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The calculation of the deformation caused by shear and tensile faults is necessary for the inves-
tigation of seismic and volcanic sources. The solution of the two-dimensional problem of a long
inclined shear fault in two welded half-spaces is well known. The purpose of this note is to
present the corresponding solution for a tensile fault. Closed-form analytical expressions for the
Airy stress function for a tensile line source in two welded half-spaces are first obtained. These
expressions are then integrated analytically to derive the Airy stress function for a long tensile
fault of arbitrary dip and finite width. Closed-form analytical expressions for the displacements
and stresses follow immediately from the Airy stress function. These expressions are suitable for
computing the displacement and stress fields around a long inclined tensile fault near an internal
boundary.

1. Introduction

Tensile fault representation has several very impor-
tant geophysical applications, such as modelling of
the deformation field due to a dyke injection in
the volcanic region, mine collapse and fluid driven
crack. Recent studies have shown that a large num-
ber of earthquake sources cannot be represented by
the double-couple source mechanism which models
a shear fault. According to Sipkin (1986), the non-
double-couple mechanism might be due to tensile
failure under high fluid pressure.

The problem of a tensile fault in a uniform half-
space has been studied by Maruyama (1964), Davis
(1983), Yang and Davis (1986), Bonafede and
Danesi (1997), Singh and Singh (2000) and Singh
et al (2002). The aim of the present note is to study
the deformation of two homogeneous, isotropic,
elastic half-spaces in welded contact caused by a
long tensile fault of arbitrary dip and finite width,
using the Airy function approach. The correspond-
ing problem of an inclined dip-slip fault has been
discussed by Rani and Singh (1992). Bonafede

and Rivalta (1999) have studied the problem of
a long vertical tensile fault in two welded half-
spaces, using a Galerkin vector approach. It is use-
ful to generalize the results of Bonafede and Rivalta
(1999) to the case of a tensile fault of arbitrary dip.

We begin with the closed-form expressions for
the Airy stress function for an arbitrary line source
in two welded half-spaces given by Singh et al
(1992). Following Singh and Singh (2000), we
obtain the Airy stress function for a long ten-
sile fault of arbitrary dip and finite width. The
expressions for the displacements and stresses fol-
low from the stress function. The results of the
present study may find applications in extracting,
from geodetic and seismic data, information on the
position, depth, magma content and geometry of a
buried dyke. The stresses induced by dyke opening
are thought to be responsible for the seismicity gen-
erally observed prior to an eruption, for inducing
isotropic moment tensor components and for caus-
ing changes in the principal stress directions. Avail-
ability of results for an arbitrarily dipping tensile
fault is of immense help in such studies.
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Figure 1. Two half-spaces in welded contact with a long
inclined tensile fault in the lower half-space. The Cartesian
coordinates of a point on the fault are (y2, y3) and its polar
coordinates (s, δ), where δ is the dip angle and s1 ≤ s ≤ s2.

2. Theory

Let the Cartesian coordinates be denoted by (x1,
x2, x3) with the x3-axis vertically downwards.
Consider two homogeneous, isotropic, elastic half-
spaces that are welded along the plane x3 = 0. The
upper half-space (x3 < 0) is called medium I and
the lower half-space (x3 > 0) is called medium II,
with elastic constants λ1, µ1 and λ2, µ2, respec-
tively (figure 1). In the following, the superscript
(1) denotes quantities related to medium I and the
superscript (2) denotes those related to medium II.

We consider a plane strain approximation paral-
lel to the x2x3-plane so that

u1 ≡ 0, ∂/∂x1 ≡ 0. (1)

We define the Airy stress function U through the
relations

τ22 = U,33, τ23 = −U,23, τ33 = U,22,

∇2∇2U = 0, (2)

where τij are the components of stress and U,33 =
∂2U/∂x2

3, etc.
Singh et al (1992) obtained closed-form analyti-

cal expressions for the Airy stress function at any
point of either of two homogeneous, isotropic, elas-
tic half-spaces in welded contact caused by var-
ious two-dimensional sources in terms of certain
source coefficients. These source coefficients have
been given by Singh and Rani (1991). It has been
shown by Singh and Singh (2000) that, for a line

source, the Airy stress function for a long inclined
tensile fault is given by

U = U22 sin2 δ − U23 sin 2δ + U33 cos2 δ, (3)

where δ is the dip of the fault (figure 1), U22, U33

and U23 are the Airy stress functions for a vertical
tensile fault (δ = π/2), a horizontal tensile fault
(δ = 0) and a vertical dip-slip fault. Using the val-
ues of the source coefficients given by Singh and
Rani (1991), we obtain the following expressions
for the Airy stress function due to a long tensile
fault (line source) parallel to the x1-axis and pass-
ing through the point (y2, y3) of the lower half-
space (medium II) which is in welded contact with
the upper half-space (medium I):

