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The elastic solution for the displacement and stress due to a pressurized cylindrical
cavity surrounded by a viscoelastic shell and an unbounded elastic medium is first
obtained. The viscoelastic solution is then obtained by using the correspondence
principle of linear viscoelasticity, assuming the shell to be elastic dilatational and
Maxwell deviatoric. The variation of the displacement and stress fields with distance
and with time is studied. It is found that in the case of a cylindrical magma chamber
there are two ‘chafacteristic times, in contrast to only one characteristic time for a
spherical magma *chamber.

1. INTRODUCTION

Large and often times rapid ground deformations take place in areas of volcanic
activity. In recent years, measurements of surface deformations have provided useful
means of studying the volcanic processes. Observations and measurements have
shown that surface deformations are intimately related to eruptive activity and reflect
the movement of the magma either within or undér the volcanic edifice.

The problem of modelling of volcanic activity has attracted the.attention of
several investigators. Mogi! applied a centre of dilatation in an unbounded elastic
medium to interpret the ground deformation produced in volcanic areas. Bonafede
et al? derived analytical expressions for the static displacement field produced by a
centre of dilatation and by a pressure source in a viscoelastic half-space. The rheology
of a standard linear solid was adopted for the shear modulus, while the
incompressibility was kept elastic. The model was then applied to volcanic area of
Campi, Flegrei, south of Italy. An approximate solution for the displacement and
stress fields due to a pressurized spherical cavity in an elastic half-space has been
given by McTigue. Bianchi et al* used a finite element method to calculate the

surface deformation, assuming axial symmetry about the vertical axis through the
caldera centre.
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Dragoni and Magnanensi® discussed the problem of a pressurized spherical
magma chamber surrounded by a viscoelastic shell. The shell was assumed to be
elastic dilatational and Maxwell deviatoric, the outer medium being elastic. Since the
magma chamber is not always spherical, we have discussed the problem of a
pressurized cylindrical magma chamber surrounded by a viscoelastic shell and an
clastic unbounded medium. Analytical expressions for the displacement and stress
ficlds \ in the shell as well as outside the shell have been obtained. The variation of
the field with distance and with time is studied numerically. It is found that, while
in the case of a spherical magma chamber surrounded by a Maxwell shell, there is

only one characteristic time, the cylindrical magma chamber model leads to two
characteristic times.

2. THEORY

Consider a cylindrical cavity of radius R; representing the magma chamber
surrounded by a co-axial cylindrical shell with outer radius R, representing the
viscoelastic shell (Fig. 1). Cylindrical co-ordinates (r, 8, 2) are used with z-axis along
the axis of the cylindrical cavity. For r > R,, the medium is elastic. A pressure p(f)

is applied within the magma chamber. To solve this viscoelastic -problem, we first
solve the corresponding elastic problem.

FiG. 1. A pressurized cylindrical cavity of radius Ry surrounded by a viscoelastic shell (Ri<r<Ry)
and an elastic unbounded medium (r > R).

2.1. Elastic Shell Model

Suppose that a constant pressure p, is applied within the magma chamber
(r <R,). Assume that the shell is elastic with rigidity p; and compressibility k; and
the surrounding medium is also elastic with parameters p, and k;. Assuming axial
symmetry, we have
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d d
5‘6-01 E;.O;uﬂ-uz-o’ u,-u,(r),

where u'= (u,, ug, u;) is the displacement vector. Navier’s equation of motion in the
absence of body forces may be solved to obtain®

ar+b/r, Ry<r<R, .. (1a)
ur) = c/r, r>R, ... (1b)

where a, b and ¢ are arbitrary constants to be determined from the boundary
conditions. From (1a) and (1b), the stress components are

