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Abstract. We show that if G is a semisimple algebraic group defined over Q and I' is an
arithmetic lattice in G: = Gy with respect to the Q-structure, then there exists a compact
subset C of G/T" such that, for any unipotent one-parameter subgroup {#,} of G and any
g€, the time spent in C by the {u,}-trajectory of I, during the time interval [0, T], is
asymptotic to T, unless {y~*u,g} is contained in a Q-parabolic subgroup of G. Some
quantitative versions of this are also proved. The results strengthen similar assertions for
SL{n,Z), n > 2, proved earlier in [5] and also enable verification of a technical condition
introduced in [7] for lattices in SL(3,R), which was used ir our proof of Raghunathan’s
conjecture for a class of unipotent flows, in [8].
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Margulis [10] showed that if {4} is a unipotent one-parameter subgroup of
G =SL(n,R) and geG then there exists a compact subset C of SL(n, R)/SL(n, Z) such
that the set {t>0|u,g(SL(n, Z))eC} is unbounded. The result played an important
role in one of the proofs of the arithmeticity theorem for lattices (cf. [11]). In [3] and
[5], motivated by certain problems on orbits and invariant measures of horospherical
flows, the first named author improved the result. In [3] it was concluded that for
G=SL(n,R) and "= SL(n, Z), given ¢> 0 there exists a compact subset C of G/T’
such that for any unipotent one-parameter subgroup {u,} and any geG either

?({tel0, T)ju,gTeCH>(1~¢) T

for all large T (£ being the Lebesgue measure on R) or there exists a proper nonzero
subspace W of R" which is defined by a system of linear equations with rational
coefficients and invariant under ¢~ 'u,g for all teR. Using a standard embedding
argument one can deduce from this that if G is the group of R-elements of an algebraic
group defined over Q and T is an arithmetic lattice in G then for any ¢ >0 there
exists a compact subset C of G/I" such that for any unipotent one-parameter subgroup
{w.} in G and geG either /({te[0, T1/u,gT'eC})>(1 —e) T for all large T or there
exists an algebraic subgroup L of G defined over Q such that g 'u,ge Lfor all teR.
The result was used in the description of orbit closures of horospherical subgroups
obtained in [6].
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This set of ideas was again involved in [ 7] where we proved that if H is the subgroup
of SL(3,R) of all elements leaving invariant a non-degenerate indefinite quadratic
form in 3 variables then every H-orbit on SL(3,R)/SL(3, Z) is either closed or dense
and used this result to conclude in particular that the set of values B(4(Z")), where

B is a nondegenerate indefinite quadratic form in » > 3 variables and £(Z") is the set
of primitive elements in Z", is dense in R whenever B is not a multiple of a rational
quadratic form; the latter result strengthened the theorem of the second named author
proving a conjecture of Oppenheim (cf. [12]). The proof used a somewhat technical
result from [5] yielding a version of the above mentioned result, involving a
quantitative condition in the second alternative. It was noted that the proof of the

: theorem about H-orbits on SL(3,R)/SL(3,Z) would go through for any lattice I, in

g the place of SL(3,Z), if it satisfied a condition which was called Condition (%) (cf. [7]

Remark 1-8). While the result from [5] alluded to above is sufficient to conclude that

SL(3,Z) satisfies Condition (), it does not yield such a result for other lattices in

SL(3,R). This is because, though any lattice in SL(3, R) is arithmetic, the embedding

argument used earlier is not adequate, since the subgroup L in the second alternative
there is in general not insured to be contained in a parabolic subgroup. This called
for an intrinsic approach to proving analogues of the results in [5] on asymptotic
behaviour of the trajectories, in the case of a general arithmetic lattice. It is the
purpose of this paper to carry this out. In particular we shall verify the Condition

() for any lattice I" in SL(3,R). It may be mentioned that the condition is also used

in our more recent paper [8] where we describe the orbit-closures of any generic
unipotent one-parameter subgroup on SL(3,R)/T, T any lattice, verifying a conjecture
of Raghunathan for the case. We now introduce some notation and state the results.

Let G be a semisimple algebraic group defined over Q and let G = Gy, the group

of R-elements of G. Let r be the Q-rank of G. We suppose that r> 1. Let S be a

maximal Q-split torus in G. We fix an order on the system of Q-roots on S for G

and denote by {a;,...,,} the corresponding system of simple Q-roots (cf. [2]). For
i=1,...,r let P; be the standard maximal Q-parabolic subgroup corresponding to
the set of simple roots other than o;. For each i the root «;, which is a character on

S, extends uniquely to a character on P;; the extension will also be denoted by «;.

For 1 <i<r, let U, be the unipotent radical of P; and %, be the Lie algebra of U,.

Then there is a positive integer m;, such that for any xeP, det (Adx)|U,; = «M(x);

equivalently m; can be defined to be the sum Zn, 4, taken over all positive roots 1,

where for each 1,n, is the dimension of the root subspace corresponding to 4 and 4,

is the coefficient of o; in the expansion of 1 in terms of ay,...,«,.
Let S and P;, i=1,...,r, denote the subgroups of G consisting of R-elements of S

?‘ and P; respectively. We fix 2 maximal compact subgroup K of G such that S is

invariant under the Cartan involution of G associated to K (cf. [13]). We now define
for each i=1,...,r a function d; on G as follows. Let 1 <i<r be given. We recall
that G = KP;. We observe also that KNP, is a compact subgroup of P; and hence
la;(x)} =1 for all xeK N P;. In view of this, for geG expressed as g = kx with keK
and xeP;, the number |o,(x)| depends only on g and not on the choices of keK and
xeP;; we define d,{(g) to be jo;(x)|™.

The functions 4;, 1 <i<r play a role in the present proofs similar to that of the
function d in [5] on the class of discrete subgroups of R”, n > 2. The two are related
as follows. Let G =SL(n), n> 2, equipped with the usual Q-structure. Let S be the
maximal Q-split torus consisting of diagonal matrices and let y,...,0, be the usual
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system of simple Q-roots defined by «;(diag (a,...,q,)) =a;,,/a;. Let e,,...,e, be
the standard basis of R" and for i=1,...,n—1 let A, be the (discrete) subgroup
generated by {e;,...,e;}. Let K be the subgroup of G=SL(n,R) consisting of
orthogonal matrices. Then for 1 <i<n—1 and geG, d,(g) as above can be seen to
be the same as d*(gA;) with d as in [5]; since both the functions are K-invariant it
is enough to check their equality for g in P;.

