kZ)e−∈kZ

+ (C1 + C2kz)kekz ]
(

sin kx
cos kx

)
kdk, (36)

σ′
13 =

∫ ∞

0

[{S1 − S2(1− ∈ kZ)} ∈ e−∈kZ

− {C1 + C2(1 + kz)}kekz ]

×
(

cos kx
− sin kx

)
kdk. (37)

The corresponding displacements are given by

2G′u′
1 =

∫ ∞

0

[{−S1 + S2(2 − 2ν ′− ∈ kZ)}e−∈kZ

− {C1 + C2(2 − 2ν ′ + kz)}kekz ]

×
(

cos kx
− sin kx

)
dk, (38)

2G′u′
3 =

∫ ∞

0

[{S1 + S2(1 − 2ν ′+ ∈ kZ)} ∈ e−∈kZ

+ {−C1 + C2(1 − 2ν ′ − kz)}kekz ]

×
(

sin kx
cos kx

)
dk. (39)

3. Boundary conditions

Since the half-spaces are assumed to be in welded
contact along the plane z = 0, the continuity of the
stresses and the displacements give the following
boundary conditions

σ13 = σ′
13, σ33 = σ′

33

u1 = u′
1, u3 = u′

3, (40)

at z = 0. If we assume that the interface is imper-
meable, the hydraulic boundary condition is

q = 0 at z = 0. (41)

It is noticed from table 1 that the source coeffi-
cients S1 and S2 might have different values for
Z ≷ 0. Let S′

1 and S′
2 be the values of S1 and S2,

respectively, valid for Z > 0. The boundary condi-
tions (40) and (41) yield the following system of
equations:

mB1 + kB2 − kB3 + kC1 + kC2

= (S′
1 − S′

2 + S′
2kh)e−kh,

(42)

kB1 + kB2 − kC1 = (S′
1 + S′

2kh)e−kh, (43)

kB1 + kB2 + 2k(νu − 1)B3 − θkC1

− 2θk(1 − ν ′)C2

= θ(S′
1 + S′

2kh − 2S′
2 + 2S′

2ν
′)e−kh, (44)

mB1 + kB2 + k(1 − 2νu)B3 + θkC1

− θk(1 − 2ν ′)C2

= θ(S′
1 + S′

2 − 2S′
2ν

′ + S′
2kh)e−kh, (45)

mA1 + kA2 = 0, (46)

where

θ =
G

G′ . (47)

Solving the system of equations (42)–(46) and
using equations (22) and (23), we obtain

A1 =
Ω
2η

Q(k + m)S′
2e

−kh,

A2 = −m

k
A1,

B1 =
ΩQ

k − m
S′

2e
−kh,

B2 =
[
−P2

k

(
S′

1 −
S′

2

2
+ S′

2kh

)

+
QS2

2k

(
1 − k + m

k − m
Ω

)]
e−kh,
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B3 =
Q

K
S′

2e
−kh,

C1 =
[
−P1

k
(S′

1 + S′
2kh)

+
S′

2

2k
{P2 + (1 + Ω)Q}

]
e−kh,

C2 =
P1

k
[2S′

1 − S′
2 + 2S′

2kh]e−kh, (48)

where

P1 =
1 − θ

1 + 3θ − 4θν ′ , P2 = P1 − 1,

P3 =
4νu − 3 − θ

1 − θ
,

Q =
P2

P1(P3 + Ω)
, Ω =

k2γ

m(m + k)
,

γ =
2(ν − νu)
(1 − ν)

. (49)

Substituting the values of A1, B1, etc. in equa-
tions (19), (20) and (34), we get the integral
expressions for the stress functions in the two
media and pore pressure in terms of the source
coefficients S1 and S2. The values of these coeffi-
cients for various sources are given in table 1. The
expressions for a particular source are obtained on
putting the values of the source coefficients for that
source. However, the integrals cannot be solved
analytically for arbitrary values of ω. Two par-
ticular cases of great interest are: Case I as the
frequency ω → ∞ corresponding to the undrained
state and Case II as ω → 0 corresponding to the
drained state (Wang 2000; Section 7.5). For these
two cases, the integrals appearing in the expres-
sions for the stress functions in the two media
and pore pressure can be evaluated using standard
integral transform tables. The displacements and
stresses can be obtained similarly. Here, we give the
results for a two-dimensional dip-slip dislocation.

4. Vertical dip-slip dislocation

As shown by Maruyama (1966), the double coupe
(23) + (32) is equivalent to a vertical dip-slip line
dislocation such that

D23 = G′bds, (50)

where b is the slip and ds is the width of the line
dislocation. Therefore, from table 1,

S′
1 = 0, S′

2 =
α′

π
D23 =

D23

2π(1 − ν ′)
, (51)

with the stipulation that in the representation of
equation (32), the upper solution is to be selected.

