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The fully coupled Biot quasi-static theory of linear poroelasticity is used to study the consolidation
of a poroelastic half-space caused by axisymmetric surface loads. The fluid and solid constituents
of the poroelastic medium are compressible and its permeability in the vertical direction is different
from its permeability in the horizontal direction. An analytical solution of the governing equations
is obtained by taking the displacements and the pore pressure as the basic state variables and
using a combination of the Laplace and Hankel transforms. The problem of an axisymmetric nor-
mal load is discussed in detail. An explicit analytical solution is obtained for normal disc loading.
Detailed numerical computations reveal that the anisotropy in permeability as well as the com-
pressibilities of the fluid and solid constituents of the poroelastic medium have significant effects
on the consolidation of the half-space. The anisotropy in permeability may accelerate the consoli-
dation process and may lead to a dilution in the theoretical prediction of the Mandel–Cryer effect.
The compressibility of the solid constituents may also accelerate the consolidation process.

1. Introduction

Biot’s theory of linear poroelasticity (Biot 1941,
1956) has been used very extensively to study
the consolidation of a homogeneous or layered
half-space by surface loads or buried sources
(see, e.g., Rudnicki 1986; Pan 1999; Wang and
Kuempel 2003; Singh and Rani 2006). However,
most of these studies did not take into account the
anisotropy in hydraulic permeability. Permeability
determines the ability of the porous medium to
conduct fluid flow in its pores and, therefore, can be
different in different directions. In most cases, the
soil deposits are the result of a sedimentation
process which produces horizontal stratification.
Consequently, permeabilities in the horizontal and
vertical directions may differ. It has been found
experimentally that the horizontal permeability

of soil may be an order of magnitude, or more,
greater than the vertical permeability. This degree
of hydraulic anisotropy will have significant effect
on the consolidation process. As mentioned by
Ganbe and Kurashige (2001), the permeability is
anisotropic in many oil/gas reservoirs. In some
structures, the permeability anisotropy in the hori-
zontal direction to the vertical direction is as much
as 100:1. Anisotropy from 2:1 to 3:1 is common,
especially in naturally fissured media. It is, there-
fore, useful to study the effect of the anisotropy in
permeability on the consolidation of a poroelastic
half-space under an externally applied load due to
its possible geophysical or engineering applications.

Booker and Randolph (1984) discussed the con-
solidation of a soil medium with transversely
isotropic deformation and flow properties due to
surface loading. Both the pore water and the soil
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grains were assumed to be incompressible. Booker
and Carter (1986) obtained a closed-form solution
for the long-term deformation and pore pressure
in a poroelastic half-space caused by withdrawal
of pore fluid at a constant rate from a point sink.
The soil was assumed to be transversely isotropic
with respect to its flow properties. Booker and
Carter (1987a) presented a solution for the tran-
sient effects of pumping fluid from a point sink
embedded in a poroelastic half-space possessing
anisotropic permeability and incompressible fluid
and solid constituents. In a subsequent study,
Booker and Carter (1987b) obtained the cor-
responding solution for a poroelastic half-space
with compressible fluid but incompressible solid
constituents.

Chen (2004) studied the consolidation of a multi-
layered poroelastic half-space with anisotropic per-
meability and compressible fluid constituents. The
solid constituents were assumed to be incompress-
ible. For such a poroelastic material, the Biot-
Willis coefficient α = 1. In a subsequent study,
Chen (2005) discussed the steady-state response of
multilayered poroelastic half-space to a point sink.
Both the permeability and the poroelasticity of the
medium were assumed to be transversely isotropic,
but its fluid and solid constituents were assumed
to be incompressible. In a recent study, Singh et al
(2007) discussed the quasi-static plane strain defor-
mation of a poroelastic half-space with anisotropic
permeability and compressible constituents by two-
dimensional surface loads. An analytical solution
was obtained by using a pure compliance formu-
lation in which the stresses and the pore pressure
are taken as the basic state variables. Biot’s stress
function was used to decouple the governing equa-
tions. The problem of normal strip loading was
discussed in detail.

The purpose of the present paper is to study
the consolidation of a poroelastic half-space by an
axisymmetric surface loading. The permeability in
the vertical direction may be different from the per-
meability in the horizontal direction. The fluid and
solid constituents of the poroelastic medium are
compressible. A stiffness formulation is used, tak-
ing the displacements and the pore pressure as
the basic state variables. An analytical solution
of the governing equations is obtained by tak-
ing the Laplace transform with respect to time
and the Hankel transform with respect to the
space variables. The problem of normal disc load-
ing is discussed in detail. An explicit analytical
solution in the Laplace–Hankel transforms domain
is obtained. Detailed numerical computations are
performed to study the effects of the anisotropy in
permeability and the compressibilities of the fluid
and solid constituents.