We now state the main technical result of the paper. It gives a sufficient condition
in terms of d;, i=1,...,r, for the Lebesgue measure of the set of return times, within
an interval, to a certain compact set to be large. The Lebesgue measure on R will be
denoted by /.

Theorem 1. Let the notation be as above. Further let I" = G be an arithmetic lattice
in G with respect to the Q-structure on G. Then there exists a finite subset F of G,
such that the following holds: for any ¢ >0 and 8 >0 there exists a compact subset C
of G/T such that for any unipotent one-parameter subgroup {u,} in G, any geG and
any T >0 either

t({te[ T,oT]lu,gTeC) > (1 —e)c— 1) T

Jorallo>1suchthat (1 —6™'Y >1—¢, or there exist i{l,...,r}, yel" and feF such
that

diu,gyf) <0 Vee[0, T].

Remarks 1. The set F is so chosen to be the set of inverses of a set of ‘cusp elements’
for the standard fundamental domain for I' in G (cf. [1], Theorem 13.1) with respect
to the triple (K, P,S) with K and § as above and P the standard minimal parabolic
subgroup corresponding to the system {a;,...,0,} of simple Q-roots. (See §1 for
details about the set; it can be chosen to be any F G such that A(¢)=TF in the
notation as in (1.2).
2. In the case of G=SL(n,R) and I' = SL(n, Z),n > 2, the second condition in the
conclusion of the theorem can be seen to be equivalent to the condition that there
exists a nonzero subgroup A of Z" such that d*(u,gA) < 8 for all te[0, T].

The proof of Theorem 1 will be completed in §3. In §4 we shall deduce various
consequences of Theorem 1, which we now describe. For this purpose, for each
i=1,...,rlet Q;={xePa(x)=1}.

Theorem 2. Let the notation be as before. Also let F be a finite subset of G o for which
the contention of Theorem 1 holds. Then for any >0 and 8 > 0 there ex;sts a compact
subset C of G/T such that for any unipotent one-parameter subgroup {w} of G and
geG either

¢({te[0, THugleCl)2(1—¢ T

for all large T or there exist ie{l,...,r} and leI’F such that g~ *u,geiQ,A~' for all
teR and d;(gl) < 6.

Theorem 1 can also be applied to get compact subsets intersected by all orbits of
certain subgroups. Let P, be the standard minimal Q-parabollc subgroup corres-
ponding to the system of Q-roots as above; namely P, = n{.., P,. We note that P,
contains a conjugate of any unipotent subgroup of G and hence the following result
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applies to any unipotent subgroup, rather than a subgroup of Py, after appropriate
modifications; the compact set for a conjugate would be different, however.

A subgroup ¥ of P, is said to be in general position (relative to S and the order
on the roots) if for any i€{1,...,r} and xeG, xVx~ ' < P, if and only if xeP;.

Theorem 3. Let the notation be as above. Then there exists a compact subset C of G/T’
such that the following holds: If V is a connected Lie subgroup of P, which consists of
unipotent elements and is in general position and {x,} is a sequence in P, such that
d(x,)— o0 foralli=1,...,r, then for any geG, Cn Vx,gI'/T is nonempty for all large
k. In particular, if R is the subgroup generated by V and {x,|k =1,2...} then every
R-orbit on G/T intersects C.

As stated before, one of our aims here is also to verify a technical condition on
lattices in SL(3, R) introduced in [7]; namely Condition () recalled below. In [7] it
was noted that the arguments in the proof of Theorem 2 there went through for any
lattice satisfying Condition (+) in the place of SL(3,Z); for the lattice SL(3,Z) the
condition was verified using the results in [5]. We had mentioned that the condition
in fact holds for all lattices but did not go into the proof, as our primary interest in
that paper lay in the lattice SL(3,Z). The condition is alsc used in the more recent
paper [8] where we obtain a full description of orbit closures of generic unipotent
one-parameter subgroups on SL(3,R)/T, T" any lattice in SL(3, R), verifying a conjecture
of Raghunathan for the case.

For each teR let

Y=
vy (1) 0 1
0 0 1

and let V; be the subgroup {v,(r){teR}. A lattice T" in SL(3,R) is said to satisfy
Condition () if there exists a compact subset C of G/I" such that for any geG the
following conditions hold:

a) the sets {t >0|v,(1)gleC} and {tr <0|v,(t)gT"eC} are both unbounded unless
there exists a proper parabolic subgroup P of SL(3,R) such that if L is the closed
subgroup generated by all unipotent elements in P then;g™' V,g< L, LT is closed
and LT is a lattice in L and

b)if { £(t)},5, is a curve in N(¥,) (the normalizer of V,) such that |det f(£)| W| - oo
as t—oo for every proper nonzero N(V,)-invariant subspace W of R*® then
Cn Vi f()gT'/T" is nonempty for all large t.

Theorem 4. Any lattice in SL(3, R) satisfies Condition (x).

1. On compactness of some subsets of G/T’
We follow the notation as before. Further for i=1,...,r let
Q; = {xeP;|o;(x) =1} and S; = {xeS|a;(x) = 1 Vj #i}.

Then each S, is a one-dimensional Q-split torus and P; = S,Q; for all i,




Asymptotic behaviour of trajectories 5

Now let I be any (possibly empty) subset of {1,...,r}. We define
Pr=0/Piy Q=01 Q; and 8, =11,,S,.

Then P; is the standard parabolic Q-subgroup corresponding to the subset of
{ay,...,a,} complementary to I (in particular P,=G), Q; is a normal algebraic
Q-subgroup of P;, S, is a Q-split torus and P; =S, Q;. Let U, be the unipotent radical
of P, (and also Q) and let H, be the centraliser of S, in Q,. Then Q,=H,U,
(semidirect product). We also note that H; and U; are defined over Q. We denote
by Py, Qy, Sy, Hp and U, the subgroups of G consisting of R-elements of P, Q,, S,
H, and U, respectively.

Since H; is defined over Q, I'n H| is an arithmetic subgroup of H;. It is easy to
see that there is no nontrivial character on H, defined over Q. Therefore ' H, is a
lattice in H,. If I = {1,...,r}, H; is of Q-rank 0 and hence I'n H, is a uniform lattice
in Hy; that is, H;/TnH, is compact. Since U, is a unipotent algebraic subgroup
defined over Q, U,;/I'n Uy, is also compact. Thus in the case I = {1,...,r}, 0;/TnQ,
is compact.

