Proc. Indian Acad. Sci. (Math. Sci.), Vol. 101, No. 1, April 1991, pp. 1−17. © Printed in India.

Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces

S G DANI and G A MARGULIS*

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

*Institute for Problems of Information Transmission, ul. Ermolovoi 19, Moscow 101 447, USSR

MS received 20 September 1990

Abstract. We show that if G is a semisimple algebraic group defined over Q and Γ is an arithmetic lattice in $G:=G_R$ with respect to the Q-structure, then there exists a compact subset C of G/Γ such that, for any unipotent one-parameter subgroup $\{u_i\}$ of G and any $g\in G$, the time spent in C by the $\{u_t\}$ -trajectory of $g\Gamma$, during the time interval [0,T], is asymptotic to T, unless $\{g^{-1}u_ig\}$ is contained in a Q-parabolic subgroup of G. Some quantitative versions of this are also proved. The results strengthen similar assertions for $SL(n, \mathbb{Z})$, $n \ge 2$, proved earlier in [5] and also enable verification of a technical condition introduced in [7] for lattices in $SL(3, \mathbb{R})$, which was used in our proof of Raghunathan's conjecture for a class of unipotent flows, in [8].

Keywords. Homogeneous spaces; unipotent flows; trajectories.

Margulis [10] showed that if $\{u_t\}$ is a unipotent one-parameter subgroup of $G = SL(n, \mathbb{R})$ and $g \in G$ then there exists a compact subset C of $SL(n, \mathbb{R})/SL(n, \mathbb{Z})$ such that the set $\{t \ge 0 | u_t g(SL(n, \mathbb{Z})) \in C\}$ is unbounded. The result played an important role in one of the proofs of the arithmeticity theorem for lattices (cf. [11]). In [3] and [5], motivated by certain problems on orbits and invariant measures of horospherical flows, the first named author improved the result. In [3] it was concluded that for $G = SL(n, \mathbb{R})$ and $\Gamma = SL(n, \mathbb{Z})$, given $\varepsilon > 0$ there exists a compact subset C of G/Γ such that for any unipotent one-parameter subgroup $\{u_t\}$ and any $g \in G$ either

$$\ell(\{t \in [0, T] | u, g\Gamma \in C\}) \geqslant (1 - \varepsilon) T$$

for all large T (ℓ being the Lebesgue measure on \mathbb{R}) or there exists a proper nonzero subspace W of \mathbb{R}^n which is defined by a system of linear equations with rational coefficients and invariant under $g^{-1}u_tg$ for all $t \in \mathbb{R}$. Using a standard embedding argument one can deduce from this that if G is the group of \mathbb{R} -elements of an algebraic group defined over \mathbb{Q} and Γ is an arithmetic lattice in G then for any $\varepsilon > 0$ there exists a compact subset C of G/Γ such that for any unipotent one-parameter subgroup $\{u_t\}$ in G and $g \in G$ either $\ell(\{t \in [0, T] | u_t g \Gamma \in C\}) \geqslant (1 - \varepsilon)$ T for all large T or there exists an algebraic subgroup L of G defined over \mathbb{Q} such that $g^{-1}u_tg \in L$ for all $t \in \mathbb{R}$. The result was used in the description of orbit closures of horospherical subgroups obtained in [6].

This set of ideas was again involved in [7] where we proved that if H is the subgroup of SL(3, R) of all elements leaving invariant a non-degenerate indefinite quadratic form in 3 variables then every H-orbit on $SL(3, \mathbb{R})/SL(3, \mathbb{Z})$ is either closed or dense and used this result to conclude in particular that the set of values $B(p(\mathbb{Z}^n))$, where B is a nondegenerate indefinite quadratic form in $n \ge 3$ variables and $\mathcal{M}(\mathbb{Z}^n)$ is the set of primitive elements in \mathbb{Z}^n , is dense in \mathbb{R} whenever B is not a multiple of a rational quadratic form; the latter result strengthened the theorem of the second named author proving a conjecture of Oppenheim (cf. [12]). The proof used a somewhat technical result from [5] yielding a version of the above mentioned result, involving a quantitative condition in the second alternative. It was noted that the proof of the theorem about H-orbits on $SL(3, \mathbb{R})/SL(3, \mathbb{Z})$ would go through for any lattice Γ , in the place of $SL(3, \mathbb{Z})$, if it satisfied a condition which was called Condition (*) (cf. [7] Remark 1.8). While the result from [5] alluded to above is sufficient to conclude that SL(3, Z) satisfies Condition (*), it does not yield such a result for other lattices in $SL(3, \mathbf{R})$. This is because, though any lattice in $SL(3, \mathbf{R})$ is arithmetic, the embedding argument used earlier is not adequate, since the subgroup L in the second alternative there is in general not insured to be contained in a parabolic subgroup. This called for an intrinsic approach to proving analogues of the results in [5] on asymptotic behaviour of the trajectories, in the case of a general arithmetic lattice. It is the purpose of this paper to carry this out. In particular we shall verify the Condition (*) for any lattice Γ in $SL(3, \mathbb{R})$. It may be mentioned that the condition is also used in our more recent paper [8] where we describe the orbit-closures of any generic unipotent one-parameter subgroup on $SL(3, \mathbf{R})/\Gamma$, Γ any lattice, verifying a conjecture of Raghunathan for the case. We now introduce some notation and state the results.

Let G be a semisimple algebraic group defined over Q and let $G = G_R$, the group of R-elements of G. Let r be the Q-rank of G. We suppose that $r \ge 1$. Let S be a maximal Q-split torus in G. We fix an order on the system of Q-roots on S for G and denote by $\{\alpha_1, \ldots, \alpha_r\}$ the corresponding system of simple Q-roots (cf. [2]). For $i = 1, \ldots, r$ let P_i be the standard maximal Q-parabolic subgroup corresponding to the set of simple roots other than α_i . For each i the root α_i , which is a character on S, extends uniquely to a character on P_i ; the extension will also be denoted by α_i . For $1 \le i \le r$, let U_i be the unipotent radical of P_i and \mathcal{U}_i be the Lie algebra of U_i . Then there is a positive integer m_i , such that for any $x \in P_i$ det $(Adx)|\mathcal{U}_i = \alpha_i^{m_i}(x)$, equivalently m_i can be defined to be the sum $\sum n_i \lambda_i$ taken over all positive roots λ , where for each λ , n_{λ} is the dimension of the root subspace corresponding to λ and λ_i is the coefficient of α_i in the expansion of λ in terms of $\alpha_1, \ldots, \alpha_r$.

Let S and P_i , $i=1,\ldots,r$, denote the subgroups of G consisting of R-elements of S and P_i respectively. We fix a maximal compact subgroup K of G such that S is invariant under the Cartan involution of G associated to K (cf. [13]). We now define for each $i=1,\ldots,r$ a function d_i on G as follows. Let $1 \le i \le r$ be given. We recall that $G = KP_i$. We observe also that $K \cap P_i$ is a compact subgroup of P_i and hence $|\alpha_i(x)| = 1$ for all $x \in K \cap P_i$. In view of this, for $g \in G$ expressed as g = kx with $k \in K$ and $x \in P_i$, the number $|\alpha_i(x)|$ depends only on g and not on the choices of $k \in K$ and $x \in P_i$; we define $d_i(g)$ to be $|\alpha_i(x)|^{m_i}$.

The functions d_i , $1 \le i \le r$ play a role in the present proofs similar to that of the function d in [5] on the class of discrete subgroups of \mathbb{R}^n , $n \ge 2$. The two are related as follows. Let $G = \mathrm{SL}(n)$, $n \ge 2$, equipped with the usual Q-structure. Let S be the maximal Q-split torus consisting of diagonal matrices and let $\alpha_1, \ldots, \alpha_{n-1}$ be the usual

system of simple Q-roots defined by $\alpha_i(\operatorname{diag}(a_1,\ldots,a_n))=a_{i+1}/a_i$. Let e_1,\ldots,e_n be the standard basis of \mathbb{R}^n and for $i=1,\ldots,n-1$ let Δ_i be the (discrete) subgroup generated by $\{e_1,\ldots,e_i\}$. Let K be the subgroup of $G=SL(n,\mathbb{R})$ consisting of orthogonal matrices. Then for $1\leq i\leq n-1$ and $g\in G$, $d_i(g)$ as above can be seen to be the same as $d^2(g\Delta_i)$ with d as in [5]; since both the functions are K-invariant it is enough to check their equality for g in P_i .

We now state the main technical result of the paper. It gives a sufficient condition in terms of d_i , i = 1, ..., r, for the Lebesgue measure of the set of return times, within an interval, to a certain compact set to be large. The Lebesgue measure on R will be denoted by ℓ .

Theorem 1. Let the notation be as above. Further let $\Gamma \subset G$ be an arithmetic lattice in G with respect to the Q-structure on G. Then there exists a finite subset F of G_Q such that the following holds: for any $\varepsilon > 0$ and $\theta > 0$ there exists a compact subset C of G/Γ such that for any unipotent one-parameter subgroup $\{u_t\}$ in G, any $g \in G$ and any $T \geqslant 0$ either

$$\ell(\{t \in [T, \sigma T] | u_t g \Gamma \in C\}) \geqslant (1 - \varepsilon)(\sigma - 1) T$$

for all $\sigma > 1$ such that $(1 - \sigma^{-1})^r > 1 - \varepsilon$, or there exist $i \in \{1, ..., r\}$, $\gamma \in \Gamma$ and $f \in F$ such that

$$d_i(u_ig\gamma f) < \theta \quad \forall t \in [0, T].$$

Remarks 1. The set F is so chosen to be the set of inverses of a set of 'cusp elements' for the standard fundamental domain for Γ in G (cf. [1], Theorem 13.1) with respect to the triple (K, P, S) with K and S as above and P the standard minimal parabolic subgroup corresponding to the system $\{\alpha_1, \ldots, \alpha_r\}$ of simple Q-roots. (See § 1 for details about the set; it can be chosen to be any $F \subset G_Q$ such that $\Lambda(\phi) = \Gamma F$ in the notation as in (1.2).