2. Basic equations

Let (r, θ, z) denote the cylindrical polar co-
ordinates and (ur, uθ, uz) the corresponding
displacement components. For axial symmetry,
∂/∂θ ≡ 0, and the strain components are:

εrr =
∂ur

∂r
, εθθ =

ur

r
, εzz =

∂uz

∂z
,

εrz =
1
2

(
∂ur

∂z
+

∂uz

∂r

)
, εrθ = εθz = 0. (1)

A homogenous elastically isotropic poroelastic
material with compressible fluid and solid con-
stituents can be characterized by four constitu-
tive constants. Let these constants be: the shear
modulus (G), the drained Poisson’s ratio (ν), the
undrained Poisson’s ratio (νu) and the Biot–Willis
coefficient (α). In terms of the bulk moduli, α and
νu can be expressed in the form:

α = 1 − K

Ks

(0 ≤ α ≤ 1),

νu =
3Ku − 2G

2(3Ku + G)

(
0 ≤ ν ≤ νu ≤ 1

2

)
,

where K is the drained bulk modulus, Ku is the
undrained bulk modulus and Ks is the bulk modu-
lus of the solid phase of the poroelastic material.
For axial symmetry the components of the total
stress tensor (

−→−→σ ), the total strain tensor (
−→−→ε ), and

the pore pressure (p) are related by the following
system of equations (Detournay and Cheng 1993;
Wang 2000):

2.1 Equilibrium equations

∂2ur

∂r2
+

1
r

∂ur

∂r
− ur

r2
+

∂2ur

∂z2

+
1

1 − 2ν
∂ε

∂r
− α

G

∂p

∂r
= 0, (2)

∂2uz

∂r2
+

1
r

∂uz

∂r
+

∂2uz

∂z2
+

1
1 − 2ν

∂ε

∂z
− α

G

∂p

∂z
= 0, (3)

where

ε = div u =
∂ur

∂r
+

ur

r
+

∂uz

∂z
, (4)
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denotes the dilatation. From equations (2) to (4),
we obtain

η∇2p = G∇2ε, (5)

where

η =
1 − 2ν

2(1 − ν)
α, (6)

is the poroelastic stress coefficient.

2.2 Constitutive equations

σij = 2G
(

εij +
ν

1 − 2ν
εδij

)
− αpδij , (7)

where the subscripts i and j can be r, θ or z.

2.3 Darcy’s law

According to Darcy’s law of fluid flow in a poroelas-
tic medium with anisotropic permeability

qr = −χr∂p/∂r, qθ = 0, qz = −χz∂p/∂z, (8)

where q is the fluid flux and (χr, χz) is the Darcy
conductivity in the (r, z) direction.

2.4 Continuity equation

divq = − ∂

∂t

(
αε +

1
M

p

)
, (9)

where

M =
2G(νu − ν)

α2(1 − 2ν)(1 − 2νu)
, (10)

is the Biot modulus.

2.5 Fluid diffusion equation

Combining the continuity equation and Darcy’s
law, we obtain the fluid diffusion equation in the
form

χr

(
∂2p

∂r2
+

1
r

∂p

∂r

)
+χz

∂2p

∂z2
=

∂

∂t

(
αε+

1
M

p

)
. (11)

This is a coupled diffusion equation in pore
pressure for a poroelastic material possessing
anisotropic permeability and compressible fluid
and solid constituents. If we put α = 1 in equations
(7) and (11), we get the corresponding equations
of Chen (2004) for axial symmetry. Since α = 1
for incompressible solid constituents, the results
of Chen (2004) are valid for the particular case
of a poroelastic material with incompressible solid
constituents.

3. Solution of the governing equations

3.1 Pore pressure

Eliminating ε from equations (5) and (11), we
obtain:

[
cr

(
∂2

∂r2
+

1
r

∂

∂r

)
+ cz

∂2

∂z2
− ∂

∂t

]
∇2p = 0, (12)

where

(cr, cz) =
2G(1 − ν)(νu − ν)
α2(1 − 2ν)2(1 − νu)

(χr, χz), (13)

is the hydraulic diffusivity. Taking the Laplace
transform of equation (12), we have