Now let I be any (possibly empty) proper subset of {1,...,r}andletJ = {1,...,r} — L
We note that S, is a maximal Q-split torus in H;, P,~H, is a minimal Q-parabolic
subgroup of H, and U, nH; is the unipotent radical of P,nH,. We note next that
since, by choice, the Cartan involution associated to K leaves S invariant, it also
follows that it leaves H, invariant. This implies that K nH, is a maximal compact
subgroup of H;. Corresponding to the triple (K n H;, P, H,, S,) there exists a £, > 0,
a compact subset C; of U;nH; and a finite subset E, of Gy H; such that

H;=(KnH)Q(;)CE[(T nHy),
where
Qty) = {se8,;|0<a;(s) < t; Vjel}

{cf. [1] Theorem 13.1). Since U, is a unipotent algebraic Q-group, the arithmetic
subgroup I'n U, is a uniform lattice in U (that is, U,/I'n U, is compact) and hence
there exists a compact subset D, of U, such that U, = D,(I'nU,). Then we have

Q;=HUy=(KnH)Q(t;)C,E/(TnH)U,
=(KnH)Q(t)CUE(TnHy)
= (K H)Qt,)C,D,(T A U ES(T ~ Hy).

It is easy to see that since E; = G H; there exists a finite subset F, of Gy Q;such
that
TNUDE,TnH)<F (I'nQ)).

Hence we have

Q;=(KnHp)Qt)¥, F;(TnQy) , (1.1)

where ¥, = C,D, is a compact subset of @;~Q,. We put
AD=TAQIF7* =1yl nQrf 'eFi} = Q. (12)

The set F invol’ved in the conclusion of Theorem 1 is taken to be any subset of Gy
such that A(¢)=TF; e.g. F=F;'in the above notation.
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We shall use the facts mentioned above and the notation to deduce compactness
of certain sets which we now introduce.

A p-tuple ((iy,41),-.., (i, 4,)), Where p=1, i1s..-,p€{1,...,r} and 4;,...,4,€Gq
is called an admissible sequence of length p if iy,...,i, are distinct and A AE
A({iy,-.»i;- 1 })forallj=1,...,p, 4, being taken to be the identity element. The empty
sequence is called an admissible sequence of length 0. If £ and » are two admissible
sequences of lengths p and g respectively and p < g then 7 is said to extend ¢ if the
first p terms of 5 coincide with the corresponding terms of ¢; any admissible sequence
extends the empty sequence. ‘

For any admissible sequence & of length p >0 we denote by €(¢) the set of all pairs
(i, ), where 1 <i<r and 1€G,, for which there exists an admissible sequence n of
length p + 1 extending ¢ and containing (i, 4) as a (necessarily the last) term; note that
if p=0, namely if & is the empty sequence, ¥(&) consists of all (i, 1) where 1 <i<r
and AeA(o).

For any admissible sequence ¢ of length p > 0 we define the support of £, to be the
empty setif p = 0and the set {(iy, 4,),...,(i,, 4,)} if & =((i1, 41),- .-, (ip, 4,)); the support
of ¢ will be denoted by supp &.

The main result on compact subsets of G/I" needed in the sequel is the following:

PROPOSITION 1.3

Let & be an admissible sequence of length p > 0. Let o, a and b be positive real numbers
and let

W = {geG|d,(gA) = o for all (i, ))e¥({) and
' a<dJ{gl)<b for all (i, )esupp }.
Then WI'/T is contained in a compact subset of G/T.

For proving the proposition we need the following Lemmas.

Lemma 1.4. Let ie{l,...,r} and let C be a compact subset of G. Then there exists a
¢ >0 such that d,(xg) = cd;(g)VxeC and geG.

Proof. Recall that G = KP;. Since CK is a compact subset of G there exists a compact
subset D of P; such that CK < KD. Since D is compact and o; is continuous, there
exists a ¢ > 0 such that |o;(y)|™ = ¢ for all yeD. Now let xeC and geG be given. Then
there exist keK and heP; such that g = kh. Further, by the choice of D, there exist
k'eK and yeD such that xk = k'y. Then xg = xkh = k' yh and hence

di(xg) = di(k' yh) = |, (yh)|™ = |ty (W)™ | ets (R)|™
= clo;(M™ = cd;(g)

which proves the Lemma.

Lemma 1.5. Let I be a subset of {1,...,r} and let je{l,...,r} —I. Let 0<a<b be

given. Then there exists a compact subset K of Q; such that if geQ; and d;(g)e[a,b]
then geKo Q-
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Proof. Since K n H, is a maximal compact subgroup of H; and P;~H| is a parabolic
subgroup of H, we have H,=(KnH;)(P;nH;). Hence Q;,=H, U;=(KnH,)
(PinH)U;=(KnH)P;nQ;). It is also easy to see, by comparing the root
subgroups on either side, that P;nQ; = S;Q, .- Thus Q; =(KnH/)S; Q1. Further,
for geQ, expressed as g = ksh w1th keKnHy, seS;and heQ, ., we have d; (g) Joc;(s)™.
This shows that if geQ; and d;(g)e[a, b] then geKoQ,U,j}, where KO-(KmH,)

{seS;lla;(s)™e[a, b]}. Since K, is a compact subset of Q,, this proves the Lemma.

Proof of Proposition 1.3. First let p =0, namely let & be the empty sequence. Then
we see that W= {geG|d,(gd)=a for all i=1,...,r and AeA(¢)}. Let ge W. By the
particular case of (1.1) with I = ¢, g (in fact, any element of G) can be expressed as
kwyfwhere ke K, weQ(t,), ye'¥, and feF,I" = A(¢)~ . Consider such a decomposition
and let A= f~'eA(¢). Then we see that for any i = 1,.

(W)™ = di(kwi) = di(g) = a.
This shows that
W< KQO‘{’¢F¢I" (1.6)

where Qo = {weQ(t,)| lo;(W)I™ =aVi=1,...,r} = {weS|a'™ < |a(w)| <t,V,}. Since
Q, is a compact subset of S, (1.6) implies that WI/T" is contained in a compact
subset of G/T’, thus proving the proposition in the case at hand. _