U (1) =
(

α2µ2bds

π

)[
−D1 lnR+cos 2δ

{(
C1+D1

2

)

× ln R +
(D1y3 + C1x3)(y3 − x3)

R2

}

− sin 2δ

{(
C1 + D1

2

)
tan−1

(
x2 − y2

y3 − x3

)

−(D1y3 + C1x3)(x2 − y2)
R2

}]
, (4)

U (2) =
(

α2µ2bds

π

)[
− lnR− C2 ln S

+
2x3(x3 + y3)C2

S2
+ cos 2δ

{
(x3 − y3)2

R2

−D2 ln S − C2(x2
3 − y2

3 + 2x3y3)
S2

+
4C2x3y3(x3 + y3)2

S4

}

− sin 2δ

{(
(x2 − y2)(x3 − y3)

R2

)

−D2 tan−1

(
x2−y2

x3+y3

)
+

C2(x2−y2)(x3−y3)
S2

−4C2x3y3(x2 − y2)(x3 + y3)
S4

}]
, (5)

where

b = displacement discontinuity,

ds = width of the line source,
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δ = dip angle,

(x2, x3) = receiver location,

R2 = (x2 − y2)2 + (x3 − y3)2,

S2 = (x2 − y2)2 + (x3 + y3)2,

β = µ1/µ2,

α1 = (λ1 + µ1)/(λ1 + 2µ1),

α2 = (λ2 + µ2)/(λ2 + 2µ2),

C1 = 2β[α2(1− β − 2/α1)]−1,

C2 = (β − 1)(1− β + 2β/α2)−1,

D1 = 1 + C2,

D2 = −(C1 + D1)/2. (6)

We put (see figure 1)

y2 = s cos δ, y3 = s sin δ. (7)

Inserting the values of y2 and y3 from equa-
tion (7) into equations (4) and (5) and integrat-
ing over s between the limits (s1, s2), we obtain
the following expressions for the Airy stress func-
tion for a long inclined tensile fault of finite width
L = s2 − s1:

U (1) =
(

α2µ2b

2π

)[
{(C1 + D1) cos 2δ − 2D1}s lnR

+ (D1 − C1)(x2 cos δ + x3 sin δ) ln R

− (C1 + D1)(x2 sin δ − x3 cos δ)

× tan−1

(
s− x2 cos δ − x3 sin δ

x2 sin δ − x3 cos δ

)

+ s(D1 − C1 cos 2δ)− (C1 + D1)s

× sin 2δ tan−1

(
x2 − s cos δ

s sin δ − x3

)]∥∥∥∥, (8)

U (2) =
(

α2µ2b

π

)[
(x3 sin δ + x2 cos δ − s) ln R

+ {(C2 + D2)(x2 cos δ + x3 sin δ)

− s(C2+D2 cos 2δ)} ln S+{(1+C2+2D2)

× cos2 δ−D2}s+
2C2

S2
{s(x2 cos δ−x3 sin δ)

− (x2
2+x2

3)}x3 sin δ+D2(x2 sin δ−x3 cos δ)

× tan−1

(
s + x3 sin δ − x2 cos δ

x2 sin δ + x3 cos δ

)

+sD2 sin 2δ tan−1

(
x2 − s cos δ

x3 + s sin δ

)] ∥∥∥∥, (9)

where

R2 = (x2 − s cos δ)2 + (x3 − s sin δ)2,

S2 = (x2 − s cos δ)2 + (x3 + s sin δ)2,

f(s)|| = f(s2)− f(s1). (10)

3. Stresses and displacements

From equations (2), (8) and (9), we obtain the
following expressions for the stresses in two half-
spaces:

τ22
(1) =

(
α2µ2b

2π

)[
{D1(x3 sin δ − x2 cos δ)

− C1(3x2 cos δ + 5x3 sin δ)} 1
R2

+ {3C1 + D1(2 cos 2δ − 1)} s

R2

+4(C1x3+D1s sin δ)(x2 cos δ+x3 sin δ−s)

×
(

x3 − s sin δ

R4

)]∥∥∥∥, (11)

τ23
(1) = −

(
α2µ2b

2π

)[
{C1(3x3 cos δ − x2 sin δ)