2. In the case of $G = SL(n, \mathbb{R})$ and $\Gamma = SL(n, \mathbb{Z}), n \ge 2$, the second condition in the conclusion of the theorem can be seen to be equivalent to the condition that there exists a nonzero subgroup Δ of \mathbb{Z}^n such that $d^2(u_t g\Delta) < \theta$ for all $t \in [0, T]$.

The proof of Theorem 1 will be completed in §3. In §4 we shall deduce various consequences of Theorem 1, which we now describe. For this purpose, for each i = 1, ..., r let $Q_i = \{x \in P_i | \alpha_i(x) = 1\}$.

Theorem 2. Let the notation be as before. Also let F be a finite subset of G_Q for which the contention of Theorem 1 holds. Then for any $\varepsilon > 0$ and $\theta > 0$ there exists a compact subset C of G/Γ such that for any unipotent one-parameter subgroup $\{u_t\}$ of G and $g \in G$ either

$$\ell(\{t \in [0, T] | u_t g \Gamma \in C\}) \geqslant (1 - \varepsilon) T$$

for all large T or there exist $i \in \{1, ..., r\}$ and $\lambda \in \Gamma F$ such that $g^{-1}u_ig \in \lambda Q_i\lambda^{-1}$ for all $t \in \mathbf{R}$ and $d_i(g\lambda) < \theta$.

Theorem 1 can also be applied to get compact subsets intersected by all orbits of certain subgroups. Let P_0 be the standard minimal Q-parabolic subgroup corresponding to the system of Q-roots as above; namely $P_0 = \bigcap_{i=1}^r P_i$. We note that P_0 contains a conjugate of any unipotent subgroup of G and hence the following result

applies to any unipotent subgroup, rather than a subgroup of P_0 , after appropriate modifications; the compact set for a conjugate would be different, however.

A subgroup V of P_0 is said to be in general position (relative to S and the order on the roots) if for any $i \in \{1, ..., r\}$ and $x \in G$, $xVx^{-1} \subset P_i$ if and only if $x \in P_i$.

Theorem 3. Let the notation be as above. Then there exists a compact subset C of G/Γ such that the following holds: If V is a connected Lie subgroup of P_0 which consists of unipotent elements and is in general position and $\{x_k\}$ is a sequence in P_0 such that $d_i(x_k) \to \infty$ for all $i = 1, \ldots, r$, then for any $g \in G$, $C \cap Vx_k g\Gamma/\Gamma$ is nonempty for all large k. In particular, if R is the subgroup generated by V and $\{x_k|k=1,2\ldots\}$ then every R-orbit on G/Γ intersects C.

As stated before, one of our aims here is also to verify a technical condition on lattices in $SL(3, \mathbb{R})$ introduced in [7]; namely Condition (*) recalled below. In [7] it was noted that the arguments in the proof of Theorem 2 there went through for any lattice satisfying Condition (*) in the place of $SL(3, \mathbb{Z})$; for the lattice $SL(3, \mathbb{Z})$ the condition was verified using the results in [5]. We had mentioned that the condition in fact holds for all lattices but did not go into the proof, as our primary interest in that paper lay in the lattice $SL(3, \mathbb{Z})$. The condition is also used in the more recent paper [8] where we obtain a full description of orbit closures of generic unipotent one-parameter subgroups on $SL(3, \mathbb{R})/\Gamma$, Γ any lattice in $SL(3, \mathbb{R})$, verifying a conjecture of Raghunathan for the case.

For each $t \in \mathbb{R}$ let

$$v_1(t) = \begin{pmatrix} 1 & t & \frac{1}{2}t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$$

and let V_1 be the subgroup $\{v_1(t)|t\in\mathbb{R}\}$. A lattice Γ in $SL(3,\mathbb{R})$ is said to satisfy Condition (*) if there exists a compact subset C of G/Γ such that for any $g\in G$ the following conditions hold:

- a) the sets $\{t \ge 0 | v_1(t)g\Gamma \in C\}$ and $\{t \le 0 | v_1(t)g\Gamma \in C\}$ are both unbounded unless there exists a proper parabolic subgroup P of $SL(3, \mathbb{R})$ such that if L is the closed subgroup generated by all unipotent elements in P then $g^{-1}V_1g \subset L$, $L\Gamma$ is closed and $L \cap \Gamma$ is a lattice in L and
- b) if $\{f(t)\}_{t\geq 0}$ is a curve in $N(V_1)$ (the normalizer of V_1) such that $|\det f(t)|W| \to \infty$ as $t\to\infty$ for every proper nonzero $N(V_1)$ -invariant subspace W of \mathbb{R}^3 then $C\cap V_1f(t)g\Gamma/\Gamma$ is nonempty for all large t.

Theorem 4. Any lattice in $SL(3, \mathbb{R})$ satisfies Condition (*).

1. On compactness of some subsets of G/Γ

We follow the notation as before. Further for i = 1, ..., r let

$$\mathbf{Q}_i = \{x \in \mathbf{P}_i | \alpha_i(x) = 1\} \text{ and } \mathbf{S}_i = \{x \in \mathbf{S} | \alpha_i(x) = 1 \,\forall j \neq i\}.$$

Then each S_i is a one-dimensional Q-split torus and $P_i = S_i Q_i$ for all i.

Now let I be any (possibly empty) subset of $\{1, ..., r\}$. We define

$$\mathbf{P}_I = \bigcap_{i \in I} \mathbf{P}_i$$
, $\mathbf{Q}_I = \bigcap_{i \in I} \mathbf{Q}_i$ and $\mathbf{S}_I = \prod_{i \in I} \mathbf{S}_i$.

Then P_i is the standard parabolic Q-subgroup corresponding to the subset of $\{\alpha_1, \ldots, \alpha_r\}$ complementary to I (in particular $P_{\phi} = G$), Q_I is a normal algebraic Q-subgroup of P_I , S_I is a Q-split torus and $P_I = S_I Q_I$. Let U_I be the unipotent radical of P_I (and also Q_I) and let H_I be the centraliser of S_I in Q_I . Then $Q_I = H_I U_I$ (semidirect product). We also note that H_I and U_I are defined over Q. We denote by P_I , Q_I , S_I , H_I and U_I the subgroups of G consisting of R-elements of P_I , Q_I , S_I , H_I and U_I respectively.

Since \mathbf{H}_I is defined over \mathbf{Q} , $\Gamma \cap H_I$ is an arithmetic subgroup of H_I . It is easy to see that there is no nontrivial character on \mathbf{H}_I defined over \mathbf{Q} . Therefore $\Gamma \cap H_I$ is a lattice in H_I . If $I = \{1, \ldots, r\}$, H_I is of \mathbf{Q} -rank 0 and hence $\Gamma \cap H_I$ is a uniform lattice in H_I ; that is, $H_I/\Gamma \cap H_I$ is compact. Since \mathbf{U}_I is a unipotent algebraic subgroup defined over \mathbf{Q} , $U_I/\Gamma \cap U_I$ is also compact. Thus in the case $I = \{1, \ldots, r\}$, $Q_I/\Gamma \cap Q_I$ is compact.

Now let I be any (possibly empty) proper subset of $\{1, \ldots, r\}$ and let $J = \{1, \ldots, r\} - I$. We note that S_J is a maximal Q-split torus in H_I , $P_J \cap H_I$ is a minimal Q-parabolic subgroup of H_I and $U_J \cap H_I$ is the unipotent radical of $P_J \cap H_I$. We note next that since, by choice, the Cartan involution associated to K leaves S invariant, it also follows that it leaves H_I invariant. This implies that $K \cap H_I$ is a maximal compact subgroup of H_I . Corresponding to the triple $(K \cap H_I, P_J \cap H_I, S_J)$ there exists a $t_I > 0$, a compact subset C_I of $U_J \cap H_I$ and a finite subset E_I of $G_Q \cap H_I$ such that

$$H_I = (K \cap H_I)\Omega(t_I)C_IE_I(\Gamma \cap H_I),$$

where

$$\Omega(t_I) = \left\{ s \in S_J | \, 0 < \alpha_j(s) \leqslant t_I \quad \forall j \in J \right\}$$

(cf. [1] Theorem 13.1). Since U_I is a unipotent algebraic Q-group, the arithmetic subgroup $\Gamma \cap U_I$ is a uniform lattice in U_I (that is, $U_I/\Gamma \cap U_I$ is compact) and hence there exists a compact subset D_I of U_I such that $U_I = D_I(\Gamma \cap U_I)$. Then we have

$$\begin{aligned} Q_I &= H_I U_I = (K \cap H_I) \Omega(t_I) C_I E_I (\Gamma \cap H_I) U_I \\ &= (K \cap H_I) \Omega(t_I) C_I U_I E_I (\Gamma \cap H_I) \\ &= (K \cap H_I) \Omega(t_I) C_I D_I (\Gamma \cap U_I) E_I (\Gamma \cap H_I). \end{aligned}$$

It is easy to see that since $E_I \subset G_Q \cap H_I$ there exists a finite subset F_I of $G_Q \cap Q_I$ such that

$$(\Gamma \cap U_I)E_I(\Gamma \cap H_I) \subset F_I(\Gamma \cap Q_I).$$

Hence we have

$$Q_I = (K \cap H_I)\Omega(t_I)\Psi_I F_I(\Gamma \cap Q_I)$$
(1.1)

where $\Psi_I = C_I D_I$ is a compact subset of $Q_I \cap Q_J$. We put

$$\Lambda(I) = (\Gamma \cap Q_I)F_I^{-1} = \{\gamma f | \gamma \in \Gamma \cap Q_I, f^{-1} \in F_I\} \subset Q_I. \tag{1.2}$$

The set F involved in the conclusion of Theorem 1 is taken to be any subset of G_Q such that $\Lambda(\phi) = \Gamma F$; e.g. $F = F_{\phi}^{-1}$ in the above notation.