Now let £ be an admissible sequence of length p > 1, say &=((i;,4,),...,(i,,4,)),
where i,,...,i, are distinct elements of {1,...,r} and 1,,...,4,€G, are such that
AN A eA({zl, iy }) for all j=1,...,p, with i, =e¢, the identity element. For
: 1_1 .»p let I(j)={i,,...,i;}. We first show that there exist compact subsets
K,,...,K, of G such that for each j=1,...,p and ge W there exists a k;eK; such
that k;g4;€Q,;,. We proceed by induction on j. We choose K, = K5 ! where K, is
a compact subset for which the contention of Lemma 1.5 holds for the choices I = ¢,
j=1i, and a and b as in the hypothesis of the Proposition. Since d; (g4,)e[a,b] for
all ge W, the Lemma implies that for each ge W there exists a k;€K; such that
kygA; €0y ;). Now suppose that compact subsets K, ,..., K;have been found, satisfying
the condition as above for some 1 <j<p— 1. By Lemma 1.4-there exists a c€(0, 1)
such that d;;, ,(xh) > cd;,, (k) for all xeK;UK; ' and heG. Let K, be the compact
subset for which the contention of Lemma 1.5 holds for the choices I =I(j) and
j=1i;4; and ca and ¢”'b in the place of a and b. Put K;, ; = K5 'K ;. Now let ge W.
By our choice there exists a k;eK; such that k;g4;€Qy;,. Since 47 ' 4;,,€0Qy;, we get
that k;g4;. 1 €Qy;- Further, we have

Ca<Cdi~+x(g'1'+1)<di,+1(kjg'1j+1)sc—ldijﬂ(g}hjn)sC_lb-

Hence by Lemma 1.5 there exists a koe K, such that k;g4;, ;€koQy;+1)- Thus we see
that for k; .y = kg 'kj,k;+ 1 gAj+1€Q)+1, as desired. Thus the inductive construction
is complete

Recall that d;(g4) = o for all ge W and (i, A)e % (£). Hence by Lemma 1.4 there exists
a f>0 such that d,(kgi) > p for all keK,,ge Wand (i, A)e¥(&). Now let ge W and
k,eK, be such that k,g1,eQy,. If [ = {1,...,r}, Qy/T N Q; is compact, and since 1,eG,
this implies that Q4,1 I'/I" is compact. In this case the preceding condition implies
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that WI/T < K7 'Q; A7 *T/I, which is a compact subset. Now suppose that I is a
proper subset. By (1.1) and (1.2) there exists a 8 A(I(p)) such that k,g4,0e KQ(t;,)) ¥,
say k,gh,0=kwy where keK,weQityy) and Ye¥,. Let J={L,....,r}—1I(p)
Observe that for any jeJ, (j, 4,0)e#4(¢) and hence d;(k,g4,0) = B. Hence we get that

| W)™ = d;(kwip) = d;lk,94,0) = B
Let
Qo = {(weQ(typ) | a; (W)™ 2 B VjeJ}

= {weS;| BHm < (W)l <ty -

Then Q, is a compact subset of S; and the above argument shows that for any ge W
thereexistak,eK anda BeAl(p) = (Fipy) ™' = I'Fysuchthatk,gA,0eKQy ¥y,
Therefore _

WCK;IKQO‘I’I(p)F,(p)Fl;I. (1.7)

Since K 1 KQoWy, is a compact subset of G and Fy,T'A, ! is contained in a finite
union of cosets of I, (1.7) implies that WI'/T is contained in a compact of G/T". This
proves the Proposition.

PROPOSITION 1.8

Let & be an admissible sequence of length p 2 1; say ¢ = (1A 5 (ip,4p)). Let o, a
and b be positive real numbers and let W be the subset of G as in Proposition 1.3
for this data. Let I={iy,...,i,}. Then

W = {geG|d{gi,0) > aVi¢l and feA(l) and a < di{gA,) < bviel}

In particular, the set WT/T is determined by I and T4, in the sense that if
E={(ig, A1 )s...»ip Ap)) is an admissible sequence-and 1,€I"A,, then the corresponding
set for & is the same as WI'/T.

Proof. For any 1<j <p let I(j)={i,...,i;}. Since, by admissibility of ¢, A71A €
AJ{() = Qy for all j=1,...,p—1 we get that A7 14,60y, for all j. Therefore if
i =i, for some j then d;(g4;) = di(g4,). Also clearly (i, )e¥€(¢) if and only if i¢l and
A= 4,0 for some §eA(l). The first part of the proposition is immediate from these
two observations. The remaining part now follows from an obvious substitution
argument.

2. More on the functions 4,

We follow the notation as before. For each i = 1,...,r we define a representation p;
of G as follows. Let 1 <i<r. Let U, be the unipotent radical of P; and let u; be the
dimension of U,. Let & be the Lie algebra of G. Let V;= A'%, the ith exterior power
of 4. We define p; as the ith exterior power representation of the adjoint representation
of G over ¥. We equip ¢ with a AdK-invariant norm. Let e,...,e, be an orthonormal
basis of % with respect to the norm. For any /, this defines a canonical basis of A lg,
namely {e; Ae, A Ag |l iyp<ip<--<i, K n}. In particular we get a basis for
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each V;; we equip V; with the norm, denoted by |-{, making the basis into an
orthonormal basis. It is straightforward to verify that the norm is p;(K)-invariant.
Let p; be an element of norm 1 in the one-dimensional subspace of V,= A%
corresponding to the Lie subalgebra of ¢ associated to U,;, which is a u,-dimensional
subspace. A straightforward computation shows that

pi(X)(pi) = a;(x)™p; VxeP;. CRY)

This implies that d,(x) = || p;(x)(p;) || for all xe P;. Since d; and the norm are K-invariant
and G = KP; we get that

di(g) = pi(g)(p:))I| VgeG. (2.2)

We also note at this point that for geG, p,(g)(p;) = p; if and only if geQ,. The if’
part follows from (2.1). Now let geG be such that p;(g)(p;) = p;. Then the definition
of p; shows that the Lie subalgebra of U, is Ad g-invariant. Since U, is a connected
Lie subgroup this implies that g normalizes U;. But P, is the normalizer of U, (cf. [2]).
Hence geP;. But then by (2.1) o;(g) = | which means that geQ,.

PROPOSITION 2.3

Let 1 €i<r and let n; be the dimension of V;. Let {u,»} be a unipotent one-parameter
subgroup of G and let geG. Then d} (u,g) is a polynomial in t of degree at most 2(n, — 1).
Further d,(u,g) is constant (that is, independent of t) if and only if g~ *u,geQ; forall teR.

Proof. Since {u,} is a unipotent one-parameter subgroup of G, {p;(u,)} is a unipotent
one-parameter group of linear transformations of V. By Jordan decomposition this
implies that for any ve V; the expansion of {p,(1,)(v)} with respect to any basis has
coefficients which are polynomials in ¢ of degree at most (n; — 1). Applying this to an
orthonormal basis we see that for any ve V;, || p;(4,)(v)||? is a polynomial of degree
at most 2(n; — 1). Given geG, choosing v = p,(g)p; we see that [ p;(u,g)(p;)||* is a
polynomial of degree at most 2(n; — 1) and hence by (2.2) so is d?(u,g).