4.1 Case I (Undrained state, ω → ∞)

On taking the limit ω → ∞ and evaluating the
resulting integrals analytically, we obtain, for the
poroelastic half-space (z > 0),

F =
α′D23

π

[
1
2
(P2 + Q2) tan−1

(
x

z + h

)

+(Q2z − P2h)
x

R2
1

]
, (52)

σ11 =
α′D23

π

(
x

R4
1

)

×
[
P2(z + 3h) − Q2(5z + 3h)

+ 8(Q2z − P2h)
(

z + h

R1

)2
]
, (53)

σ13 =
α′D23

π

(
1

R2
1

)[
1
2
(Q2 − P2)

+ {P2(z + 7h) − Q2(7z + h)}

× z + h

R2
1

+ 8(Q2z − P2h)
(z + h)3

R4
1

]
, (54)

σ33 = −α′D23

π

(
x

R4
1

)

×
[
P2(z + 3h) − Q2(z − h)

+ 8(Q2z − P2h)
(

z + h

R1

)2
]
, (55)

2Gu1 =
α′D23

π

(
1

R2
1

)

×
[
− 1

2
{P2(z + 3h) + Q2(h − z)

− 4Q4(z+h)} − 2(Q2z − P2h)
(z+h)2

R2
1

]
,

(56)
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2Gu3 =
α′D23

π

(
x

R2
1

)

×
[

1
2
(P2 − Q2 + 4Q4)

+ 2(Q2z − P2h)
z + h

R2
1

]
, (57)

p = −α′D23

π

(
γ

η

)
Q2x(z + h)

1
R4

1

, (58)

where

Q2 =
P2

P1P3

, Q4 = (1 − νu)Q2,

R2
1 = x2 + (z + h)2, R2

2 = x2 + (z − h)2. (59)

Similarly, for the elastic half-space (z < 0), we find

Φ =
α′D23

π

[
1
2
(P2 + Q2) tan−1

(
x

h − z

)

+ x(z + h)
1

R2
1

− P1x(z + h)
1

R2
2

+ 4P1xhz(h − z)
1

R4
2

]
, (60)

σ′
11 =

α′D23

π
x

[
2

{
− 3 + 4

(
z + h

R1

)2
}

z + h

R4
1

+

{
(P2 + Q2)(h − z) − 2P1(5h − 3z)

+ 8P1(h − z)(z2 + 3h2 − 10hz)
1

R2
2

+ 96P1hz
(h − z)3

R4
2

}
1

R4
2

]
, (61)

σ′
13 =

α′D23

π

[{
1−8

(
z+h

R1

)2

+8
(

z+h

R1

)4
}

1
R2

1

+

{
1
2
(P2 − 2P1+Q2) + (8P1 − P2 − Q2)

×
(

h−z

R2

)2

− 12P1

hz

R2
2

− 8P1

(
h−z

R2

)4
}

1
R2

2

+ 96P1hz
(h − z)2

R6
2

{
1 −

(
h − z

R2

)2
}]

,

(62)

σ′
33 =

α′D23

π
x

[
2

{
1 − 4

(
z + h

R1

)2
}

z + h

R4
1

−
{

2P1(z + h) + (P2 + Q2)(h − z)

− 8P1(h − z)(h2 − z2 + 6hz)
1

R2
2

+ 96P1hz(h − z)3
1

R4
2

}
1

R4
2

]
, (63)

2G′u′
1 =

α′D23

π

[{
3 − 2ν ′ − 2

(
z + h

R1

)2
}

z + h

R2
1

−
{

1
2
(P2 + Q2)(h − z) + P1(z + h)

+ 2(1 − ν ′)P1(z − 3h)

}
1
R2

2

+ 2P1{h2− z2+6hz − 4(1− ν ′)h(h − z)}

× h − z

R4
2

− 16P1hz(h − z)3
1

R6
2

]
, (64)

2G′u′
3 =

α′D23

π
x

[{
1 − 2ν ′ + 2

(
z + h

R1

)2
}

1
R2

1

−
{

1
2
(P2 + Q2) + P1(1 − 2ν ′)

}
1

R2
2

+ 2P1{3h2 − z2 − 4ν ′h(h − z)} 1
R4

2

− 16P1hz(h − z)2
1

R6
2

]
. (65)

4.2 Case II (Drained state, ω → 0)

The results for the limiting case ω → 0 can be
obtained similarly. We define
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P4 =
4ν − 3 − θ