We shall use the facts mentioned above and the notation to deduce compactness of certain sets which we now introduce.

A p-tuple $((i_1, \lambda_1), \dots, (i_p, \lambda_p))$, where $p \ge 1$, $i_1, \dots, i_p \in \{1, \dots, r\}$ and $\lambda_1, \dots, \lambda_p \in G_Q$ is called an admissible sequence of length p if i_1, \dots, i_p are distinct and $\lambda_{j-1}^{-1} \lambda_j \in \Lambda(\{i_1, \dots, i_{j-1}\})$ for all $j = 1, \dots, p, \lambda_0$ being taken to be the identity element. The empty sequence is called an admissible sequence of length 0. If ξ and η are two admissible sequences of lengths p and q respectively and $p \le q$ then η is said to extend ξ if the first p terms of η coincide with the corresponding terms of ξ ; any admissible sequence extends the empty sequence.

For any admissible sequence ξ of length $p \ge 0$ we denote by $\mathscr{C}(\xi)$ the set of all pairs (i, λ) , where $1 \le i \le r$ and $\lambda \in G_Q$, for which there exists an admissible sequence η of length p+1 extending ξ and containing (i, λ) as a (necessarily the last) term; note that if p=0, namely if ξ is the empty sequence, $\mathscr{C}(\xi)$ consists of all (i, λ) where $1 \le i \le r$

and $\lambda \in \Lambda(\phi)$. For any admissible sequence ξ of length $p \ge 0$ we define the *support* of ξ , to be the empty set if p = 0 and the set $\{(i_1, \lambda_1), \ldots, (i_p, \lambda_p)\}$ if $\xi = ((i_1, \lambda_1), \ldots, (i_p, \lambda_p))$; the support of ξ will be denoted by supp ξ .

The main result on compact subsets of G/Γ needed in the sequel is the following:

PROPOSITION 1.3

Let ξ be an admissible sequence of length $p \geqslant 0$. Let α , a and b be positive real numbers and let

$$W = \{ g \in G | d_i(g\lambda) \geqslant \alpha \text{ for all } (i,\lambda) \in \mathcal{C}(\xi) \text{ and}$$
$$a \leqslant d_i(g\lambda) \leqslant b \text{ for all } (i,\lambda) \in \sup \xi \}.$$

Then $W\Gamma/\Gamma$ is contained in a compact subset of G/Γ . For proving the proposition we need the following Lemmas.

Lemma 1.4. Let $i \in \{1, ..., r\}$ and let C be a compact subset of G. Then there exists a c > 0 such that $d_i(xg) \ge cd_i(g) \forall x \in C$ and $g \in G$.

Proof. Recall that $G = KP_i$. Since CK is a compact subset of G there exists a compact subset D of P_i such that $CK \subset KD$. Since D is compact and α_i is continuous, there exists a c > 0 such that $|\alpha_i(y)|^{m_i} \ge c$ for all $y \in D$. Now let $x \in C$ and $g \in G$ be given. Then there exist $k \in K$ and $k \in P_i$ such that $k \in K$ and $k \in C$ such that $k \in K$ and $k \in C$ such that $k \in K$ and $k \in C$ such that $k \in K$ and $k \in C$ such that $k \in K$ and $k \in C$ such that $k \in K$ and $k \in C$ such that $k \in K$ such t

$$d_i(xg) = d_i(k'yh) = |\alpha_i(yh)|^{m_i} = |\alpha_i(y)|^{m_i} |\alpha_i(h)|^{m_i}$$

$$\geqslant c |\alpha_i(h)|^{m_i} = cd_i(g)$$

which proves the Lemma.

Lemma 1.5. Let I be a subset of $\{1,...,r\}$ and let $j \in \{1,...,r\} - I$. Let $0 < a \le b$ be given. Then there exists a compact subset K_0 of Q_I such that if $g \in Q_I$ and $d_j(g) \in [a,b]$ then $g \in K_0 Q_{I \cup \{j\}}$.

Proof. Since $K \cap H_I$ is a maximal compact subgroup of H_I and $P_j \cap H_I$ is a parabolic subgroup of H_I we have $H_I = (K \cap H_I)(P_j \cap H_I)$. Hence $Q_I = H_I \cdot U_I = (K \cap H_I) \cdot (P_j \cap H_I)U_I = (K \cap H_I)(P_j \cap Q_I)$. It is also easy to see, by comparing the root subgroups on either side, that $P_j \cap Q_I = S_j Q_{I \cup \{j\}}$. Thus $Q_I = (K \cap H_I)S_j Q_{I \cup \{j\}}$. Further, for $g \in Q_I$ expressed as g = ksh with $k \in K \cap H_I$, $s \in S_j$ and $h \in Q_{I \cup \{j\}}$ we have $d_j(g) = |\alpha_j(s)|^{m_j}$. This shows that if $g \in Q_I$ and $d_j(g) \in [a,b]$ then $g \in K_0 Q_{I \cup \{j\}}$, where $K_0 = (K \cap H_I) \cdot \{s \in S_j \| \alpha_j(s) \|^{m_j} \in [a,b] \}$. Since K_0 is a compact subset of Q_I , this proves the Lemma.

Proof of Proposition 1.3. First let p=0, namely let ξ be the empty sequence. Then we see that $W=\{g\in G|d_i(g\lambda)\geqslant\alpha \text{ for all }i=1,\ldots,r \text{ and }\lambda\in\Lambda(\phi)\}$. Let $g\in W$. By the particular case of (1.1) with $I=\phi,g$ (in fact, any element of G) can be expressed as $kw\psi f$ where $k\in K, w\in\Omega(t_\phi), \psi\in\Psi_\phi$ and $f\in F_\phi\Gamma=\Lambda(\phi)^{-1}$. Consider such a decomposition and let $\lambda=f^{-1}\in\Lambda(\phi)$. Then we see that for any $i=1,\ldots,r$

$$|\alpha_i(w)|^{m_i} = d_i(kw\psi) = d_i(g\lambda) \geqslant \alpha.$$

This shows that

$$W \subseteq K\Omega_0 \Psi_{\phi} F_{\phi} \Gamma \tag{1.6}$$

where $\Omega_0 = \{w \in \Omega(t_\phi) | |\alpha_i(w)|^{m_i} \ge \alpha \forall i = 1, \dots, r\} = \{w \in S | \alpha^{1/m_i} \le |\alpha_i(w)| \le t_\phi \forall_i \}$. Since Ω_0 is a compact subset of S, (1.6) implies that $W\Gamma/\Gamma$ is contained in a compact subset of G/Γ , thus proving the proposition in the case at hand.

Now let ξ be an admissible sequence of length $p \ge 1$, say $\xi = ((i_1, \lambda_1), \dots, (i_n, \lambda_n))$, where i_1, \ldots, i_p are distinct elements of $\{1, \ldots, r\}$ and $\lambda_1, \ldots, \lambda_p \in G_0$ are such that $\lambda_{j-1}^{-1}\lambda_j \in \Lambda(\{i_1,\ldots,i_{j-1}\})$ for all $j=1,\ldots,p$, with $\lambda_0=e$, the identity element. For $j=1,\ldots,p$ let $I(j)=\{i_1,\ldots,i_j\}$. We first show that there exist compact subsets K_1, \ldots, K_p of G such that for each $j = 1, \ldots, p$ and $g \in W$ there exists a $k_j \in K_j$ such that $k_j g \lambda_j \in Q_{I(j)}$. We proceed by induction on j. We choose $K_1 = K_0^{-1}$ where K_0 is a compact subset for which the contention of Lemma 1.5 holds for the choices $I = \phi$, $j=i_1$ and a and b as in the hypothesis of the Proposition. Since $d_{i_1}(g\lambda_1)\in[a,b]$ for all $g \in W$, the Lemma implies that for each $g \in W$ there exists a $k_1 \in K_1$ such that $k_1 g \lambda_1 \in Q_{I(1)}$. Now suppose that compact subsets K_1, \ldots, K_j have been found, satisfying the condition as above for some $1 \le j \le p-1$. By Lemma 1.4 there exists a $c \in (0,1)$ such that $d_{i+1}(xh) \ge cd_{i+1}(h)$ for all $x \in K_i \cup K_i^{-1}$ and $h \in G$. Let K_0 be the compact subset for which the contention of Lemma 1.5 holds for the choices I = I(j) and $j = i_{j+1}$ and ca and $c^{-1}b$ in the place of a and b. Put $K_{j+1} = K_0^{-1}K_j$. Now let $g \in W$. By our choice there exists a $k_j \in K_j$ such that $k_j g \lambda_j \in Q_{I(j)}$. Since $\lambda_j^{-1} \lambda_{j+1} \in Q_{I(j)}$ we get that $k_j g \lambda_{j+1} \in Q_{I(j)}$. Further, we have

$$ca \le cd_{i_{j+1}}(g\lambda_{j+1}) \le d_{i_{j+1}}(k_jg\lambda_{j+1}) \le c^{-1}d_{i_{j+1}}(g\lambda_{j+1}) \le c^{-1}b.$$

Hence by Lemma 1.5 there exists a $k_0 \in K_0$ such that $k_j g \lambda_{j+1} \in k_0 Q_{I(j+1)}$. Thus we see that for $k_{j+1} = k_0^{-1} k_j$, $k_{j+1} g \lambda_{j+1} \in Q_{I(j+1)}$ as desired. Thus the inductive construction is complete.