[
cr

(
∂2

∂r2
+

1
r

∂

∂r

)
+ cz

∂2

∂z2
− s

]
∇2p̃ = 0, (14)

where

p̃(r, z, s) =

∞∫
0

p(r, z, t)e−stdt, (15)

is the Laplace transform of p(r, z, t).
We define the nth order Hankel transform

f̄n(k, z, s) of a function f̃(r, z, s) by the relation

f̄n(k, z, s) =

∞∫
0

f̃(r, z, s)Jn(kr)r dr, (16)

so that

f̃(r, z, s) =

∞∫
0

f̄n(k, z, s)Jn(kr)kdk. (17)
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Taking the zeroth-order Hankel transform of
equation (14), we obtain

(
d2

dz2
− m2

)(
d2

dz2
− k2

)
p̄0(k, z, s) = 0, (18)

where

m2 =
(

cr

cz

)
k2 +

s

cz

. (19)

Suitable solutions of equation (18) which are
bounded for z → ∞ are of the form

p̄0 = A1e
−mz + A2e

−kz, (20)

where the arbitrary constants A1, A2 may be func-
tions of s and k.

3.2 Dilatation

Equations (5) and (20) yield

G

(
d2

dz2
− k2

)
ε̄0 = η(m2 − k2)A1e

−mz.

Solving, we have

ε̄0(k, z, s) =
( η

G

)
A1e

−mz + A3e
−kz. (21)

Inserting the expressions for p̄0 and ε̄0 from
equations (20) and (21) into the Laplace–Hankel
transformed equation (11), we have

A3

A2

=
α (1 − 2ν) (1 − 2νu)

2G (νu − ν)

×
[
(cz − cr)

(1 − 2ν)(1 − νu)
(1 − ν)(1 − 2νu)

k2

s
− 1

]
. (22)

3.3 Displacements

Taking the Laplace transform followed by the
first order Hankel transform of equation (2), using

equation (20) and solving the resulting ordinary
differential equation of the second order we obtain:

ūr,1(k, z, s) =

∞∫
0

ũr(r, z, s)J1(kr)rdr

= − ηk

G(m2 − k2)
A1e

−mz

+
1
2

(
α

G
A2− A3

1−2ν

)
ze−kz+A4e

−kz,

(23)

where A4 is an arbitrary constant. Similarly,
equation (3) yields

ūz,0 =
−ηm

G (m2 − k2)
A1e

−mz

+
1
2

(
α

G
A2 − A3

1 − 2ν

)
ze−kz + A5e

−kz.

(24)

Equation (4) implies

ε̄0 = kūr,1 +
d

dz
ūz,0. (25)

From equations (21), (23) and (24), we find

k(A4 − A5) = − α

2G
A2 +

3 − 4ν
2(1 − 2ν)

A3. (26)

3.4 Stresses

Equations (1), (7), (20), and (21) yield

σ̄rz,1

2G
=

ηmk

G(m2 − k2)
A1e

−mz

+
1
4

(
α

G
A2 − A3

1 − 2ν

)
(1 − 2kz)e−kz

− 1
2
k(A4 + A5)e−kz , (27)
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σ̄zz,0

2G
=

ηk2

G(m2 − k2)
A1e

−mz

− 1
2

(
α

G
A2 − A3

1 − 2ν

)
(1 + kz)e−kz

+
(

1
2
A3 − kA4

)
e−kz. (28)

Using equations (17), (22) and (26), the Laplace
transform of the solution can be expressed in the
form

p̃(r, z, s) =

∞∫
0

(A1e
−mz + A2e

−kz)J0(kr)kdk,

(29)

q̃z(r, z, s) = χz

∞∫
0

(mA1e
−mz+kA2e

−kz)J0(kr)kdk,

(30)

ε̃(r, z, s) =

∞∫
0

( η

G
A1e

−mz + A3e
−kz

)
J0(kr)kdk,

(31)

ũr(r, z, s) =

∞∫
0

[ −ηk

G(m2 − k2)
A1e

−mz

+A6ze−kz +A4e
−kz

]
J1(kr)kdk, (32)

ũz(r, z, s) =

∞∫
0

[ −ηm

G (m2 − k2)
A1e

−mz

+ A6ze−kz + A5e
−kz

]
J0(kr)kdk,

(33)

σ̃rz(r, z, s) = 2G

∞∫
0

[
ηmk

G(m2 − k2)
A1e

−mz

−A6kze−kz+
1
2
(A3 − 2kA4)e−kz

]

× J1(kr)kdk, (34)

σ̃zz(r, z, s) = 2G

∞∫
0

[
ηk2

G(m2 − k2)
A1e

−mz

− A6(1 + kz)e−kz

+
1
2
(A3 − 2kA4) e−kz

]
J0(kr)kdk,

(35)

where

A3 =
η

G

[
1 − (1 − 2ν)

(1 − νu)
(νu − ν)

sa

s

]
A2, (36)

A5 = A4 +
η

2Gk

[
−1 + (3 − 4ν)

(1 − νu) sa

(νu − ν) s

]
A2,

(37)

A6 =
1
2

(
α

G
A2− A3

1−2ν

)
=

η

2G

[
1+

(1−νu)sa

(νu − ν)s

]
A2,

(38)

sa = s + (cr − cz)k2 = cz(m2 − k2). (39)

Three arbitrary constants, A1, A2 and A4,
appear in the solution given by equations (29) to
(35). These constants have to be determined from
the boundary conditions.