1 − θ
, Q1 =

P2

P1P4

,

Q3 = (1 − ν)Q1 (66)

and note that

P3 + 1
2
γ

1 + 1
2
γ

= P4,
P3 + 1

2
γ

1 − νu

=
P4

1 − ν
. (67)

On taking the limit ω → 0, evaluating the result-
ing integrals analytically and using equations (66)
and (67), we find that p = 0 and the expressions for
the stresses and the displacements can be obtained
from equations (53)–(57) and (61)–(65) on replac-
ing Q2 by Q1 and Q4 by Q3. We have verified
that the expressions for the stresses and the dis-
placements valid for ω → 0 for source in an elas-
tic half-space in welded contact with a poroelastic

Figure 2. Variation of the horizontal displacement at the
interface (z = 0) with the horizontal distance from the fault
for ν = 0.12, νu = 0.31, ν′ = 0.25 and for (a) G/G′ = 0.5;
(b) G/G′ = 2. The horizontal displacement is measured in
units of (bds/h) and the horizontal distance is measured in
units of h.

half-space coincide with the corresponding expres-
sions for a source in an elastic half-space in welded
contact with another elastic half-space given by
Singh et al (1992).

5. Numerical results and discussion

5.1 Drained and undrained states

Equations (53)–(57) and (61)–(65) can be used for
computing the stress and the displacement fields
in the two half-spaces under undrained conditions.
The pore pressure in the poroelastic half-space is
given by equation (58). For the stress and the
displacement fields under drained conditions, we
have to change Q2 to Q1 and Q4 to Q3 in equa-
tions (53)–(57) and (61)–(65). We have computed
the displacement and stress fields generated by a
vertical dip-slip dislocation located at the point
(0, 0,−h) of the elastic half-space (figure 1). We
have assumed that ν ′ = 0.25, ν = 0.12, νu = 0.31.
The numerical values of the drained and undrained

Figure 3. Variation of the vertical displacement for
(a) G/G′ = 0.5; (b) G/G′ = 2.
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Figure 4. Variation of the dimensionless stress Σ11 in the
poroelastic half-space with the horizontal distance from the
fault for ν = 0.12, νu = 0.31, ν′ = 0.25, G/G′ = 2 and for
(a) z = 0; (b) z = h.

Poisson’s ratios assumed for the poroelastic half-
space correspond to the Ruhr Sandstone (Wang
2000; p. 266).

Figure 2(a) shows the variation of the dimension-
less horizontal displacement with the dimensionless
horizontal distance from the fault for G/G′ = 0.5.
The horizontal displacement u1 is measured in
units of (bds/h), where b is the displacement dislo-
cation, ds the width of the fault and h the distance
of the line source from the interface. The horizontal
distance x is measured in units of h. Figure 2(b) is
for G/G′ = 2. We note that the difference between
the drained and the undrained displacements is
more when the poroelastic half-space is harder than
the elastic half-space as against the case when
the poroelastic half-space is softer than the elas-
tic half-space. Figure 3(a) shows the variation of
the dimensionless vertical displacement with the
dimensionless horizontal distance for G/G′ = 0.5.
Figure 3(b) is for G/G′ = 2.0. Here also, u3 is mea-
sured in units of (bds/h) and x in units of h.

Figure 5. Variation of the dimensionless stress Σ13 for
(a) z = 0; (b) z = h.

We have given closed-form expressions for pore
pressure, stresses and displacements in two lim-
iting cases, viz., ω → ∞ (undrained state) and
ω → 0 (drained state). For arbitrary ω, the
integrals occurring in the expressions for pore
pressure, stresses and displacements cannot be
evaluated analytically. One has to resort to numer-
ical integration.

We define the following dimensionless quanti-
ties:

T =
2ct
h2

,

P =
(

h2

G′bds

)
p, (68)

Σij =
(

h2

G′bds

)
σij ,

where h is the distance of the line source from the
interface, b is the displacement dislocation, ds is
the fault width, G′ is the rigidity of the elastic
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Figure 6. Variation of the dimensionless stress Σ33 for
(a) z = 0; (b) z = h.

half-space and c is the hydraulic diffusivity of the
poroelastic half-space.

Figures 4 to 6 show the variation of the
dimensionless stresses Σij with the dimensionless
horizontal distance from the fault for G/G′ = 2.
While figures 4(a), 5(a) and 6(a) are for the stresses
at the interface, figures 4(b), 5(b) and 6(b) are for
z = h in the poroelastic half-space. The stresses
σ13 and σ33 are continuous at the interface. But
σ11 is not continuous there. Figure 4(a) is for Σ11

in the poroelastic half-space as we approach the
interface.