Recall that $d_i(g\lambda) \ge \alpha$ for all $g \in W$ and $(i, \lambda) \in \mathcal{C}(\xi)$. Hence by Lemma 1.4 there exists a $\beta > 0$ such that $d_i(kg\lambda) \ge \beta$ for all $k \in K_p$, $g \in W$ and $(i, \lambda) \in \mathcal{C}(\xi)$. Now let $g \in W$ and $k_p \in K_p$ be such that $k_p g \lambda_p \in Q_{I(p)}$. If $I = \{1, \ldots, r\}$, $Q_I/\Gamma \cap Q_I$ is compact, and since $\lambda_p \in G_Q$ this implies that $Q_I \lambda_r^{-1} \Gamma/\Gamma$ is compact. In this case the preceding condition implies

that $W\Gamma/\Gamma \subset K_r^{-1}Q_I\lambda_r^{-1}\Gamma/\Gamma$, which is a compact subset. Now suppose that I is a proper subset. By (1.1) and (1.2) there exists a $\theta \in \Lambda(I(p))$ such that $k_pg\lambda_p\theta \in K\Omega(t_{I(p)})\Psi_{I(p)}$ say $k_pg\lambda_p\theta = kw\psi$ where $k\in K, w\in \Omega(t_{I(p)})$ and $\psi\in \Psi_{I(p)}$. Let $J=\{1,\ldots,r\}-I(p)$. Observe that for any $j\in J$, $(j,\lambda_p\theta)\in \mathscr{C}(\xi)$ and hence $d_j(k_pg\lambda_p\theta)\geqslant \beta$. Hence we get that

$$|\alpha_j(w)|^{m_j}=d_j(kw\psi)=d_j(k_pg\lambda_p\theta)\geq\beta.$$

Let

$$\begin{split} \Omega_0 &= \big\{ w \in \Omega(t_{I(p)}) \, \| \, \alpha_j(w) \big|^{m_j} \geqslant \beta \quad \forall j \in J \big\} \\ &= \big\{ w \in S_J \, | \, \beta^{1/m_j} \leqslant |\alpha_j(w)| \leqslant t_{I(p)} \big\}. \end{split}$$

Then Ω_0 is a compact subset of S_I and the above argument shows that for any $g \in W$ there exist a $k_p \in K_p$ and a $\theta \in \Lambda(I(p)) = (F_{I(p)}\Gamma)^{-1} = \Gamma F_{I(p)}^{-1}$ such that $k_p g \lambda_p \theta \in K\Omega_0 \Psi_{I(p)}$. Therefore

$$W \subset K_p^{-1} K \Omega_0 \Psi_{I(p)} F_{I(p)} \Gamma \lambda_p^{-1}. \tag{1.7}$$

Since $K_p^{-1}K\Omega_0\Psi_{I(p)}$ is a compact subset of G and $F_{I(p)}\Gamma\lambda_p^{-1}$ is contained in a finite union of cosets of Γ , (1.7) implies that $W\Gamma/\Gamma$ is contained in a compact of G/Γ . This proves the Proposition.

PROPOSITION 1.8

Let ξ be an admissible sequence of length $p \ge 1$; say $\xi = ((i_1, \lambda_1), \dots, (i_p, \lambda_p))$. Let α , a and b be positive real numbers and let W be the subset of G as in Proposition 1.3 for this data. Let $I = \{i_1, \dots, i_p\}$. Then

$$W = \{g \in G | d_i(g\lambda_p\theta) \geqslant \alpha \, \forall i \notin I \text{ and } \theta \in \Lambda(I) \text{ and } a \leqslant d_i(g\lambda_p) \leqslant b \, \forall i \in I.\}$$

In particular, the set $W\Gamma/\Gamma$ is determined by I and $\Gamma\lambda_p$, in the sense that if $\xi' = ((i_1, \lambda'_1), \ldots, (i_p, \lambda'_p))$ is an admissible sequence and $\lambda'_p \in \Gamma\lambda_p$, then the corresponding set for ξ' is the same as $W\Gamma/\Gamma$.

Proof. For any $1 \le j \le p$ let $I(j) = \{i_1, \ldots, i_j\}$. Since, by admissibility of $\xi, \lambda_j^{-1} \lambda_{j+1} \in \Lambda(I(j)) \subset Q_{I(j)}$ for all $j = 1, \ldots, p-1$ we get that $\lambda_j^{-1} \lambda_p \in Q_{I(j)}$ for all j. Therefore if $i = i_j$ for some j then $d_i(g\lambda_j) = d_i(g\lambda_p)$. Also clearly $(i, \lambda) \in \mathscr{C}(\xi)$ if and only if $i \notin I$ and $\lambda = \lambda_p \theta$ for some $\theta \in \Lambda(I)$. The first part of the proposition is immediate from these two observations. The remaining part now follows from an obvious substitution argument.

2. More on the functions d_i

We follow the notation as before. For each $i=1,\ldots,r$ we define a representation ρ_i of G as follows. Let $1 \le i \le r$. Let U_i be the unipotent radical of P_i and let u_i be the dimension of U_i . Let \mathcal{G} be the Lie algebra of G. Let $V_i = \bigwedge^i \mathcal{G}$, the ith exterior power of \mathcal{G} . We define ρ_i as the ith exterior power representation of the adjoint representation of G over \mathcal{G} . We equip \mathcal{G} with a AdK-invariant norm. Let e_1,\ldots,e_n be an orthonormal basis of \mathcal{G} with respect to the norm. For any ℓ , this defines a canonical basis of $\bigwedge^i \mathcal{G}$, namely $\{e_{i_1} \land e_{i_2} \land \cdots \land e_{i_r} | 1 \le i_1 < i_2 < \cdots < i_\ell \le n\}$. In particular we get a basis for

each V_i ; we equip V_i with the norm, denoted by $\|\cdot\|$, making the basis into an orthonormal basis. It is straightforward to verify that the norm is $\rho_i(K)$ -invariant. Let p_i be an element of norm 1 in the one-dimensional subspace of $V_i = \wedge^i \mathcal{G}$ corresponding to the Lie subalgebra of \mathcal{G} associated to U_i , which is a u_i -dimensional subspace. A straightforward computation shows that

$$\rho_i(x)(p_i) = \alpha_i(x)^{m_i} p_i \quad \forall x \in P_i. \tag{2.1}$$

This implies that $d_i(x) = \|\rho_i(x)(p_i)\|$ for all $x \in P_i$. Since d_i and the norm are K-invariant and $G = KP_i$ we get that

$$d_i(g) = \| \rho_i(g)(p_i) \| \quad \forall g \in G. \tag{2.2}$$

We also note at this point that for $g \in G$, $\rho_i(g)(p_i) = p_i$ if and only if $g \in Q_i$. The 'if' part follows from (2.1). Now let $g \in G$ be such that $\rho_i(g)(p_i) = p_i$. Then the definition of ρ_i shows that the Lie subalgebra of U_i is Ad g-invariant. Since U_i is a connected Lie subgroup this implies that g normalizes U_i . But P_i is the normalizer of U_i (cf. [2]). Hence $g \in P_i$. But then by (2.1) $\alpha_i(g) = 1$ which means that $g \in Q_i$.

PROPOSITION 2.3

Let $1 \le i \le r$ and let n_i be the dimension of V_i . Let $\{u_i\}$ be a unipotent one-parameter subgroup of G and let $g \in G$. Then $d_i^2(u_ig)$ is a polynomial in t of degree at most $2(n_i-1)$. Further $d_i(u_ig)$ is constant (that is, independent of t) if and only if $g^{-1}u_ig \in Q_i$ for all $t \in \mathbb{R}$.

Proof. Since $\{u_t\}$ is a unipotent one-parameter subgroup of G, $\{\rho_i(u_t)\}$ is a unipotent one-parameter group of linear transformations of V_i . By Jordan decomposition this implies that for any $v \in V_i$ the expansion of $\{\rho_i(u_t)(v)\}$ with respect to any basis has coefficients which are polynomials in t of degree at most $(n_i - 1)$. Applying this to an orthonormal basis we see that for any $v \in V_i$, $\|\rho_i(u_t)(v)\|^2$ is a polynomial of degree at most $2(n_i - 1)$. Given $g \in G$, choosing $v = \rho_i(g)p_i$ we see that $\|\rho_i(u_ig)(p_i)\|^2$ is a polynomial of degree at most $2(n_i - 1)$ and hence by (2.2) so is $d_i^2(u_ig)$.

Now let $g \in G$ be such that $d_i(u_t g)$ is constant in t. Then by (2.2), $\|\rho_i(u_t g)(p_i)\| = \|\rho_i(u_t)\rho_i(g)(p_i)\|$ is constant. For a unipotent one-parameter group of linear transformations any orbit other than a fixed point is an unbounded subset of the vector space. Therefore under the above condition $\rho_i(u_t)\rho_i(g)(p_i) = \rho_i(g)(p_i)$ for all $t \in \mathbb{R}$. Hence $\rho_i(g^{-1}u_t g)$ fixes p_i for all t. As noted before, this implies that $g^{-1}u_t g \in Q_i$ for all $t \in \mathbb{R}$. This proves the Proposition.

Lemma 2.4. Let $1 \le i \le r$, $f \in G_Q$ and $g \in G$ be given. Then for any $\delta > 0$ the set $\{ \gamma \in \Gamma | d_i(g\gamma f) < \delta \}$ is finite.

