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A note on the dispersion of Love waves in layered
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Abstract. The dispersion equation for Love waves in a monoclinic elastic layer of
uniform thickness overlying a monoclinic elastic half-space is derived by applying the
traction-free boundary condition at the surface and continuity conditions at the
interface. The dispersion curves showing the effect of anisotropy on the calculated
phase velocity are presented. The special cases of orthotropic and transversely
isotropic media are also considered. It is shown that the well-known dispersion
equation for Love waves in an isotropic layer overlying an isotropic half-space follows
as 4 particular case.
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1. Introduction

The study of surface wave dispersion in an isotropic half-space containing anisotropic
layers is important in seismology for determining the presence or absence of anisotropic
layers within the Earth. Such studies play a significant role in in-seam seismic exploration
as well. The propagation of surface waves in an anisotropic half-space has been considered
by many investigators. Wave propagation in a half-space with cubic symmetry has been
discussed by Buchwald and Davies [3], and with orthorhombic symmetry by Stoneley
[10]. Elastic wave propagation in transversely isotropic media has been reviewed by
Payton [8]. Van der Hijden [12] discussed in great detail the propagation of transient
elastic waves in stratified anisotropic media. Recent investigations on the propagation of
elastic waves through anisotropic media include, among others, papers by Mench and
Rasolofosaon [7], Savers [9] and Thomsen [11].

In an isotropic medium, SH type motion is decoupled from the P-SV type motion [6].
Surface waves of the SH type are known as Love waves and surface waves of the P-SV
type are known as Rayleigh waves. The dispersion relation for Love waves in an isotropic
elastic layer of uniform thickness H overlying an isotropic elastic half-space can be
written in the form ([2], Sec. 3.6.2)

| ¢ N _m a-c8)”
taﬂ{kH(B‘%— - 1> } = _[_,L_; ' (CZ/Q% _ 1)1/27 (1)

where k denotes the wave number, ¢ the phase velocity, u1 and p, the rigidities of the
layer and the half-space, respectively, and (3, and J3; the shear-wave velocities of the layer
and the half-space, respectively (8 < ¢ < (2). Equation (1) is also the dispersion relation
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for Love waves in an isotropic elastic layer of uniform thickness 2H sandwiched between
two isotropic elastic half-spaces of identical properties [5]. The purpose of the present
study is to derive the corresponding dispersion relation when the media are anisotropic of
the monoclinic type possessing one plane of elastic symmetry.

2. Love waves in a monoclinic layer overlying a monoclinic half-space

We consider the propagation of Love waves in a monoclinic elastic layer of uniform
thickness H overlying a monoclinic elastic half-space. The layer (0 < x3 < H) is
designated as medium (1) with displacement ugl (x2, x3, 1), density p; and elastic
constant7s c; [6] and the half-space (x3 > H) is designated as medium (2) with displace-
ment u;’ (xz,x3,¢), density p, and elastic constants djj. A monoclinic medium has one
plane of elastic symmetry [4]. We assume that the plane of symmetry is parallel to the

Xyx3-plane. For Love waves propagating in the positive x,-direction with phase velocity c,
we assume

ugl) = f(x3) explik(xy — ct)]. (2)
The horizontal displacement ugl) satisfies the equation
8y uy Pu '
2 = ) 3
.C66 2 + 2¢56 Ba0s +Css 2 P 5a (3)

Equations (2) and (3) yield
ess.f" (o3) + 2essikf’ (x3) — K (ces ~ p16*) f(x3) = 0. (4)
The general solution of eq. (4) is

f(x3) = Ay exp(ikbix;) + By exp(—ikbayxs),

where A|, B; are arbitrary constants and

by = (VA ~cs)/css, by =(\/A+ cs6)/css, (5)
A= C55(p162 — Cep) + Cg'ﬁ.

We thus have
ugl) — (Aleikb]x3 +Ble—ikb3x3)eik(x2—ct). (6)

For surface waves

(2)

Ui’ — 0 as x3 — oo.
Therefore, we assume

ugz) =A2€ikb3x3 ., eik(XZ—Ct)’ ‘ (7)
with

by = (i\/B — dsg) /dss,

B = dss(des — pac?) ~ d, (8)
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Imbs > 0 (i.e. B > 0). The boundary conditions are

7'1(;) =0atx3 =0, ’ 9)

u(ll) = u(lz) at x3 = H, . (10)

A = o ey = . (1)
But

1 1 2 2

Ty = ess 8;)&3) + ¢s6 8{;&2) 3 = dss Qgg?— dss 8(;52) (12)
Equations (5) to (12) yield

Ay — B; =0,

Arexp(ikbH) + Biexp(—ikb2H) = Aqexp(ikbsH),

Asexp(ikbyH) — Biexp(—ikb,H) = i(B JA) P Asexp(ikbsH). (13)
Eliminating A, B and Az, we obtain

tand = (B/A)"/?, (14)
where

9 = (by + by)kH /2 = (v/A/css)kH. (15)

Equation (14) is the dispersion equation (frequency equation) for Love waves. From
eq. (8) we note that B > 0. As in the case of isotropic media [2], it can be shown that (14)
has no relevant solution if A < 0. Therefore, for the existence of Love waves, we must
have 4 > 0, B > 0. Using (5) and (8), the dispersion equation (14) may be written in the

form
2 1/2 d V201 _ gy — 23212
tan | v1 <—63~ 1 +51> kH =( 55d66> (=€ —¢ /52)1 5 (16)
B Cs5C66 (c2/B —1+¢1) /

where

B =ces/p1, B3 = dss/p2,

£1 = ¢/ (cs55ss), €2 = dig/ (dssdes),

i = ce6/Cs5- ' (17)
The conditions A > 0, B > 0 imply |

(1- 51)1/2[31 <c< (1- az)l/zﬂz.