Now let geG be such that d;(u,g) is constant in ¢t. Then by (2.2), || p;(u,9)(p:)}|| =
| pi(u,) pi(g)(p;) || is constant. For a unipotent one-parameter group of linear transfor-
mations any orbit other than a fixed point is an unbounded subset of the vector
space Therefore under the above condition p;(1,) 0;(9)(p;) = p:(g)(p;) for all teR. Hence
pilg~'u,g) fixes p, for all . As noted before, this implies that g~ *u,ge0, for all teR.
This proves the Proposition.

Lemma 24. Let 1<i<r, feG, and geG be given. Then for any >0 the set
{yeT'|di(gyf) < 6} is finite.

Proof. Let 4 be equipped with the Q-structure corresponding to the Q-structure on
G. Since U; is an algebraic subgroup defined over Q, the Lie subalgebra of %
corresponding to U; is a rational subspace (spanned, over R, by rational elements)
of 4. The Q-structure on % induces canonically a Q-structure on V;= A% and
p; is (the restriction of) a rational representation with respect to the Q-structure. Also
in view of the preceding assertion p; is a scalar multiple of a rational element, say
pi=tq; where teR and g; is rational. Since feG, we get that p,(f)(g;) is rational.
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Since I is an arithmetic subgroup, this implies in turn that p:(D)pi(fg; is a discrete
subset of V. Since

pigT NP} = pi(g)pi(r)pi(f)(pi) = tPi(g)Pi(r)P(f)(Qi)

we get the p,(gT'f)(p;) is a discrete subset of V;.In particular for any & > 0 there exist
only finitely many yeI" such that | pilgyIp;|l = 96. In view of (2.2), this implies the
Lemma.

Lemma 2.5. There exists a finite subset F of G, such that for any admissible sequence
& and any (i, )esupp £, AeTF.

Proof. I ((iy,A1),-..,(ip, 4p)) is an admissible sequence of length p>1 then for all
j=2,...,p we have 1,2 1,eA(/(j — 1)), where I(k)= {iy,...,i} for all k, and hence
AeAMPAUQ)...AU( - 1)). This shows that for any admissible sequence ¢ and any
(i, Aesuppé, A is an element of a set of the form A(@)A(L,)...A(I;) whereje{l,....r — 1}
and I,,...,I; are subsets of {1,...,r} of cardinalities 1,...,j respectively, such that
I, < I, - <. Since each A, I <{1,...,r}, is a finite union of cosets of the form
I'f,feGqandT isan arithmetic lattice, it follows that each product A(@)A(L,)...A(l;)
as above is a finite union of cosets of the form I'f, feG,. Hence the preceding
assertion implies that there are finitely many such cosets which together contain the
supports of all admissible sequences. We can therefore choose a subset F of
G, for which the contention of the Lemma holds.

Lemma 2.6. Let 1 <i<r and let {u,} be a unipotent one-parameter subgroup of G.
Then the function v: R— R defined by

v(t) = sup {d;(1,9)/d;(g)|ge G} VteR
is continuous.
Proof. Consider the function ¢: R x G—R defined by o(z, g) = d;(u.g)/d;(g) for all
teR and geG. Since d;(hp) = d;(h)d,(p) for all heG and pe P; we see that o(t,gp) = ¢(t,9)
for all teR, geG and peP;. Hence we get a well-defined function §: R x G/P,—~R

such that $(t,gP;) = o(t, g) for all teR and geG. Since ¢ is continuous so is @. Also,
clearly

v(t) = sup{ (¢, x)|xe G/P;}.

Since & is continuous and G/P; is compact, an elementary argument shows that the
right hand side is a continuous function. This proves the lemma.

PROPOSITION 2.7

Let 1 <i<r, let {u,} be a unipotent one-parameter subgroup of G and let geG. Let A
be a subset of G, contained in a finite union of cosets of the form I'f, feG,. Lét
§>0andt,,t,eR,t; <t,, be such that d,(u,,gA) > 6 for all AeA and di(u,92) <06 for
some A€A. Let

s=inf{te[t,,t,]1d;(u,gl) < for some Le A}.

Then there exists a A€ A such that di(u,gA) = 0.
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Proof. Let v: R—R be the function as in Lemma 2.6 for i and {u,} as above. By the
Lemma there exists a neighbourhood Q of 0 such that v(t) <2 for all teQ. By the
definition of s there exist sequences {t,} in [t,,2,] and {4} in 4 such that r, —s and
- di(u, g4 ) =0 for all k. We may clearly assume that t, —seQ for all k. Then
di(u,94) < v(s — t)d;(u, gA) < 20 for all k. Since A is contained in finitely many cosets
of the form I'f, by Lemma 2.4 this implies that {4,|k = 1,2,...} is a finite set. Passing
to a subsequence we may assume that A, = 1 for all k, where A€ A. Then, since t, —> s
and d;(u, g2) = 6 for all k, we get that d;(u,g4) = é. This proves the Proposition.

3. Proof of Theorem 1

‘In this section we complete the proof of Theorem 1. We begin by recalling some
properties of nonnegative polynomials and fixing some more notation.
For meN let 2, denote the set of all nonnegative valued polynomials of degree
at most m. We need the following simple properties of nonnegative polynomials (cf. [9]
Lemma A4 or [5] Lemmas 1.3 and 1.4).

Lemma 3.1. a) For any meN and p > 0 there exists a o >0 such that the following
holds: If Pe?,, is such that P(1) <« and P(s) > 1 for some 5[0, 1] then there exists
a te[ 1, p] such that P(t) = a.

b) For any meN and o> 1 there exist constants fB,,B, >0 such that the following
holds: If Pe,,, P(s)<1 for all se[0,1] and P(1) =1 then there exists a £,0 < ¢ < m,
such that B, < P(t) € B, for all te[¢**!,0%*?].

For the rest of the argument we fix some constants as follows. Let ¢ > 0 be arbitrary
(we shall later choose this to be as in Theorem 1). Let 6> 1 be such that
(1—067'Y > (1 —¢) where r, as in § 1, is the Q-rank of G. We next choose t> 1 such
that(x7! —o7 ') 2 (1 —¢). Let m =2 max {n,— 1|1 <i<r} and let p > 1 be such that
(p — 1)< (z — 1)/e?™*2 Let ae(0, 1) be such that the contention of Lemma 3.1 a) holds
for these choices of m and p. Let 0 < f, <1< B, be such that the contention of
Lemma 3.1 b) holds for the choices of m and ¢ as above.