Proof. Let \mathscr{G} be equipped with the Q-structure corresponding to the Q-structure on G. Since U_i is an algebraic subgroup defined over Q, the Lie subalgebra of \mathscr{G} corresponding to U_i is a rational subspace (spanned, over R, by rational elements) of \mathscr{G} . The Q-structure on \mathscr{G} induces canonically a Q-structure on $V_i = \wedge^i \mathscr{G}$ and ρ_i is (the restriction of) a rational representation with respect to the Q-structure. Also in view of the preceding assertion p_i is a scalar multiple of a rational element, say $p_i = tq_i$ where $t \in \mathbb{R}$ and q_i is rational. Since $f \in G_Q$ we get that $\rho_i(f)(q_i)$ is rational.

Since Γ is an arithmetic subgroup, this implies in turn that $\rho_i(\Gamma)\rho_i(f)q_i$ is a discrete subset of V_i . Since

$$\rho_i(g\Gamma f)(p_i) = \rho_i(g)\rho_i(\Gamma)\rho_i(f)(p_i) = t\rho_i(g)\rho_i(\Gamma)\rho(f)(q_i)$$

we get the $\rho_i(g\Gamma f)(p_i)$ is a discrete subset of V_i . In particular for any $\delta > 0$ there exist only finitely many $\gamma \in \Gamma$ such that $\|\rho_i(g\gamma f)p_i\| \ge \delta$. In view of (2.2), this implies the Lemma.

Lemma 2.5. There exists a finite subset \tilde{F} of G_Q such that for any admissible sequence ξ and any $(i, \lambda) \in \sup \xi, \lambda \in \Gamma \tilde{F}$.

Proof. If $((i_1, \lambda_1), \dots, (i_p, \lambda_p))$ is an admissible sequence of length $p \ge 1$ then for all $j = 2, \dots, p$ we have $\lambda_{j-1}^{-1} \lambda_j \in \Lambda(I(j-1))$, where $I(k) = \{i_1, \dots, i_k\}$ for all k, and hence $\lambda_j \in \Lambda(\phi) \Lambda(I(1)) \dots \Lambda(I(j-1))$. This shows that for any admissible sequence ξ and any $(i, \lambda) \in \text{supp } \xi, \lambda$ is an element of a set of the form $\Lambda(\phi) \Lambda(I_1) \dots \Lambda(I_j)$ where $j \in \{1, \dots, r-1\}$ and I_1, \dots, I_j are subsets of $\{1, \dots, r\}$ of cardinalities $1, \dots, j$ respectively, such that $I_1 \subset I_2 \subset \dots \subset I_j$. Since each $\Lambda(I), I \subset \{1, \dots, r\}$, is a finite union of cosets of the form Γf , $f \in G_Q$ and Γ is an arithmetic lattice, it follows that each product $\Lambda(\phi) \Lambda(I_1) \dots \Lambda(I_j)$ as above is a finite union of cosets of the form Γf , $f \in G_Q$. Hence the preceding assertion implies that there are finitely many such cosets which together contain the supports of all admissible sequences. We can therefore choose a subset \widetilde{F} of G_Q for which the contention of the Lemma holds.

Lemma 2.6. Let $1 \le i \le r$ and let $\{u_i\}$ be a unipotent one-parameter subgroup of G. Then the function $v: R \to R$ defined by

$$v(t) = \sup \{d_i(u_t g)/d_i(g) | g \in G\} \ \forall t \in \mathbb{R}$$

is continuous.

Proof. Consider the function $\varphi \colon \mathbb{R} \times G \to \mathbb{R}$ defined by $\varphi(t,g) = d_i(u_t g)/d_i(g)$ for all $t \in \mathbb{R}$ and $g \in G$. Since $d_i(hp) = d_i(h)d_i(p)$ for all $h \in G$ and $p \in P_i$ we see that $\varphi(t,gp) = \varphi(t,g)$ for all $t \in \mathbb{R}$, $g \in G$ and $p \in P_i$. Hence we get a well-defined function $\tilde{\varphi} \colon \mathbb{R} \times G/P_i \to \mathbb{R}$ such that $\tilde{\varphi}(t,gP_i) = \varphi(t,g)$ for all $t \in \mathbb{R}$ and $g \in G$. Since φ is continuous so is $\tilde{\varphi}$. Also, clearly

$$v(t) = \sup \{ \tilde{\varphi}(t, x) | x \in G/P_i \}.$$

Since $\tilde{\varphi}$ is continuous and G/P_i is compact, an elementary argument shows that the right hand side is a continuous function. This proves the lemma.

PROPOSITION 2.7

Let $1 \le i \le r$, let $\{u_t\}$ be a unipotent one-parameter subgroup of G and let $g \in G$. Let A be a subset of G_Q contained in a finite union of cosets of the form Γf , $f \in G_Q$. Let $\delta > 0$ and $t_1, t_2 \in R$, $t_1 < t_2$, be such that $d_i(u_{t_1}g\lambda) > \delta$ for all $\lambda \in A$ and $d_i(u_{t_2}g\lambda) \le \delta$ for some $\lambda \in A$. Let

$$s = \inf\{t \in [t_1, t_2] | d_i(u, g\lambda) \le \delta \text{ for some } \lambda \in A\}.$$

Then there exists a $\lambda \in A$ such that $d_i(u_s g \lambda) = \delta$.

Proof. Let $v: \mathbb{R} \to \mathbb{R}$ be the function as in Lemma 2.6 for i and $\{u_i\}$ as above. By the Lemma there exists a neighbourhood Ω of 0 such that v(t) < 2 for all $t \in \Omega$. By the definition of s there exist sequences $\{t_k\}$ in $[t_1, t_2]$ and $\{\lambda_k\}$ in A such that $t_k \to s$ and $d_i(u_{i_k}g\lambda_k) = \delta$ for all k. We may clearly assume that $t_k - s \in \Omega$ for all k. Then $d_i(u_sg\lambda_k) \leq v(s-t_k)d_i(u_{t_k}g\lambda_k) \leq 2\delta$ for all k. Since A is contained in finitely many cosets of the form Γf , by Lemma 2.4 this implies that $\{\lambda_k | k = 1, 2, \ldots\}$ is a finite set. Passing to a subsequence we may assume that $\lambda_k = \lambda$ for all k, where $\lambda \in A$. Then, since $t_k \to s$ and $d_i(u_{t_k}g\lambda) = \delta$ for all k, we get that $d_i(u_sg\lambda) = \delta$. This proves the Proposition.

3. Proof of Theorem 1

In this section we complete the proof of Theorem 1. We begin by recalling some properties of nonnegative polynomials and fixing some more notation.

For $m \in \mathbb{N}$ let \mathscr{P}_m denote the set of all nonnegative valued polynomials of degree at most m. We need the following simple properties of nonnegative polynomials (cf. [9] Lemma A.4 or [5] Lemmas 1.3 and 1.4).

Lemma 3.1. a) For any $m \in \mathbb{N}$ and $\rho > 0$ there exists a $\alpha > 0$ such that the following holds: If $P \in \mathcal{P}_m$ is such that $P(1) < \alpha$ and $P(s) \ge 1$ for some $s \in [0, 1]$ then there exists a $t \in [1, \rho]$ such that $P(t) = \alpha$.

b) For any $m \in \mathbb{N}$ and $\sigma > 1$ there exist constants $\beta_1, \beta_2 > 0$ such that the following holds: If $P \in \mathcal{P}_m$, $P(s) \leq 1$ for all $s \in [0,1]$ and P(1) = 1 then there exists a $\ell, 0 \leq \ell \leq m$, such that $\beta_1 \leq P(t) \leq \beta_2$ for all $t \in [\sigma^{2\ell+1}, \sigma^{2\ell+2}]$.

For the rest of the argument we fix some constants as follows. Let $\varepsilon > 0$ be arbitrary (we shall later choose this to be as in Theorem 1). Let $\sigma > 1$ be such that $(1 - \sigma^{-1})^r > (1 - \varepsilon)$ where r, as in § 1, is the Q-rank of G. We next choose $\tau > 1$ such that $(\tau^{-1} - \sigma^{-1})^r \ge (1 - \varepsilon)$. Let $m = 2 \max\{n_i - 1 | 1 \le i \le r\}$ and let $\rho > 1$ be such that $(\rho - 1) \le (\tau - 1)/\sigma^{2m+2}$. Let $\alpha \in (0, 1)$ be such that the contention of Lemma 3.1 a) holds for these choices of m and ρ . Let $0 < \beta_1 < 1 < \beta_2$ be such that the contention of Lemma 3.1 b) holds for the choices of m and σ as above.

PROPOSITION 3.2

Let $\{u_t\}$ be a unipotent one-parameter subgroup of G and let $g \in G$. Let ξ be an admissible sequence of length $p \ge 0$. Let $s \ge 0$ and $\chi > 0$ be such that for any $(i, \lambda) \in \mathscr{C}(\xi)$ there exists a $t \in [0, s]$ such that $d_i^2(u_t g \lambda) \ge \chi$. Then at least one of the following conditions holds:

i) there exists a $s' \in (s, \tau s)$ such that for all $(i, \lambda) \in \mathscr{C}(\xi)$ and $t \in [s, s')$

$$d_i^2(u, q\lambda) > \gamma \alpha/2$$

- ii) there exist s_0 , $s_1 \in [s, \tau s]$ such that $(s_1 s) = \sigma(s_0 s)$ and the following conditions are satisfied:
- a) for any $(i, \lambda) \in \mathcal{C}(\xi)$ there exists a $t \in [s, s_0]$ such that $d_i^2(u_i g \lambda) \geqslant \chi \alpha/2$ and b) there exists a $(j, \mu) \in \mathcal{C}(\xi)$ such that $\chi \alpha \beta_1 \leqslant d_j^2(u_i g \mu) \leqslant \chi \alpha \beta_2$ for all $t \in [s_0, s_1]$ and $d_j^2(u_j g \mu) \geqslant 2d_j^2(u_s g \mu)$ for some $y \in [s, s_0]$.