4. Isotropic permeability

For isotropic permeability, χr = χz = χ, cr = cz =
c, sa = s and the solution is given by equations (29)
to (35) with

A3 = −η(1 − ν)(1 − 2νu)
G(νu − ν)

A2,

A5 = A4 +
η(1 − ν)(3 − 4νu)

2Gk(νu − ν)
A2,

A6 =
η(1 − ν)

2G(νu − ν)
A2,

m2 = k2 +
s

c
. (40)
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We have verified that the poroelastic solution
for isotropic permeability obtained by us as a par-
ticular case of the general solution for anisotropic
permeability coincides with the solution given by
Wang (2000)*.

5. Surface loading

Consider a uniform poroelastic half-space z ≥ 0
with z-axis drawn vertically downwards, into the
medium. For prescribed surface loads, boundary
conditions are of the form

σrz = (σrz)0, σzz = (σzz)0, p = 0, (41)

at z = 0, assuming permeable surface. Let

(σrz)0 =

∞∫
0

S0(k, s)J1(kr)kdk, (42)

(σzz)0 =

∞∫
0

N0(k, s)J0(kr)kdk. (43)

Equations (29) and (34)–(38) yield

A1 = −A2 = (ν − νu)(m + k)(N0 − S0)
s

ηΩ
,

A3 = [s (νu − ν) − sa(1 − νu)(1 − 2ν)]

× (N0 − S0)
m + k

GΩ
,

A4 = − S0

2Gk
+ [s(νu − ν)(k2 − m2 + 2mk)

+ sa(1 − νu)(1 − 2ν)(m2 − k2)]

× (S0 − N0)
2Gk (m − k)Ω

,

A5 = − S0

2Gk
+ [s(νu − ν)mk

− sa(1−ν)(1−νu)(m2−k2)]
(S0 − N0)

Gk (m − k)Ω
,

*The expression for σ̃zr given in equation (9.48)
of Wang (2000) is incorrect. The correct expression is
obtained by replacing C0 and D0 by 1

2C0 and 1
2D0,

respectively, in equation (9.48) of Wang (2000).

A6 = [s(νu − ν) + sa(1 − νu)](N0 − S0)
m + k

2GΩ
,

(44)

where

Ω = s(νu − ν)(k − m) − sa(1 − νu)(k + m). (45)

5.1 Normal disc loading

Suppose a total normal force Q0 is uniformly
applied over a circular surface area (z = 0, r ≤ a)
of radius a with its centre at the origin. If the
surface is permeable and the load is applied in
the positive z-direction, the boundary conditions
yield

p = 0, σrz = 0,

σzz =
{− Q0

πa2 , r ≤ a

0, r > a
(46)

at z = 0. This implies

S0 = 0, N0 = −Q0

π

J1(ak)
ak

. (47)

Equations (29) to (39) yield the solution in the
transform domain:

p̃(r, z, s) =
(νu − ν) sQ0

πaη

∞∫
0

(e−mz − e−kz)J0(kr)

× J1(ka)
(m + k)

Ω
dk, (48)

q̃z(r, z, s) =
(νu − ν)χzsQ0

πaη

∞∫
0

(me−mz − ke−kz)

× J0(kr)J1(ka)
(m + k)

Ω
dk, (49)

∈̃(r, z, s) =
Q0

πaG

∞∫
0

[(νu − ν)se−mz − {s(νu − ν)

− sa(1 − 2ν)(1 − νu)}e−kz ]

× J0(kr)J1(ka)
(m + k)

Ω
dk, (50)
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ũr(r, z, s) =
Q0

πaG

∞∫
0

[
(νu − ν)s
(k − m)

(ke−mz − me−kz)

− 1
2
{s(νu − ν) + sa(1 − νu)}(m + k)ze−kz

− 1
2
{s(νu − ν) − sa(1 − 2ν)

×(1 − νu)}(m + k)
k

e−kz

]

× J1(kr)J1(ka)
1
Ω

dk, (51)

ũz(r, z, s) =
Q0

πaG

∞∫
0

[
(νu − ν)ms

k − m
(e−mz − e−kz)