2 2, b .. (22)
s (r) } 3 (3k1 + ul)a—~’_2— N R1 < r<R2 . (Zb)
m 2uy ¢ R
- rz y I'> 2
2 2u b .. (3a)
=3k —, R R
s (r) ] 3(3 1+p.1)a+ rz 1<Fr<iy i (3b)
90 2].12 [ R
7'2 » T>I
2 .. (4a)
o, (r) - 3 (3k1 - 2[1.1)[1, Rl <r <R2 N (4b)
0 , I'> Rz.
Also
U9 =0g, =0, = 0. s (5)

The boundary conditions are

(@) op{r)=—poat r = Ry,

(ii) continuity of u,(r) at r=R;,

(iif) continuity of o, (r)at r = R,.
Using these boundary conditions, we get a system of three equations in three
unknowns which can be solved to obtain

a=—3pyR: (- o)/ 2D, ()
b=—po R} R (3k; + 3y + 1)/2D, w ()

¢ = —poR3 R} (4, + 3k,)/2D, w (8)
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where
D = (3 — ) (3ky + ) BE — g Bky + 3, + py) B3, e (9)

The elastic solution can be obtained by using these values of a, b and ¢ in (1)-(5).

2.2. Viscoelastic Shell Model

If the region R; <7 <R, is viscoelastic, then the viscoelastic solution can be

obtained from the elastic solution by using correspondence principle (Fung?).
According to this principle, if the shell is Maxwell deviatoric and elastic dilatational,
we should replace u; by n;, where

—  mms . (10)
M= e

and 7 is the viscosity of the shell material and s is the Laplace transform variable.
Replacing p, by W, in (6)-(9) and replacing p, by p(s), where p(s) is the Laplace
transform of p(z), the source function representing the pressure within the magma
chamber, we obtain the expressions for a(s), B{s) and ¢(s). These expressions for

a(s), b(s) and c(s) are given in Appendix 1. The Laplace transform of the viscoelastic
solution can be obtained by using these expressions for a(s), b(s) and ¢(s) in (1)-(5).

3. SOLUTION FOR STEP-LIKE SOURCE FUNCTION

Consider a step-like increase in pressure in the magma chamber

P(2) = poH (1), - (11)

where H(t) is the Heaviside unit step function. The Laplace transform of (11) is

pls) = po/s. - (12)

On replacing p(s) by p,/s in the Laplace transform of the viscoelastic solution, we
obtain the expressions for 1.(s), 0,(s), Ogls) and G,(s) for a step source. These can
be inverted to get the displacement and stress as functions of time. We obtain

wir, () = I [Aslr) + Aor) €5 4 Asr) 5], - (13

0

O (r, ) = Di [ B(r) + Byr) e + By(r) e 2 ], - (14)
0

Coo (f, t) - 2%({ [ Cl(f) + Cz(r) eVu 4 Cg(r) en ], - (15)
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0z (1, 0)= o [ D1(r) + Do) 5+ D) ¥, . (16)

where D, is defined in Appendix 1 and A,,B,, etc. in Appendix 2. T, and 1, are
the two characteristic times :

T 1 T
1 5 s V2 PN ’
where 5, and s, are the roots of the equation
D0S2+E08+F0 =0

and Dy, Ey, F; are defined in Appendix 1.

4. NUMERICAL RESULTS
For numerical work, we assume that
l‘l'ufz-uyh-gﬂl,Rz'ZRh _ - D
so that the media involved are Poissonian. We then find
T =649 (n/n), To=1.11(n/p).

The distance is measured in units of R, and time in units of v, =n/u. Let u, denote
the radial displacement which would be produced at r = R, by a magma chamber
with pressure py, in an elastic medium with rigidity u, so that

uy = py R,/ 2. - (18)
We take u, as the unit of displacement. We define dimensionless distance (R),
dimensionless time (7), and dimensionless radial displacement (U) as follows

R=r/Ry, T=t/v, U=u/u, . (19)

Figures 2-4 show the variation of the radial displacement and the stresses o,
and Ope with radial distance for four values of T : 0, 1, 2, 10. T = 0 corresponds
to the elastic shell model. We note that for the viscoelastic shell model, the stress
Opg is” discontinuous at r = R, = 2R;. The discontinuity increases with time. ‘

Figures 5-7 show the variation of the radial displacement and the stresses o,,
and Ogg with time for three values of R : 1.5, 2.5, 5. R = 1.5 corresponds to a point

half-way through the shell, R = 2.5 and 5 correspond to points in the outer elastic
medium.