Proof. Let

 $\mathscr{F} = \{(i,\lambda) \in \mathscr{C}(\xi) | d_i^2(u_s g\lambda) \leq \chi \alpha/2 \}.$

First suppose that \mathcal{F} is empty. Consider the set

$$E = \big\{ t \in [s, \tau s) | d_i^2(u_t g \lambda) > \chi \alpha/2 \, \forall (i, \lambda) \in \mathcal{C}(\xi) \big\}.$$

If $E = [s, \tau s)$ then condition i) of the Proposition holds for $s' = \tau s$. Now suppose that E is a proper subset of $[s, \tau s)$. Let $s' = \inf\{t | t \in [s, \tau s) - E\}$. Then by Lemma 2.5 and Proposition 2.7, there exists a $(i, \lambda) \in \mathcal{C}(\xi)$ such that $d_i^2(u_s'g\lambda) = \chi \alpha/2$. Hence $s' \in [s, \tau s) - E$. On the other hand, since \mathscr{F} is empty $s \in E$. In particular s' > s. Clearly condition i) of the Proposition holds for this s'.

Next suppose that \mathscr{F} is nonempty. By Lemmas 2.4 and 2.5 \mathscr{F} is a finite set. By hypothesis for any $(i,\lambda)\in\mathscr{F}\subset\mathscr{C}(\xi)$ there exists a $t\in[0,s]$ such that $d_i^2(u_tg\lambda)\geqslant\chi$ and hence by Lemma 3.1 a), applied to the polynomial $t\mapsto d_i^2(u_{st}g\lambda)/\chi$, which is of degree $2(n_i-1)\leqslant m$ (cf. Proposition 2.3), there exists a $t\in[s,\rho s]$ such that $d_i^2(u_tg\lambda)=\chi\alpha$. For each $(i,\lambda)\in\mathscr{C}(\xi)$ let $t(i,\lambda)=\inf\{t\in[s,\rho s]|d_i^2(u_tg\lambda)=\chi\alpha\}$ and let $y=\max\{t(i,\lambda)|(i,\lambda)\in\mathscr{F}\}$. Let $(j,\mu)\in\mathscr{F}$ be such that $t(j,\mu)=y$. We note that

$$d_j^2(u_yg\mu) = \chi\alpha \geqslant 2d_j^2(u_gg\mu). \tag{3.3}$$

Now observe that $d_j^2(u_tg\mu) \le \chi\alpha$ for all $t \in [s, y]$ and $d_j^2(u_yg\mu) = \chi\alpha$. Hence by Lemma 3.1 b), applied to the polynomial $t \mapsto d_j^2(u_{s+(y-s)t}g\mu)/\chi\alpha$, there exists a $\ell, 0 \le \ell \le m$, such that

$$\chi \alpha \beta_1 \leqslant d_j^2(u_t g \mu) \leqslant \chi \alpha \beta_2 \dots \forall t \in [s_0, s_1]$$
(3.4)

where

$$s_0 = s + \sigma^{2\ell+1}(y-s)$$
 and $s_1 = s + \sigma^{2\ell+2}(y-s)$.

Observe that $s \le s_0 \le s_1 \le s + \sigma^{2m+2}(\rho - 1)s \le \tau s$. Also clearly $(s_1 - s) = \sigma(s_0 - s)$. We next verify conditions ii) for these choices of s_0 and s_1 . We see that for $(i, \lambda) \in \mathcal{C}(\xi)$, $d_i^2(u_s g\lambda) > \chi \alpha/2$ if $(i, \lambda) \notin \mathcal{F}$ and $d_i^2(u_{\tau(i,\lambda)}g\lambda) = \chi \alpha$ if $(i, \lambda) \in \mathcal{F}$; since $s \le t(i, \lambda) \le y < s_0$, this shows that condition ii) (a) holds. Condition ii) (b) follows from (3.3) and (3.4). This proves the Proposition.

PROPOSITION 3.5

Let $\{u_i\}$ be a unipotent one-parameter subgroup of G. Let ξ be an admissible sequence of length $p \ge 0$. Let $g \in G$, $s \ge 0$ and $\chi' \ge \chi > 0$ be such that for any $(i, \lambda) \in \mathscr{C}(\xi)$ there exists a $t \in [0, s]$ such that $d_i^2(u_i g \lambda) \ge \chi$ and for any $(i, \lambda) \in \sup \xi, \chi \beta_1 \le d_i^2(u_i g \lambda) \le \chi' \beta_2$ for all $t \in [s, \sigma s]$. For any admissible sequence ξ extending ξ , say of length q, let

$$X(\zeta) = \{ t \in [s, \sigma s] | d_i^2(u_t g\lambda) \geqslant \chi(\alpha/2)^{q-p+1} \quad \forall (i, \lambda) \in \mathscr{C}(\zeta) \text{ and}$$
$$(\alpha/2^{q-p}) \chi \beta_1 \leqslant d_i^2(u_t g\lambda) \leqslant \chi' \beta_2 \quad \forall (i, \lambda) \in supp \, \xi \}$$

and let

$$X = \cup_{\zeta} X(\zeta)$$

where the union is taken over all admissible sequences ζ extending ξ . Then

$$\ell(X) \geqslant (\tau^{-1} - \sigma^{-1})^{r-p}(\sigma - 1)s.$$

Proof. We proceed by induction on (r-p). If p=r then $X=X(\xi)=[s,\sigma s]$ and hence the Proposition evidently holds. Now let $0 \le p < r$ and suppose that the Proposition

holds for all admissible sequences of length $\ge p+1$, for all $g \in G$, $s \ge 0$ and $\chi > 0$ satisfying the conditions in the hypothesis, and let an admissible sequence ξ of length $p, g \in G$, $s \ge 0$ and $\chi > 0$ be given, satisfying the conditions in the hypothesis. Let X be the set as in the statement of the Proposition, for this data.

We first show that for any $x \in [s, \tau^{-1} \sigma s]$ there exists a $x' \in (x, \tau x]$ for which either $[x, x') \subset X$ or the following conditions are satisfied:

$$\ell(X \cap [x, x']) \geqslant (1 - \sigma^{-1})(\tau^{-1} - \sigma^{-1})^{r-p-1}(x' - x)$$
(3.6)

and there exist $(j, \mu) \in \mathscr{C}(\xi)$ and $y \in [x, x']$ such that

$$d_j^2(u_yg\mu) \geqslant 2d_j^2(u_xg\mu) \tag{3.7}$$

Let $x \in [s, \tau^{-1} \sigma s]$ be given. We apply Proposition 3.2 with x in the place of s, the requisite conditions being satisfied since $x \ge s$. Suppose Condition i), as in the conclusion of that Proposition, holds. Then there exists a $x' \in (x, \tau x)$ such that for all $(i,\lambda)\in\mathscr{C}(\xi)$ and $t\in[x,x')$, $d_i^2(u_tg\lambda)\geqslant \chi\alpha/2$. We also see that $[x,\tau x]\subset[s,\sigma s]$ and hence $\chi \beta_1 \leq d_i^2(u_i g \lambda) \leq \chi' \beta_2$ for all $(i, \lambda) \in \text{supp } \xi$ and $t \in [x, \tau x]$. The two assertions imply that $[x, x'] \subset X(\xi) \subset X$ and hence we are through in this case. Next suppose that Condition ii) (of Proposition 3.2) holds. Thus there exist $s_0, s_1 \in [x, \tau x]$ such that $(s_1 - x) = \sigma(s_0 - x)$ and the following conditions are satisfied: a) for any $(i, \lambda) \in \mathscr{C}(\xi)$ there exists a $t \in [x, s_0]$ such that $d_i^2(u_t g\lambda) \ge \chi \alpha/2$ and b) there exists a $(j, \mu) \in \mathcal{C}(\xi)$ such that $\chi \alpha \beta_1 \leq d_i^2(u_i g \mu) \leq \chi \alpha \beta_2$ for all $t \in [s_0, s_1]$ and $d_i^2(u_i g \mu) \geq 2d_i^2(u_i g \mu)$ for some $y \in [x, s_0]$. Let η be the admissible sequence of length p+1 extending ξ and containing (j,μ) (as in condition (b)) as the last term. Then we see that the conditions in the hypothesis of the present proposition are satisfied for η , in the place of ξ , with $u_x g$, $s_0 - x$, and $\chi \alpha/2$ in the place of g, s and χ respectively: condition a) above implies that for any $(i, \lambda) \in \mathcal{C}(\eta)$ there exists a $t \in [x, s_0]$ such that $d_i^2(u_{(t-x)}u_x g\lambda) \geqslant \chi \alpha/2$. For all $(i, \lambda) \in \text{supp } \xi \text{ we have}$

$$d_i^2(u_{t-x}u_xg\lambda) = d_i^2(u_tg\lambda) \in [\chi\beta_1, \chi'\beta_2] \subset [\chi(\alpha/2)\beta_1, \chi'\beta_2]$$

for all $t \in [s, \sigma s]$ and, in particular, whenever $(t - x) \in [s_0 - x, \sigma(s_0 - x)]$, since $\sigma(s_0 - x) = s_1 - x$ and $s_0, s_1 \in [x, \tau x] \subset [s, \sigma s]$; also $d_j^2(u_t g \mu) \in [\chi \alpha \beta_1, \chi \alpha \beta_2] \subset [\chi(\alpha/2)\beta_1, \chi'\beta_2]$. Thus we have verified the conditions in the hypothesis for the choices as above. Since η is of length p + 1, by the induction hypothesis the assertion of the Proposition holds for η . For any admissible sequence ζ let $X'(\zeta)$ be the set corresponding to $X(\zeta)$ as in the proposition with respect to the choices as above. Let X' be the union of $X'(\zeta)$ over all admissible sequences extending η . Then we have

$$\ell(X') \geqslant (\tau^{-1} - \sigma^{-1})^{r-p-1} (\sigma - 1)(s_0 - x)$$
(3.8)

It is straightforward to verify by substitution that for any admissible sequence ζ extending η and $t \in X'(\zeta)$, $x + t \in X(\zeta) \cap [s_0, s_1]$; recall for this purpose that $[s_0 - x, \sigma(s_0 - x)] = [s_0 - x, s_1 - x] \subset [s - x, \sigma(s_0 - x)]$. Hence by (3.8) we get that

$$\ell(X \cap [s_0, s_1]) \ge (\tau^{-1} - \sigma^{-1})^{r-p-1} (\sigma - 1)(s_0 - x)$$

= $(1 - \sigma^{-1})(\tau^{-1} - \sigma^{-1})^{r-p-1}(s_1 - x).$

Now choose $x' = s_1$. Then, since $x \le s_0$, the above relation shows that (3.6) is satisfied.