+ D1(x2 sin δ + x3 cos δ)} 1
R2
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+ 4(C1x3 + D1s sin δ)(x2 sin δ − x3 cos δ)

×
(

x3 − s sin δ

R4

)]∥∥∥∥, (12)

τ33
(1) =

(
α2µ2b

2π

)[
{D1(x2 cos δ − x3 sin δ − s)

− C1(x2 cos δ + 3x3 sin δ − s)} 1
R2

+ 4(C1x3 + D1s sin δ)(x2 sin δ − x3 cos δ)

×
(

x2 − s cos δ

R4

)] ∥∥∥∥, (13)

τ22
(2) =

(
α2µ2b

π

) [
(x3 sin δ−x2 cos δ+s cos 2δ)

1
R2

+ 2(x3 sin δ+x2 cos δ−s)× (x2 − s cos δ)2

R4

+ {D2(x3 sin δ − x2 cos δ + s)

+ C2(3x3 sin δ + x2 cos δ)

− C2(1+2 sin2 δ)s} 1
S2

− 2C2(x2 cos δ+x3 sin δ−s)
(x3+s sin δ)2

S4

+ 8C2x2s sin2 δ
(x2 − s cos δ)

S4

+ 12C2x3 sin δ(x2 cos δ − x3 sin δ − s)
s

S4

+ 16C2x3 sin δ(x3 sin δ − x2 cos δ + s)

×s(x3 + s sin δ)2

S6

] ∥∥∥∥, (14)

τ23
(2) = −

(
α2µ2b

π

)[
(x2 sin δ − x3 cos δ)

1
R2

+ 2(x3 cos δ − x2 sin δ)
(x3 − s sin δ)2

R4

+ D2(x2 sin δ + x3 cos δ)
1
S2

+ C2(x2 sin δ − x3 cos δ)
1
S2

+ 2C2{(x3 cos δ − x2 sin δ)(x3 + s sin δ)

− 2x3s sin 2δ}(x3 + s sin δ)
S4

− 4C2x3 sin δ(x3 cos δ + x2 sin δ)
s

S4

+ 16C2x3 sin δ(x3 cos δ + x2 sin δ)

× s(x3 + s sin δ)2

S6

] ∥∥∥∥, (15)

τ33
(2) =

(
α2µ2b

π

) [
(x2 cos δ−x3 sin δ−s cos 2δ)

1
R2

+ 2(x3 sin δ + x2 cos δ − s)
(x3 − s sin δ)2

R4

+ (C2 + D2)(x2 cos δ − x3 sin δ)
1
S2

− (D2 + C2 cos 2δ)
s

S2

+ 2C2(x2 cos δ+x3 sin δ−s)
(x3+s sin δ)2

S4

+ 12C2x3 sin2 δ
s(x3 + s sin δ)

S4

− 2C2x3 sin 2δ
s(x2 − s cos δ)

S4

− 16C2x3 sin δ(x3 sin δ − x2 cos δ + s)

×s(x3 + s sin δ)2

S6

] ∥∥∥∥. (16)

Corresponding to the stresses given by equations
(11)–(16), the displacements are found by integrat-
ing the stress-strain relations (Sokolnikoff 1956;
Singh and Garg 1985). We find
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2µ1u2
(1) =

(
α2µ2b

2π

)[
cos δ

(
C1 −D1 − 2C1

α1

)

× ln R + (D1 + C1) sin δ

× tan−1

(
s− x2 cos δ − x3 sin δ

x2 sin δ − x3 cos δ

)

+
2D1s(x2 − s cos δ)

R2

− 2C1

α1

sin δ tan−1

(
x2 − s cos δ

x3 − s sin δ

)

− (C1 + D1)s cos 2δ
(x2 − s cos δ)

R2

+ (C1 −D1)(x2 cos δ + x3 sin δ)

× (x2−s cos δ)
R2

+(C1+D1)(x3−s sin δ)

×
(

(x2 sin δ − x3 cos δ − s sin 2δ)
R2

)]∥∥∥∥,

(17)

2µ1u3
(1) =

(
α2µ2b

2π

)[
sin δ

(
C1−D1− 2C1

α1

)
ln R

− (C1 + D1) cos δ

× tan−1

(
s− x2 cos δ − x3 sin δ

x2 sin δ − x3 cos δ

)

+ 2D1s
(x3 − s sin δ)

R2
− 2C1

α1

cos δ

× tan−1

(
x3 − s sin δ

x2 − s cos δ

)
− (C1 + D1)s

× cos 2δ
(x3 − s sin δ)