PROPOSITION 3.2

Let {u,} be a unipotent one-parameter subgroup of G and let geG. Let & be an admissible
sequence of length p>0. Let s> 0 and x>0 be such that for any (i, A\)e%(¢) there
exists ate[0, s] such that d?(u,g4) > x. Then at least one of the following conditions holds:

1) there exists a s'e(s, ts) such that for all (i, ))e€(¢) and te[s,s)
di (u,g2) > yo/2

ii) there exist sy, s,€[s,ts] such that (s, — s)= o(so — s) and the following conditions
are satisfied:

a) for any (i, )€ (£) there exists a te[s, s, ] such that d? (u,gA) > yo/2 and b) there exists
a (j, ))eB (&) such that yaf, < d}(ugu) < xop, for all te[so,s,] and d¥(u,gp) > 2d%(u.gp)
for some ye[s,s,].

Proof. Let

F = {(i, VeG()ld? (u,g2) < xa/2}.
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First suppose that & is empty. Consider the set
E = {te[s, ts)|d} (u,g%) > yo/2Y (i, )€ (O }-

If E = [s,7s) then condition i) of the Proposition holds for 5’ =1s. Now suppose that E
is a proper subset of [s,ts). Let s' = inf {t|te[s, 5) — E}. Then by Lemma 2.5 and
Proposition 2.7, there exists a (i, e € (£)such that d?(u,g’) = xo/2. Hence s'e[s, ts) — E.
On the other hand, since & is empty s€E. In particular s'>s. Clearly condition
i) of the Proposition holds for this s'.

Next suppose that & is nonempty. By Lemmas 2.4 and 2.5 # is a finite set. By
hypothesis for any (i, J)eF < 4(¢) there exists a te[0,s] such that d?(u,g1)> x and
hence by Lemma 3.1 a), applied to the polynomial ti—d? (u,gA)/x, which is of degree
2(n, — 1) <m (cf. Proposition 2.3), there exists a te[s, ps] such that d?(u,gA) = yo. For
each (i, ))e%(?) let t(i, 1) = inf {te[s, ps] |d2(u,g2) = o} and let y = max {t(i, })|(, e F }.
Let (j, e F be such that ¢(j, ) = y. We note that

d3(u,gp) = yo > 2d; (usgp). (3.3)

Now observe that d?(u,gu) < xo for all te[s,y] and d}(u,gu) = xo. Hence by
Lemma 3.1 b), applied to the polynomial e d? (U 1 (p— 5 GH)/ X0 there. exists a
£,0 < ¢ < m, such that

1By < d3(ugu) < xoBs. .. Vi€[so,5:] (34)
where
5o =5+ a**(y—s)and 5; =s+ 0¥+ (y —s).

Observe that s < 5, < §; <5+ 02" "2 (p — 1)s < 5. Also clearly (s, — s) = o(s, — 5). We
next verify conditions ii) for these choices of so and s,. We see that for (i, ))e%(%),
d?(u,gl) > xo/2 if (i, )¢ F and A2 (U 94 = xo if (i, HeZ; since s < t(i, A) <y < 5o,
this shows that condition ii) (a) holds. Condition ii) (b) follows from (3.3) and (3.4).
This proves the Proposition.

PROPOSITION 3.5

Let {u,} be a unipotent one-parameter subgroup of G. Let ¢ be an admissible sequence
of length p>0. Let geG, s>0 and y 2 x>0 be such that for any (i, )€€ (&) there
exists a te[0,s] such that d?(u,gA) > x and for any (i, yesupp &, xf; < d?(u,gA) <y B
for all te[s,as]. For any admissible sequence { extending &, say of length g, let

X(0) = {tels, o5]|d(u,gd) > x(@/2)* "1 V(i )e¥(() and
| (/207 ") By < dPugA) <y B, V(i Aesuppl}
and let

X=uX(©
where the union is taken over all admissible sequences { extending . Then

(X)2(r =07y (o —1)s.

Proof. We proceed by induction on (r~p). f p=r then X =X (&) =[5, 05] and hence
the Proposition evidently holds. Now let 0 < p <7 and suppose that the Proposition’
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holds for all admissible sequences of length >p + 1, for all geG, s>0 and x>0
satisfying the conditions in the hypothesis, and let an admissible sequence ¢ of length
p,geG, s >0 and y >0 be given, satisfying the conditions in the hypothesis. Let X
be the set as in the statement of the Proposition, for this data.

We first show that for any xe[s, 7~ ' os] there exists a x’e(x, tx] for which either
[x,x') = X or the following conditions are satisfied:

X[, xDz2(l~-c" ) =07 )P (x —X) (3.6)
and there exist (j, ;))e@(&) and ye[x,x'] such that

a3 (uygp) > 23 (u,gp) (3.7

Let xe[s,7 " os] be given. We apply Proposition 3.2 with x in the place of s, the
requisite conditions being satisfied since x >s. Suppose Condition i), as in the
conclusion of that Proposition, holds. Then there exists a x’e(x, tx) such that for all
(i, ))e¥(¢) and te[x,x'), d7(u,g2) = /2. We also see that [x,1x] < [s,0s] and hence
xBy <d?(u,gl) < y'B, for all (i, A)esupp ¢ and te[x,7x]. The two assertions imply
that [x,x’) = X(¢) = X and hence we are through in this case. Next suppose that
Condition ii) (of Proposition 3.2) holds. Thus there exist s,,s;€[x,7x] such that
(s; —x)=0(se — x) and the following conditions are satisfied: a) for any (i, ))e%€ (&)
there exists a te[x, s, such that d? (u,92) > yo/2 and b) there exists a (j, u)e € (&) such
that yaf; <d(ugp) < xop, for all te[s,,s,] and d?(u,gp) > 2d7(u.gu) for some
ye[x, so]. Let n be the admissible sequence of length p + 1 extending £ and containing
(j,») (as in condition (b)) as the last term. Then we see that the conditions in the
hypothesis of the present proposition are satisfied for 5, in the place of &, with
u.g,s, — x, and ya/2 in the place of g, s and y respectively: condition a) above implies
that for any (i, A% () there exists a te[x, s,] such that d?(u,_ ,u,gA) > xa/2. For all
(i, A)esupp ¢ we have

df (v, - uxg3) = df (u,gA)eLxBy. ¥ B2 = [x(@/2) B1, ' B2]

for all te[s, os] and, in particular, whenever (t — x)e[s, — x, o(sq — x)], since o(sq — x) =
s; —x and so,5,€[x, ©x] = [5, 05]; also d7 (u,gu)e[xaB, xof, ] = [x(@/2)B,, x' B2 ] Thus
we have verified the conditions in the hypothesis for the choices as above. Since 7 is
of length p + 1, by the induction hypothesis the assertion of the Proposition holds
for n. For any admissible sequence { let X’({) be the set corresponding to X ({) as in
the proposition with respect to the choices as above. Let X’ be the union of X'({)
over all admissible sequences extending #. Then we have