Also by condition b) above there exists a $y \in [x, s_0] \subset [x, x']$ such that (3.7) holds. Thus we have produced a x' for which (3.6) and (3.7) hold.

To complete the proof we construct a finite sequence $x_0, x_1, ..., x_n$ in $[s, \sigma s]$ as follows. We choose $x_0 = s$. Let $k \ge 0$ and suppose that $x_0, ..., x_k$ have been chosen. If $x_k \le \tau^{-1} \sigma s$ then we choose $x_{k+1} \in [x_k, \tau x_k]$ as follows: If there exists $x' \in (x_k, \sigma s)$ such that $[x_k, x'] \subset X$ then we choose x_{k+1} to be such that $[x_k, x_{k+1}] \subset X$ but $[x_k, x']$ is not contained in X for any $x'' > x_{k+1}$. If there does not exist any $x' > x_k$ with $[x_k, x'] \subset X$ then, as $x_k \in [s, \tau^{-1} \sigma s]$, by what we proved above (see (3.6)) there exists a $x_{k+1} \in (x_k, \tau x_k]$ such that

$$\ell(X \cap [x_k, x_{k+1}]) \ge (1 - \sigma^{-1})(\tau^{-1} - \sigma^{-1})^{r-p-1}(x_{k+1} - x_k)$$
(3.9)

and there exist $(j, \mu) \in \mathcal{C}(\xi)$ and $y \in [x_k, x_{k+1}]$ such that

$$d_j^2(u_y g \mu) \geqslant 2d_j^2(u_{x_k} g \mu). \tag{3.10}$$

Observe that since $x_k \le \tau^{-1} \sigma s$, $x_{k+1} \le \sigma s$. Lastly, if $x_k > \tau^{-1} \sigma s$ we terminate the sequence, setting n = k.

We show that the sequence as defined above does terminate in finitely many steps. For this purpose observe that if for some $k \ge 0$, $[x_k, x_{k+1}) \subset X$ then $[x_{k+1}, x']$ is not contained in X for any $x' > x_{k+1}$. In view of this, to show that the sequence terminates it is enough to show that there exists a c > 0 such that $x_{k+1} - x_k \ge c$ for any $k \ge 0$ such that $[x_k, x_{k+1}]$ is not contained in X. In view of Lemma 2.6 there exists a c > 0 such that if for some $i \in \{1, \ldots, r\}$, $h \in G$ and $t \ge 0$, $d_i(u_t h)/d_i(h) \ge \sqrt{2}$ then $t \ge c$. Recall that when $[x_k, x_{k+1}]$ is not contained in X there exist $(j, \mu) \in \mathscr{C}(\xi)$ and $y \in [x_k, x_{k+1}]$ such that (3.7) holds and in that case, by the above observation, $y - x_k \ge c$ and in turn $x_{k+1} - x_k \ge c$, as desired. Hence the sequence indeed terminates (in at most $2(\tau^{-1}\sigma - 1)s/c$ steps!) at a $x_n > \tau^{-1}\sigma s$.

Now we have

$$\ell(X) \geqslant \sum_{k=0}^{n-1} \ell(X \cap [x_k, x_{k+1}]) \geqslant (1 - \sigma^{-1})(\tau^{-1} - \sigma^{-1})^{r-p-1}(x_n - x_0),$$

by (3.9). Since $(x_n - x_0) > (\tau^{-1} \sigma s - s) = \sigma(\tau^{-1} - \sigma^{-1})s$, this yields that

$$\ell(X) \geqslant (\sigma - 1)(\tau^{-1} - \sigma^{-1})^{r-p}s$$

thus proving the Proposition.

Proof of Theorem 1. Let $F \subset G_Q$ be a finite subset such that $\Lambda(\phi) = \Gamma F$ (cf. (1.2)). Now let $\varepsilon > 0$ and $\theta > 0$ be as in the hypothesis of the Theorem and $\sigma > 1$ such that $(1 - \sigma^{-1})^r > (1 - \varepsilon)$. Let $\tau > 1$, $\rho > 1$, $\alpha \in (0, 1)$ and $0 < \beta_1 < 1 < \beta_2$ be the constants chosen as in the beginning of the section starting with σ . For any admissible sequence ζ of length q let

$$W(\zeta) = \{ g \in G | d_i^2(g\lambda) \geqslant \theta(\alpha/2)^{q+1} \,\forall (i,\lambda) \in \mathscr{C}(\zeta) \text{ and}$$
$$(\alpha/2)^q \,\theta \beta_1 \leqslant d_i^2(g\lambda) \leqslant \theta \beta_2 \,\forall (i,\lambda) \in \text{supp } \zeta \}$$

and let

$$C = \bigcup_{\Gamma} \overline{W(\zeta)\Gamma}/\Gamma$$

where the union is taken over all admissible sequences ζ . By Proposition 1.8 there are only finitely many distinct subsets involved in the union and by Proposition 1.3 each of them is compact. Hence C is a compact subset of G/Γ . We shall show that the contention of the Theorem holds for the compact set C and σ as above.

Let a unipotent one-parameter subgroup $\{u_t\}$ in $G, g \in G$ and $T \ge 0$ be given. For any admissible sequence ζ of length g let

$$X(\zeta) = \{ t \in [T, \sigma T] | d_i^2(u_t g \lambda) \ge \theta(\alpha/2)^{q+1} \,\forall (i, \lambda) \in \mathscr{C}(\zeta) \text{ and}$$
$$(\alpha/2)^q \theta \beta_1 \le d_i^2(u_t g \lambda) \ge \theta \beta_2 \,\forall (i, \lambda) \in \text{supp } \zeta \}$$

and let

$$X = \cup_{\zeta} X(\zeta)$$

the union being taken over all admissible sequences ζ . Applying Proposition 3.5 to the empty sequence ϕ , with s = T and $\chi = \chi' = \theta^2$ we see that either there exists a $(i, \lambda) \in \mathscr{C}(\phi)$ such that $d_i(u, g\lambda) < \theta$ for all $t \in [0, T]$ or.

$$\ell(X) \geqslant (\tau^{-1} - \sigma^{-1})^r (\sigma - 1) T.$$

Observe that if $t \in X$ then $u_t g \Gamma \in C$. Recall also that by choice $(\tau^{-1} - \sigma^{-1})^r \ge (1 - \varepsilon)$ and that for $i \in \{1, ..., r\}$, $(i, \lambda) \in \mathscr{C}(\phi)$ if and only if $\lambda \in \Lambda(\phi) = \Gamma F$. Hence the above conclusion implies the assertion in the theorem, that either

$$\ell(\{t \in [T, \sigma T] u_t g \Gamma \in C\}) \ge (1 - \varepsilon)(\sigma - 1) T$$

or these exist $\lambda \in \Gamma F$ and $i \in \{1, ..., r\}$ such that $d_i(u_t g \lambda) < \theta$ for all $t \in [0, T]$.

4. Proofs of the other theorems

We shall now deduce the other theorems stated in the introduction. We follow the same notation as before.

Proof of Theorem 2. Let $\varepsilon > 0$ and $\theta > 0$ be given and let C be a compact subset of G/Γ for which the contention of Theorem 1 holds for $\varepsilon/2$ and θ in the place of ε and θ respectively. Let $\{u_t\}$ be a unipotent one-parameter subgroup of G and let $g \in G$. Let $\sigma > 1$ be such that $(1 - \sigma^{-1})^r > (1 - \varepsilon/2)$. Then by Theorem 1 for any $T \ge 0$ either there exist $j \in \{1, ..., r\}$ and $\mu \in \Gamma F$ such that $d_i(u_t g \mu) < \theta$ for all $t \in [0, \sigma^{-1} T]$ or

$$\ell(\left\{t\!\in\!\left[\sigma^{-1}\,T,\,T\right]|u_tg\Gamma\!\in\!C\right\})\geqslant (1-\varepsilon/2)(\sigma-1)\sigma^{-1}\,T>(1-\varepsilon)\,T.$$

Hence if the first condition in the conclusion of Theorem 2 does not hold then for each $T \ge 0$ there exist $j \in \{1, ..., r\}$ and $\mu \in \Gamma F$ such that $d_j(u_t g \mu) < \theta$ for all $t \in [0, \sigma^{-1}]$. By Lemma 2.4 the set

$$\big\{(j,\mu)\big|\,1\leqslant j\leqslant r,\mu\!\in\!\Gamma F,d_j(g\mu)<\theta\big\}$$

is finite. Therefore the above condition implies that there exist $i \in \{1, ..., r\}$ and $\lambda \in \Gamma F$ such that $d_i(u_t g \lambda) < \theta$ for all $t \ge 0$. By Proposition 2.3, $d_i^2(u_t g \lambda)$ is a polynomial in t and hence the preceding condition implies that $d_i(u_t g \lambda) = d_i(g \lambda)$ for all $t \in \mathbb{R}$. This

implies, by the second part of Proposition 2.3 that $\lambda^{-1} g^{-1} u_t g \lambda \in Q_i$, or equivalently, $g^{-1} u_t g \in \lambda Q_i \lambda^{-1}$ for all $t \in \mathbb{R}$. This proves the theorem.

