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Analytical solution for the problem of a surface-breaking long strike-slip fault in an elastic layer
overlying an elastic half-space is well known. The purpose of this note is to obtain the corresponding
solution for a blind fault. Since the solution is valid for arbitrary values of the fault-depth and
the dip angle, the effects of these two important fault parameters can be studied numerically. The
variation of the parallel displacement and shear stress with the distance from the fault is studied
numerically for different values of the fault-depth and dip angle.

1. Introduction

A complete understanding of the processes
involved in an earthquake cycle requires knowledge
of the distribution of displacements in a region
and how they vary with time in the epochs pre-
ceding an earthquake, during an earthquake and
following an earthquake. We may recast these
epochs in terms of strain accumulation prior to
an earthquake, coseismic deformation and postseis-
mic deformation. Several researchers have devel-
oped models of coseismic lithospheric deformation.
Rybicki (1971) found a closed-form analytical solu-
tion for the problem of a long vertical strike-slip
fault in a two-layer model of the earth. Chinnery
and Jovanovich (1972) extended the solution to
a three-layer model. Savage and Prescott (1978)
constructed a simple two-dimensional model of an
earthquake cycle that takes place on a transform
fault.

Singh and Rani (1994) obtained an analytical
solution for the problem of a long inclined strike-
slip fault in an elastic layer overlying an elastic
half-space. In the model used by Singh and Rani
(1994), the depth d of the upper edge of the fault
does not occur explicitly in the solution. Moreover,

as the dip angle tends to zero, the fault approaches
the surface of the earth. Therefore, their results
cannot be used to study the deformation of a two-
layer model caused by deep strike-slip faults of
small dip angles. The purpose of the present note is
to obtain a closed-form analytical solution for the
problem of a long blind strike-slip fault located in
an elastic layer overlying an elastic half-space. The
depth d occurs explicitly in the solution. Therefore,
the effect of the variations in the depth for a fixed
dip and vice versa can be studied directly. Fig-
ures showing the effect of variations in the depth
d on the surface displacement and shear stress are
presented.

2. Theory

We consider an earth model consisting of a homo-
geneous, isotropic, elastic layer of thickness H over-
lying a homogeneous, isotropic, elastic half-space
(figure 1). We place the origin of a Cartesian coor-
dinate system (x1, x2, x3) at the free boundary and
the x3-axis points downwards into the medium. A
long inclined strike-slip fault, with strike along the
x1-axis, is situated in the layer. The upper edge of
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the fault is taken to be at depth d. Let µ1 and µ2

be the rigidities of the layer and of the half-space,
respectively. The superscript (1) denotes quantities
related to the layer and the superscript (2) denotes
quantities related to the half-space.

Following Singh and Rani (1994), we obtain the
following expressions for the displacements in the
strike direction (x1-direction) due to an inclined
strike-slip fault of finite width L and infinite length
under the assumption of antiplane strain problem:
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Figure 1. Geometry of a long strike-slip fault of width
L situated in a layer of uniform thickness H overlying a
half-space. The displacement discontinuity (slip) on the fault
is parallel to the x1-axis. The sign ⊕ indicates displacement
in the direction of the x1-axis, the sign ª in the opposite
direction. d is the depth of the upper edge A of the fault and
δ is the dip angle. s is the distance from the upper edge of the
fault measured in the down-dip direction. µ1 and µ2 denote
the rigidity of the layer and the half-space, respectively.

where δ is the dip angle, s is the distance from the
upper edge of the fault measured in the down-dip
direction (figure 1) and

x = x3 − d, x′ = x3 + d, (3)
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d being the depth of the upper edge of the fault
and b the slip. The nonzero stresses are given by

p
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, p
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(no summation over i; i = 1, 2).
From equations (1), (2) and (7), we get the fol-

lowing expressions for the stresses
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Figure 2. Variation of the normalized parallel displacement (u/b) at the surface with the normalized distance from the fault
(x2/H) assuming µ1/µ2 = 1/2 for four different values of depth d = 0, H/10, H/2 and 3H/4 for (a) δ = 15◦; (b) δ = 45◦;
(c) δ = 75◦.
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Figure 3. Variation of the normalized shear stress P12[= p12/(µ1b/H)] at the surface with the normalized distance from
the fault (x2/H) assuming µ1/µ2 = 1/2 for four different values of d = 0, H/10, H/2 and 3H/4 for (a) δ = 15◦; (b) δ = 45◦;
(c) δ = 75◦.
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where
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On substituting d = 0 in equations (1), (2), and
(8) to (11) we obtain the corresponding results for
a surface-breaking fault given by Singh and Rani
(1994).

3. Numerical results

To examine the effect of the variation in the
depth d of the upper edge of the fault on
the coseismic field, we assume µ1/µ2 = 1/2 and
L = H/4. The explicit analytical expressions giv-
ing the elastic field involve infinite series. The
infinite series appearing in the right-hand side
of equations (1), (2), and (8) to (11) converge
very rapidly. Numerically, it is found that a
few terms in the infinite series are adequate for
most practical purposes. Figures 2(a)–(c) show the
variation of the dimensionless parallel surface dis-
placement (u/b) with the dimensionless horizontal
distance from the upper edge of the fault (x2/H)
for δ = 15◦, 45◦, 75◦, for four different values of
d = 0,H/10,H/2 and 3H/4. We observe that the
displacement for the surface-breaking fault (d = 0)
is discontinuous at x2 = 0. Figures 3(a)–(c) exhibit
the variation of the dimensionless surface shear
stress P12[= p12/(µ1b/H)] with the distance from
the fault (x2/H) for δ = 15◦, 45◦, 75◦. We observe
that the variation of the shear stress for the surface
breaking fault (d = 0) is remarkably different from
the variation of the shear stress for buried faults.
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