(X)) 2@ =7y TP o — 1)(so — x) (3.8)

It is straightforward to verify by substitution that for any admissible sequence {
extending n and teX'({), x +teX({)n[se,s,]; recall for this purpose that [s, — x,
0(so —x)] =[so — x, s; —x] = [s — x, os — x]. Hence by (3.8) we get that

{(X N [s0,5: 1) 2 (™ =07 1Y TP o — 1)(sp — )

=(1—=e" )"t —a" 1)y P s, — x).

Now choose x" =s,. Then, since x < s,, the above relation shows that (3.6) is satisfied.




14 S G Dani and G A Margulis

Also by condition b) above there exists a ye[x,so]< [x,x'] such that (3.7) holds.
Thus we have produced a x’ for which (3.6) and (3.7) hold.

To complete the proof we construct a finite sequence xo, Xy,--- Xy in [s,05] as
follows. We choose x, =s. Let k>0 and suppose that x,,...,X; have been chosen.
If x, < v ! o5 then we choose X, . ; €[x,, 7x, ] as follows: If there exists x’€(x;, o) such
that [x,,x') = X then we choose X, to be such that [y, X+ 1) < X but [x,,x") is
not contained in X for any x”> X,.,. If there does not exist any x'> X, with
[x.,x) < X then, as x,e[s,t~ ' o5], by what we proved above (see (3.6)) there exists
a x; 4 1 €(xy, tx,] such that

(XA [xe X )2 (1 —07 DTl — Y TP Xy — %) (3.9)
and there exist (j, p)e%(&) and ye[x;, %+, ] such that
42 (u,gu) > 243 (u,, gp). (3.10)

Observe that since x, <t~ 105, Xg4; <os. Lastly, if x,>1"'os we terminate the
sequence, setting n =K. :

We show that the sequence as defined above does terminate in finitely many steps.
For this purpose observe that if for some k >0, [x;, x;+1) = X then [x,.,X') is not
contained in X for any X’ > X, ;. In view of this, to show that the sequence terminates
it is enough to show that there exists a ¢ >0 such that x;,, —x,=>¢ for any k>0
such that [x;, X, +,) is not contained in X. In view of Lemma 2.6 there exists a ¢ >0
such that if for some ie{1,...,r},heG and t >0, di(v,h)/d;(h) = \/5 then t > c¢. Recall
that when [x;, X;+) is not contained in X there exist (j, )e€(¢) and ye[xe, Xk 411
such that (3.7) holds and in that case, by the above observation, y — x, > ¢ and in
turn x,., — X = ¢, as desired. Hence the sequence indeed terminates (in at most
2(t~ Yo — 1)s/c steps!) at a x, >t los.

Now we have

/(X)>nff(Xﬂ[xk,ka])?(l —a ™) o7 (X, — Xo),
k=0

by (3.9). Since (x, — X¢) > (t " *os —s)=c(t "' — ¢~ ')s, this yields that
((X)2(@—D@E =07 )7Ps
thus proving the Proposition. -

Proof of Theorem 1. Let F < G be a finite subset such that A($)=TF (cf. (1.2)).
Now let ¢ >0 and 8 > 0 be as in the hypothesis of the Theorem and o > 1 such that
(1—¢"'y>(1—¢). Let t>1, p>1, ae(0,1) and 0< f§, <1< f, be the constants
chosen as in the beginning of the section starting with ¢. For any admissible sequence
{ of length q let

W(() = {geGld} (gh) > 6(/2)"* ! Y (i, )e¥({) and

(2/2Y10B, < d#(g2) < 0B, V(i,A)esupp(}
and let

C=u, WQT/T
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where the union is taken over all admissible sequences {. By Proposition 1.8 there
are only finitely many distinct subsets involved in the union and by Proposition 1.3
each of them is compact. Hence C is a compact subset of G/T". We shall show that
the contention of the Theorem holds for the compact set C and ¢ as above.

Let a unipotent one-parameter subgroup {u,} in G,geG and T >0 be given. For
any admissible sequence { of length g let

X ()= {te[T.oT1Id} (u,g2) > 0(e/2)"* ¥ (i, ))e%4(() and

(@/2)*0B, < df (u,gd) = 6B,V (i, A)esupp(}
and let
X =0,X()

the union being taken over all admissible sequences {. Applying Proposition 3.5 to
the empty sequence ¢, with s= T and y =y’ = 6% we see that either there exists a
(i, A)e€(¢) such that d,(u,gA) < 8 for all te[0, T] or.

(X2t =W -1 T

Observe that if teX then u,gI"eC. Recall also that by choice (17! —o~ 1) > (1 — §)
and that for ie{l,...,r}, (i, ))e¥(¢) if and only if AcA(¢)=TF. Hence the above
conclusion implies the assertion in the theorem, that either

({te[T,0TJugTeC})>(1 —e)c—1) T
or these exist Ac'F and ie{l,...,r} such that d;(u,g2) < 6 for all te[0, T].

4, Proofs of the other theorems

We shall now deduce the other theorems stated in the introduction. We follow the
same notation as before.

Proof of Theorem 2. Let ¢ >0 and 6 > 0 be given and let C be a compact subset of
G/T for which the contention of Theorem 1 holds for ¢/2 and 8 in the place of & and
8 respectively. Let {u,} be a unipotent one-parameter subgroup of G and let geG.
Let ¢ > 1 be such that (1 —6 7 ') > (1 — ¢/2). Then by Theorem 1 for any T > 0 either
there exist je{l,...,r} and pel'F such that d;(u,gu) <6 for all te[0,6™* T] or

¢({telo™* T, T]|ugTeCH = (1 —¢/(c— o T>(1 - T.