Proof of Theorem 3. Let F be a finite subset of G_Q and C be a compact subset of G/Γ such that the contention of Theorem 2 holds, for some choice of $\varepsilon > 0$ and $\theta > 0$. Let V and $\{x_k\}$, satisfying the conditions as in the statement of the Theorem, and $g \in G$ be given. If $\{u_t\}$ be any one-parameter subgroup of V and $k \ge 1$ then by Theorem 2 either there exists a $t \ge 0$ such that $u_t x_k g \Gamma \in C$ or there exist $i \in \{1, \ldots, r\}$ and $\lambda \in \Gamma F$ such that $G \cap V = 1$ is empty. Then by the last observation every one-parameter subgroup of V is contained in one of the subgroups $x_k g \mu Q_j \mu^{-1} g^{-1} x_k^{-1}$ for some $1 \le j \le r$ and $\mu \in \Gamma F$ such that $G \cap V = 1$ is implies that there exist $G \cap V = 1$ and $G \cap V = 1$ a

Now suppose that the assertion in the Theorem does not hold for the compact set C as above. Then by the above observation there exist a subsequence of $\{x_k\}$, say $\{y_k\}$, $i \in \{1, \ldots, r\}$ and a sequence $\{\lambda_k\}$ in ΓF such that $y_k g \lambda_k \in P_i$ and $d_i(y_k g \lambda_k) < \theta$ for all k. Since $y_k \in P_0 \subset P_i$ and $y_k g \lambda_k \in P_i$ we get that $d_i(y_k g \lambda_k) = d_i(y_k) d_i(g \lambda_k)$ for all k. Now while $d_i(y_k g \lambda_k) < \theta$ for all k, since $\{y_k\}$ is a subsequence of $\{x_k\}$, by hypothesis $d_i(y_k) \to \infty$. Therefore we get that $d_i(g \lambda_k) \to 0$ as $k \to \infty$. But by Lemma 2.4 this is impossible since $\{\lambda_k\}$ is contained in ΓF which is finite union of cosets of the form Γf , $f \in \mathbf{G_0}$.

Proof of Theorem 4. Let Γ be a lattice in $SL(3, \mathbb{R})$. If $SL(3, \mathbb{R})/\Gamma$ is compact then the assertion is obvious. We shall therefore assume that G/Γ is noncompact. Then by the arithmeticity theorem (cf. [11]) there exists an algebraic group G defined over Q such that $SL(3, \mathbf{R})$ is Lie isomorphic to $G_{\mathbf{R}}$ and under the isomorphism Γ corresponds to an arithmetic lattice in G_R with respect to the Q-structure on G. We now follow the notation as before with respect to this G and identify $G = G_R$ with $SL(3, \mathbb{R})$ via an isomorphism. We note that since G/Γ is noncompact the Q-rank r of G is at least 1. On the other hand clearly $r \le 2$, which is the **R**-rank of $SL(3, \mathbb{R})$. Now let F be a finite subset of G_0 and C be a compact subset of G/Γ such that the contentions of Theorems 2 and 3 hold (the former for some choices of $\varepsilon > 0$ and $\theta > 0$). Let $g \in G$ be given. Suppose that one of the sets $\{t \ge 0 | v_1(t)g\Gamma \in C\}$ and $\{t \le 0 | v_1(t)g\Gamma \in C\}$ is bounded. Then by Theorem 2, applied to either $\{v_1(t)\}\$ or $\{v_1(-t)\}\$ in the place of $\{u_t\}$, we get that there exist an $i \in \{1, r\}$ and a $\lambda \in \Gamma F$ such that $g^{-1}v_1(t)g \in \lambda Q_t \lambda^{-1}$ for all $t \in \mathbb{R}$. Put $P = \lambda P_i \lambda^{-1}$. Let L be the closed subgroup generated by all unipotent elements in P. Then we have $g^{-1}v_1(t)g \in L$ for all $t \in \mathbb{R}$. Also L is the group of **R**-elements of an algebraic subgroup L which is defined over Q and has no character defined over Q. This implies that $L\Gamma$ is closed and $L\cap\Gamma$ is a lattice in L (cf. [4] § 2). This shows that condition a) as in the definition of Condition (*) holds for the set for the set C (as above).

Let P_0 be the minimal Q-parabolic subgroup of G as before. It is easy to see that $N(V_1)$ is contained in a Borel subgroup, specifically the group of upper triangular matrices. Hence there exists a $h \in G$ such that $hN(V_1)h^{-1} \subset P_0$. We shall show that condition b) holds for the compact set $h^{-1}C$. This would imply that Condition (*)

holds for the compact set $C \cup h^{-1}C$ (in the place of C in the definition). Let $\{f(t)\}_{t\geqslant 0}$ be a curve in $N(V_1)$ such that $|\det f(t)| \ W| \to \infty$ as $t \to \infty$ for every proper nonzero $N(V_1)$ -invariant subspace. Put $V = hV_1h^{-1}$ and $\varphi(t) = hf(t)h^{-1}$ for all $t\geqslant 0$. Then $\{\varphi(t)\}_{t\geqslant 0}$ is a curve in $N(V) \subset P_0$ and $|\det \varphi(t)| \ W| \to \infty$ for every proper nonzero N(V)-invariant subspace. We shall deduce from this that $d_i(\varphi(t)) \to \infty$ as $t \to \infty$ for any $i \in \{1, r\}$. We first assume this and complete the proof. By Theorem 3 it yields that $C \cap V\varphi(t)hg\Gamma/\Gamma$ is nonempty for all large t. Substituting for V and $\varphi(t)$ we get that $C \cap hV_1 f(t)g\Gamma/\Gamma$ is nonempty for all large t, or equivalently, $h^{-1}C \cap V_1 f(t)g\Gamma/\Gamma$ is nonempty for all large t. This shows that condition b) holds for the compact set $h^{-1}C$, as desired.

It remains to prove that $d_i(\varphi(t)) \to \infty$ as $t \to \infty$ for any $i \in \{1, r\}$. Let $i \in \{1, r\}$ be given. First suppose that P_i is a maximal **R**-parabolic subgroup. Then there exists a subspace W of \mathbb{R}^3 such that

$$P_i = \{g \in G | g(W_i) = W_i\}.$$

Further it is easy to see that in this case $d_i(x) = |\det x| \ W_i|^2$ for all $x \in P_i$. Since $|\det \varphi(t)| \ W| \to \infty$ for every proper nonzero N(V)-invariant subspace and $N(V) \subset P_0 \subset P_i$, this yields that $d_i(\varphi(t)) \to \infty$ as $t \to \infty$. Now suppose that P_i is not a maximal R-parabolic subgroup. Since G has R-rank 2, this implies that P_i is a minimal R-parabolic subgroup. In turn we get r = 1, i = 1 and $P_0 = P_1$ and they are conjugate to the subgroup B consisting of upper triangular matrices; in fact $P_1 = hBh^{-1}$, since $h^{-1}P_1h$ has to be the Borel subgroup containing V_1 . Using this we see that for all $t \ge 0$, $d_1(\varphi(t)) = (a_1(t)/a_3(t))^2 = a_1^4(t)a_2^2(t)$, where $a_1(t)$, $a_2(t)$ and $a_3(t)$ are the diagonal entries of f(t). Since $|\det f(t)| \ W| \to \infty$ for any $N(V_1)$ -invariant proper non-zero subgroup, and $N(V_1) \subset B_1$, we get that $a_1^2(t) \to \infty$ and $a_1^2(t)a_2^2(t) \to \infty$ as $t \to \infty$. Hence $d_1(\varphi(t)) \to \infty$ as sought to be proved. This proves the Theorem.

References

- [1] Borel A, Introduction aux Groupes Arithmetiques, (Paris: Publ. de l'Inst. Math. del l'Univ. de Strassbourg XV, Herman) (1969)
- [2] Borel A and Tits J, Groupes réductifs, Publ. Math. I.H.E.S. 27 (1965) 55-150
- [3] Dani S G, Invariant measures, minimal sets and a lemma of Margulis, Invent. Math. 51 (1979) 239-260
- [4] Dani S G, Invariant measures and minimal sets of horospherical flows, Invent. Math. 64 (1981) 357-385
- [5] Dani S G, On orbits of unipotent flows on homogeneous space, II, Ergod. Th. Dynam. System 6 (1986) 167-182
- [6] Dani S G, Orbits of horospherical flows, Duke Math. J. 53 (1986) 177-188
- [7] Dani S G and Margulis G A, Values of quadratic forms at primitive integral points, *Invent. Math.* 98 (1989) 405-420
- [8] Dani S G and Margulis G A, Orbit closures of generic unipotent flows on homogeneous spaces of SL(3, R), Math. Ann. 286 (1990) 101-128
- [9] Dani S G and Margulis G A, Values of quadratic forms at integral points; an elementary approach, l'Enseignement Math. 36 (1990) 143-174
- [10] Margulis G A, On the action of unipotent groups in the space of lattices, Proc. of the Summer School in Group Representations, Bolyai Janos Math. Soc. pp. 365-370, Budapest, (1971)
- [11] Margulis G A, Arithmetic properties of discrete subgroups, Uspehi Mat. Nauk 29:1 (1974) 49-98; Russian Math. Surv. 29:1 (1974), 107-156
- [12] Margulis G A, Discrete subgroups and ergodic theory, Proc. of the Conf. in honour of Prof. A. Selberg, Oslo, (1987) (Academic Press) 1989
- [13] Varadarajan V S, Harmonic Analysis on Real Reductive Lie groups, (Springer Verlag) (1976)