Equation (16) is the dispersion relation for Love waves in a monoclinic layer of thickness
H overlying a monoclinic half-space. It is also the dispersion relation for a monoclinic
layer of thickness 2H sandwiched between two monoclinic half-spaces of identical elastic
properties. . ’

From (16), we note that the dispersion relation for Love waves in a free monoclinic
plate of thickness H reduces to

C2 1/2
tan {fyl (—5—%— -1+ 51> kH} = 0,
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which implies ¢ > (1 — £,)/?8, and

2 1/2 ' |
,71<EE__1+51> kH =nm, n=0,1,2,.... (18)
1

This relation also holds for a monoclinic layer in contact with a fluid layer on one or both
sides,

3. Particular cases

3.1 Orthotropic media

For orthotropic media, csg = dss = 0. Therefore, ; = &, = 0 and the dispersion equation
(16) reduces to

2 \12 12 12
tan{m(c 1) kH=(d55d66> (1—c*/5) (Bi<e< Br). (19)

& cssCes)  (c2/37—1)2

The dispersion relation (18) for Love waves in a free plate of thickness H becomes

02 1/2 -
71<F_1) kH =nm, n=01,2,.... (20)
1

The corresponding equation given by Stoneley [10] is in error.

- 3.2 Transversely isotropic media

The dispersion equations (19) and (20) are also valid when the two media are transversely

isotropic. These coincide with the dispersion equations given by Anderson [1] for
transversely isotropic media. ’

3.3 Isotropic media
For isotropic media,
C55=Ce6=p1, dss=dgs= o, Cs¢=ds¢=0, &£1=£,=0, y=r = 1.

Using these relations, the dispersion eq. (16) reduces to the form (1) valid for isotropic
media.

4. Numerical results and discussion

Equation (16) is the dispersion equation for Love waves propagating in the plane of
symmetry of a monoclinic elastic layer of thickness H overlying a monoclinic half-space.
This is also the dispersion equation for Love waves propagating in the plane of symmetry
of a monoclinic elastic layer of thickness 2H sandwiched between two monoclinic elastic
half-spaces of identical properties. For computing the dispersion curves, we assume

€55 =Co6; dss=dss, €1 =ey=¢, dss/css=a, (/B =b. (21)
The dispersion equatibn (16) can now be written as '

e (2 /32\1/2
tanf(C? — 1 4¢)12K] = L2 /) T
(€2 —1+¢)

(22)




Love waves in monoclinic media

421

130

125
1.20
115
110

f1os

| 100

0.9%

090

085

0. . 3 A i i N
80 3 6 9 12 15 18 21 24

— K —>

Figure 1. Variation of the dimensionless phase velocity C =c¢/B with dimensionless wave
number K = kH for the fundamental Love mode for various values of the anisotropy parameter €.
The curve corresponding to £ = 0 is for isotropic media. The phase velocity lies in the range
(1—e)/f <C<13(1-¢)/? K=0for C= (1-¢) K —ooas C—~13(1 —e)!

where C = ¢/B is the dimensionless phase velocity, K = kH is the dimensionless wave
number and

U—@W<C<MLwW?' | o (23)

Equation (22) has been used to obtain the dispersion curves showing the variation of the
phase velocity with wave number for yarious values of the anisotropy parameter €
assuming a = 2, b= 1.3 (figure 1). e =0 corresponds to the case when both the layer
and the half-space are isotropic. From condition (23) we note that the effect of anisotropy
is to reduce the range of the phase velocity from

,@1<C<,32,
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Table 1. Cut-off period (in seconds) of the first three overtones (n = 1,2, 3) for various values of
the anisotropy parameter ¢, of the layer. o

Monoclinic, v; = 1.1

Isotropic
n M = 1,81 =0 & = 0.1 0.2 0.3
1 12.57 14.85 15.80 16.70
2 6.29 7.42 7.90 8.35
3 4.19 7 4.95 5.27 5.57

valid for isotropic media, to
(1-¢)23 <c< (1-¢)'p,. |
For a given k, the phase velocity decreases as the value of the anisotropy parameter €

increases.
From (16), we find that the cut-off period for the nth overtone is given by

1/2
1- 2 '
- (Lzeny (B . (24)
l—e/\pS
For studying the effect of the anisotropy on the cut-off period, we assume that the half-
space is isotropic (e, = 0) and H = 35 km, 8) =3.5km/s, B, = 4.5 km/s.

Table 1 gives the values of the cut-off period for the first three overtones for various

values of the anisotropy parameter ¢; of the layer. We note that the cut-off period
increases as the value of the anisotropy parameter increases.
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