Hence if the first condition in the conclusion of Theorem 2 does not hold then for
each T >0 there exist je{l,...,r} and peI'F such that d,(u,gu) < 8 for all te[0,0 ! T7.
By Lemma 2.4 the set

{U.mIt<j <r,uelF,d;(gp) < 6}

is finite. Therefore the above condition implies that there exist ie{1,...,r} and Ael'F
such that d,(u,g4) < @ for all ¢ > 0. By Proposition 2.3, d?(u,g4) is a polynomial in ¢
and hence the preceding condition implies that d,(u,gA) = d;(g4) for all teR. This
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implies, by the second part of Proposition 2.3 that A~ 'g~u,gleQ;, or equivalently,
g 'u,geAQ;A! for all teR. This proves the theorem.

Proof of Theorem 3. Let F be a finite subset of G, and C be a compact subset of
G/T such that the contention of Theorem 2 holds, for some choice of ¢ >0 and 6 > 0.
Let V and {x,}, satisfying the conditions as in the statement of the Theorem, and
geGbe given. If {u, } be any one-parameter subgroup of ¥ and k > 1 then by Theorem 2
either there exists a ¢t > 0 such that u,x,gl’eC or there exist ie{l,...,r} and Ael'F
such that g~ 'x; 'u,x,geAQ;A7? for all teR and d,(x,g4) < 6. Let k> 1 be such that
Cn Vx,gT'/T is empty. Then by the last observation every one-parameter subgroup
of V is contained in one of the subgroups x,guQ;u~'g ™ *x;* for some 1 <j<r and
peTl'F such that d;(x,gu) < 6. Since the latter is a countable family of subgroups and
V is an analytic subgroup, this implies that there exist ie{1,...,7} and AeI'F such
that V < x,giQ;4 " Yg~ x,! and dj(x,g4)<0. Since Q;=P; and V is in general
position we also get that x,gAeP;. Thus for any k> 1 such that Cn Vx,gI'/I" = ¢
there exist ie{1,...,r} and a AeT'F such that x,gleP; and d;(x,g4) < 0.

Now suppose that the assertion in the Theorem does not hold for the compact set
C as above. Then by the above observation there exist a subsequence of {x,}, say
{w}, ie{l,...,r} and a sequence {/,} in I'F such that y,gA,eP; and d,(y,gA,) < 8 for
all k. Since y,eP, < P; and y,gh,eP; we get that d;(y.g4) = d;(0)d;(g4,) for all k.
Now while d;(y,g4,) < 8 for all k, since {y,} is a subsequence of {x,}, by hypothesis
d;(y) — oo. Therefore we get that d;(g4,)—0 as k— c0. But by Lemma 2.4 this is
impossible since {4,} is contained in I'F which is finite union of cosets of the form

I'f,feGq.

Proof of Theorem 4. Let I be a lattice in SL(3,R). If SL(3, R)/T" is compact then the
assertion is obvious. We shall therefore assume that G/T" is noncompact. Then by the
arithmeticity theorem (cf. [11]) there exists an algebraic group G defined over Q such
that SL(3, R) is Lie isomorphic to Gy and under the isomorphism I' corresponds to
an arithmetic lattice in Gy with respect to the Q-structure on G. We now follow the
notation as before with respect to this G and identify G = G, with SL(3,R) via an
isomorphism. We note that since G/T" is noncompact the Q-rank r of G is at least
1. On the other hand clearly r < 2, which is the R-rank of SL(3,R). Now let F be a
finite subset of G4 and C be a compact subset of G/T" such that the contentions of
Theorems 2 and 3 hold (the former for some choices of ¢ >0 and 6 > 0). Let geG be
given. Suppose that one of the sets {t>0|v,(f)gTl'eC} and {t <O0|v,()gTeC} is
bounded. Then by Theorem 2, applied to either {v,(#)} or {v,(— )} in the place of
{u,}, we get that there exist an ie{1,r} and a AeI'F such that g~ v, (t)geAQ;A ™ for
all teR. Put P=4P;A" 1. Let L be the closed subgroup generated by all unipotent
elementsin P. Then we have g~ 'v, (f)ge Lfor all teR. Also Lis the group of R-elements
of an algebraic subgroup L which is defined over Q and has no character defined
over Q. This implies that LI is closed and LT is a lattice in L (cf. [4] §2). This
shows that condition a) as in the definition of Condition (x) holds for the set for the
set C (as above).

Let P, be the minimal Q-parabolic subgroup of G as before. It is easy to see that
N(V,) is contained in a Borel subgroup, specifically the group of upper triangular
matrices. Hence there exists a heG such that AN(V,)h~! < P,. We shall show that
condition b) holds for the compact set 2~ C. This would imply that Condition ()

e
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holds for the compact set CUh ™! C (in the place of C in the definition). Let { f(2)}..,
be a curve in N(V,) such that |det f(t){ W|— co as t— co for every proper nonzero
N(V, -invariant subspace. Put ¥ =hV,;h™" and @(t)=~hf(t)h~" for all t>0. Then
{o(t)},5,18 a curve in N(V) = P, and |det (t)| W|— co for every proper nonzero N(V)-
invariant subspace. We shall deduce from this that d;(¢(t))— oo as t—co for any
ie{1,r}). We first assume this and complete the proof. By Theorem 3 it yields that
Cn Vo(t)hgT /T is nonempty for all large r. Substituting for V and ¢(t) we get that
CnhV, f(t)gl/T is nonempty for all large ¢, or equivalently, k™' Cn ¥V, f()gT'/T is
nonempty for all large t. This shows that condition b) holds for the compact set h™*C,
as desired.

It remains to prove that d;(¢{t)) — co as t — oo for any ie{1,r}. Let ie{1, r} be given.
First suppose that P, is a maximal R-parabolic subgroup. Then thére exists a subspace
W of R such that

P;={geGlg(W,)= W,}.

Further it is easy to see that in this case d;(x)=|detx| W;|* for all xeP,. Since
|det(t)] W|— oo for every proper nonzero N(V)-invariant subspace and N(V)c
P, = P,, this yields that d;(¢(t)) > o as t — co. Now suppose that P; is not a maximal
R-parabolic subgroup. Since G has R-rank 2, this implies that P; is a minimal
R-parabolic subgroup. In turn we get r = 1, i =1 and P, = P, and they are conjugate
to the subgroup B consisting of upper triangular matrices; in fact P, = hBh™?!, since
h~'P,h has to be the Borel subgroup containing V,. Using this we see that for all
t=0,d, (o) = (a,(t)/as(t)* = at (t)a3(t), where ay(z), a,(t) and a;(t) are the diagonal
entries of f(t). Since |detf(t)] W|— co for any N(V,)-invariant proper non-zero
subgroup, and N(V,) < B,, we get that a?(t)— co and a?(f)a3(t) > co as t — co. Hence
d,(@(t))— oo as sought to be proved. This proves the Theorem.
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