R2
+ (C1 −D1)

× (x2 cos δ + x3 sin δ)
(x3 − s sin δ)

R2

+ (C1 + D1)(x2 − s cos δ)

×(x3 cos δ−x2 sin δ+s sin 2δ)
R2

] ∥∥∥∥, (18)

2µ2u2
(2) =

(
α2µ2b

π

)[ (
1
α2

− 1
)

cos δ lnR

−
(

C2 + D2 − C2

α2

)
cos δ ln S +

sin δ

α2

× tan−1

(
x2 − s cos δ

x3 − s sin δ

)
+

C2 sin δ

α2

× tan−1

(
x2 − s cos δ

x3 + s sin δ

)
−D2 sin δ

× tan−1

(
x3 sin δ − x2 cos δ + s

x2 sin δ + x3 cos δ

)

+ C2x3s sin 2δ
1
S2

+ D2(x2 sin δ − x3 cos δ − s sin 2δ)

× (x3 + s sin δ)
S2

− (x2 − s cos δ)

× (x2 cos δ+x3 sin δ−s)
(

C2

S2
+

1
R2

)

− 2C2s sin δ

α2

(x2 sin δ + x3 cos δ)
S2

−D2(x2 cos δ + x3 sin δ − s cos 2δ)

× (x2 − s cos δ)
S2

+ 4C2x3 sin δ

×(x3 sin δ−x2 cos δ+s)
s(x2−s cos δ)

S4

]∥∥∥∥,

(19)

2µ2u3
(2) =

(
α2µ2b

π

)[ (
1
α2

− 1
)

sin δ lnR

−
(

C2 + D2 − C2

α2

)
sin δ ln S +

cos δ

α2
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× tan−1

(
x3 − s sin δ

x2 − s cos δ

)
+

C2

α2

cos δ

× tan−1

(
x3 + s sin δ

x2 − s cos δ

)
+ D2 cos δ

× tan−1

(
s + x3 sin δ − x2 cos δ

x2 sin δ + x3 cos δ

)

− C2 sin δ +
2C2

α2

sin δ

× (x3 sin δ − x2 cos δ + s)
s

S2

− (x3 sin δ+x2 cos δ−s)
(x3−s sin δ)

R2

−D2(x2 sin δ − x3 cos δ − s sin 2δ)

× (x2 − s cos δ)
S2

−D2(x2 cos δ + x3 sin δ − s cos 2δ)

× (x3 + s sin δ)
S2

− 2C2x3 sin2 δ
s

S2

+C2(x2 sin δ−x3 cos δ)(x2−s cos δ)
1
S2

+ 4C2x3 sin δ(x3 sin δ − x2 cos δ + s)

×s(x3 + s sin δ)
S4

] ∥∥∥∥. (20)

4. Discussion

Equations (11)–(20) yield the displacement and
stress fields at any point of the two welded half-
space caused by a long tensile fault of dip δ and
width L = s2−s1 located in one of the half-spaces.
These closed-form analytical expressions are very
convenient for computing the displacements and
stresses at any point of the medium. The results for
a long tensile fault in a uniform half-space (medium
II) follow as a particular case on putting µ1 = 0.
From equation (6), we note that, this implies β = 0,

C2 = −1, C1 = D1 = D2 = 0. It has been veri-
fied that the results obtained on putting µ1 = 0 in
equations (8), (9), (14)–(16), (19) and (20) coin-
cide with the corresponding results of Singh et al
(2002) for a uniform half-space. (There is a print-
ing error in the expression for u2 given by Singh
et al (2002). In the first line of the expression for
u2, (3− 2σ) should be replaced by (1− 2σ).)

The displacements given by equations (17)–(20)
have been obtained by integrating the strains. This
integration process introduces arbitrary additive
constants. However, these constants pose no prob-
lem since the integrals involved are definite inte-
grals and the definition

f(s)‖ = f(s2)− f(s1)

cancels the constants mutually. The function
tan−1 (—) appearing in the expressions for the dis-
placements does create problems. The angle gen-
erated by this function should be so shifted as to
make the displacements continuous outside the dis-
located portion of the fault plane, i.e., for s < s1

and s > s2 of figure 1 [see, e.g., Bonafede and
Rivalta (1999), p. 343].

It has been verified that the stresses and dis-
placements given in equations (12)–(20) satisfy the
necessary continuity conditions, i.e.

τ23
(1) = τ23

(2), τ33
(1) = τ33

(2),

u2
(1) = u2

(2), u3
(1) = u3

(2),

at x3 = 0.
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