The characteristic times v, and 1, depend on the ratio R,/R;. Figure 8 shows the
variation of t, and Fig. 9 shows the variation of ©, with R,/R;.
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FiG. 2. Varation of the radial displacement with radial distance. T = 0 corresponds to the elastic shell
model. The dotted line indicates the outer shell boundary.
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FiG. 4. Variation of the transverse stress Ogy With
radial distance. For viscoelastic shell model, 0y,
is discontinuous at the shell boundary.

FIG. 3. Variation of the radial stress o with radial
distance.
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FIG. 5. Variation of the radial displacement with time. FIG. 6. Variation of the radial stress’ oy with
R = 1.5 corresponds to a point half-way through the time.

shell and R = 2.5 and 5 comespond to points in the

outer elastic medium.
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FIG. 7. Variation of the transverse stress Oge with time.
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FiG. 8. Variation of the characteristic time t; with Fic. 9. Variation of the characteristic time 12 with
R2/Ry. Ry/Ry.
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APPENDIX 1

a(s) = —3{(m-m) M- | (W + ) R (5)
a(s) = 2Dy s2+Eys + Fy) ’

Bs) = —{ Gk + 3+ )M+ 3k + ) Wy [ ( + ) RIRS B (9)
- 2(Dg 52 + Egy s + Fo) ’

—{ (4py + 3k) M+ 3ky py |y + ) RREP ()
2(D0S2+E0S+F0) ’

ofs) =
where
Do =1 [ (b1~ ) (3ks + ) Ry =y (o + 3k + ) R |
Eo'n[{3k1 My (g — 12) — Gk + ) iy Mz}R%—3 P«%(k1+l‘«2)R%] ,
Fo=-3piu k RL.
APPENDIX 2

The expressions for Ay, B,, etc. appearing in (13)-(16) are given below. In each
case, the upper expression holds for Ry <r <R, and the lower for r > R;

(3
SPuiunR [ uzr—(k1+uz)R§/r]
Al (r)‘é

-2 po by R r
L

r31’0("1—l‘-1171)‘52R% {(u —u)n+ ut}r
2ty - 1) [ 1 2. BT

R
R S

~poM-m T TRIR; .
} 2(:11_;2),2 =2 (3K} py 1, ~ (dpy + 3k) M)
{

[ 3py ("\‘l‘»l“z)'hR%
2t -1y)

As (r) = "[{(k1+ﬂz)ﬂlfz-ﬂ(k1+uq+—%1-)}R§]

[{-pdn+mpn)r
5

—po (M- T) T RIR;
2(1:21__ .il),.l =2 [3ky g vo~ (41sy + 3k3) M)
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B2 (r)- 4

B3 (r) =
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3po W ky 1y T T2 RS
-3pg M% kit ‘I:ZR%R%/IQ
[ pon R

v, || Gl I3k mu - p)n+m )

3wk
_[{1,(k1+uq)u1 (klﬂlz*'l;l)"}—'ﬂrlz‘—z]

—pouz'tz(lh'fl""l)R%R%

Ci(r) =

a [(4p; +3ky) m = 3ky 1y Ty}

PoT
-102-1_“[1(3’(1+p'1)n 3k1u112}{(l11 M)'ﬂ*’ﬂlllz"z}

R
{‘52("1*'!12)“1-("1"‘“2"‘ 3 )"}3“1:2‘ 2]

- - R RS
Polz ‘(; :‘11:12) ’;‘) =2 41y + 3k) 0= 3k 1y T)




GULSHAN KUMARI AND SARVAJIT SINGH

3po W3 ky pa Ty T3 R
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0
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