Figure 7(a, b, c) shows the variation of the
dimensionless stresses Σ11, Σ13 and Σ33 in the
poroelastic half-space with dimensionless dis-
tance from the interface for x = h, G/G′ = 2. The
stresses in the poroelastic half-space tend to zero
as the distance from the interface tends to infinity.

5.2 Results in the time domain

From equations (19), (24) to (27), (35) to (39),
(48) and (51), we get the integral expressions for

Figure 7. Variation of the dimensionless stress components
(a) Σ11; (b) Σ13; (c) Σ33 in the poroelastic half-space
with the distance from the interface for x = h, ν = 0.12,
νu = 0.31, ν′ = 0.25 and G/G′ = 2.

the pore pressure, displacements and stresses at
any point in each of the two half-spaces caused
by a vertical dip-slip dislocation located at the
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Figure 8. Diffusion of the dimensionless pore pressure P
with dimensionless time T for x = h and z = 0, h, 2h.

Figure 9. Variation of the dimensionless pore pressure
P in the poroelastic half-space with the horizontal dis-
tance from the fault at five times: T = 0 (undrained
response), 0.1, 1, 10,∞ (drained response) for (a) z = 0;
(b) z = h.

Figure 10. Variation of the dimensionless pore pressure in
the poroelastic half-space with the distance from the inter-
face for x = h at five times.

point (0, 0,−h) of the elastic half-space. This solu-
tion is in the k–ω plane. On replacing (−ιω)
by s, we get the solution in the Fourier–Laplace
transform domain, where s is the Laplace trans-
form variable. Two integrations are required to be
performed to get the solution in the space–time
domain.

Schapery (1962) proposed a very simple
and efficient approximate formula for finding
Laplace inversion numerically. According to this
formula

φ(t) ≈ [sφ̄(s)]s=1/(2t), (69)

where φ̄(s) is the Laplace transform of φ(t).
Accuracy of this formula has been demonstrated,
amongst others, by Rajapakse and Senjuntichai
(1993), Senjuntichai and Rajapakse (1995) and
Chau (1996). We have used Schapery’s approxi-
mate formula for Laplace inversion.

Fourier transform inversion involves evaluating
the semi-infinite integral with respect to k. This
has been done by using extended Simpson’s rule.
The semi-infinite integral is discretized into a series
of integrals over sub-intervals delimited by consec-
utive zeros of the integrand and truncated after
achieving the desired accuracy. Due to exponen-
tial decay, the integrand decreases very rapidly as
k increases. Satisfactory accuracy is achieved by
taking the initial six to seven zeros of the inte-
grand. Figure 8 demonstrates the diffusion of the
pore pressure in the poroelastic half-space with
time for x = h, z = 0, h, 2h. The rate of diffusion
increases with distance from the interface. Fig-
ure 9(a, b) depicts the variation of the pore pres-
sure with the horizontal distance from the fault
for z = 0, h and T = 0 (undrained state), 0.1, 1,
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10 and ∞ (drained state). Of course, P = 0 in the
drained state. The point of maximum pore pressure
moves away from the source with time. Figure 10
shows the variation of the pore pressure in the
poroelastic half-space with distance from the inter-
face for x = h, G/G′ = 2 and T = 0 (undrained
state), 0.1, 1, 10 and ∞ (drained state).
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Appendix

Notation

B Skempton’s coefficient

c hydraulic diffusivity

G shear modulus

m = (k2 − ιω/c)1/2

p pore pressure (compression negative)

P1 =
1 − θ

1 + 3θ − 4θν ′ , P2 = P1 − 1

P3 =
4νu − 3 − θ

1 − θ
, P4 =

4ν − 3 − θ

1 − θ

q Darcy’s flux in the z-direction

Q =
P2

P1(P3 + Ω)
, Q1 =

P2

P1P4

, Q2 =
P2

P1P3

Q3 = Q1(1 − ν), Q4 = Q2(1 − νu)

R2
1 = x2 + (z + h)2

R2
2 = x2 + (z − h)2

t time

Z = z + h

α Biot–Willis coefficient

=
3(νu − ν)

B(1 − 2ν)(1 + νu)

α′ =
1

2(1 − ν ′)

α0 =
3(νu − ν)
B(1 + νu)

γ =
2(ν − νu)

1 − ν

∈= ±1 for Z ≷ 0

ν drained Poisson’s ratio
νu undrained Poisson’s ratio

η =
3(νu − ν)

2B(1 − ν)(1 + νu)
=

1 − 2ν
2(1 − ν)

α

θ = G/G′

χ Darcy conductivity

=
9c(1 − νu)(νu − ν)

2GB2(1 − ν)(1 + νu)2

Ω =
k2γ

m(m + k)
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