− 1
2
{s(νu − ν) + sa(1 − νu)}(m + k)ze−kz

− (1 − ν) (1 − νu)sa

(
m + k

k

)
e−kz

]

× J0(kr)J1(ka)
1
Ω

dk, (52)

σ̃rz(r, z, s) =
Q0

πa

∞∫
0

[
2(νu − ν)ms

m − k
(e−mz − e−kz)

+ {s(νu − ν) + sa(1 − νu)}

× (m + k)ze−kz

]
J1(kr)J1(ka)

k

Ω
dk, (53)

σ̃zz(r, z, s) =
Q0

πa

∞∫
0

[
2(νu−ν)ks

m−k
(ke−mz−me−kz)

+ {s(νu − ν) + sa(1 − νu)}(m + k)

× (1 + kz)e−kz

]
J0(kr)J1(ka)

1
Ω

dk. (54)

The results for a concentrated normal load Q0

can be obtained from equations (48) to (54) by

using the limit

lim
a→0

J1(ak)
ak

=
1
2
. (55)

6. Numerical results and discussion

Equations (48) to (54) constitute a solution of
the problem of consolidation of a poroelastic
half-space with anisotropic permeability and com-
pressible fluid and solid constituents. The con-
solidation is caused by a normal disc load Q0

distributed uniformly over the circular region r ≤ a
of the permeable surface z = 0 of the half-space.
The solution obtained is in the Laplace–Hankel
transforms domain. Two integrations are required
to be performed to get the solution in the physical
domain. Schapery (1962) proposed a very simple
and efficient approximate formula for finding the
Laplace inversion numerically. According to this
formula

φ(t) ≈ [s φ̃(s)]s=1/(2t),

where φ̃(s) is the Laplace transform of φ(t).
Accuracy of this formula has been demonstrated,
amongst others, by Rajapakse and Senjuntichai
(1993), Senjuntichai and Rajapakse (1995) and
Chau (1996). In view of its computational efficiency
and simplicity, we have used Schapery’s approxi-
mate formula for the Laplace inversion. The Hankel
transform inversion has been performed numeri-
cally by using the extended Simpson’s rule.

We have computed the surface subsidence uz

(also known as settlement) at the centre of the nor-
mal disc load and pore pressure at various points
on the z-axis (central line). We define the following
dimensionless quantities

P =
(

πa2

Q0

)
p, W =

(
πaG

Q0

)
uz,

Z =
z

a
, T =

(
Gχz

a2

)
t, γ2 =

cr

cz

=
χr

χz

. (56)

Therefore, W denotes the dimensionless subsi-
dence, P the dimensionless pore pressure, T the
dimensionless time, Z the dimensionless depth
below the surface of the half-space and γ2 the ratio
of the horizontal permeability χr to the vertical
permeability χz.
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Figure 1. Effect of the permeability anisotropy on the
time-settlement. W is the dimensionless displacement at
the origin (r = z = 0) in the vertical (down) direction, T

is the dimensionless time and γ = (χr/χz)1/2 is the per-
meability anisotropy parameter. γ = 1 for a medium with
isotropic permeability. For γ > 1, the anisotropy in perme-
ability accelerates the consolidation process.

Figure 1 shows the time-history of the dimen-
sionless subsidence W at the centre of the disc
load (r = z = 0) for four values of the permeabi-
lity anisotropy parameter γ for Ruhr sand-
stone for which ν = 0.12, νu = 0.31 and α = 0.65
(Detournay and Cheng 1993; table 4).When γ = 1,
the vertical permeability is equal to the horizontal
permeability. We notice that the permeability
anisotropy has no effect on the initial settlement
or the final settlement. However, if the horizon-
tal permeability χr is greater than the vertical
permeability χz (i.e., if γ > 1), the permeability
anisotropy accelerates the consolidation process.

Figure 2 depicts the effect of the value of the
Biot–Willis coefficient α on the time-history of the
dimensionless subsidence W for γ = 1, ν = 0.25
and νu = 0.27. For a poroelastic material with
incompressible solid constituents, α = 1. As α
decreases, the compressibility of the solid consti-
tuents increases. Figure 2 shows that the com-
pressibility of the solid constituents accelerates the
consolidation process.

The influence of the value of the undrained Pois-
son’s ratio νu on the time-history of the dimen-
sionless subsidence W is displayed in figure 3 for
γ = 1, ν = 0.12 and α = 0.65. It is known that
ν ≤ νu ≤ 0.5. The upper limit νu = 0.5 corresponds
to a poroelastic material with incompressible fluid
constituents. As expected, the final settlement
is independent of the value of νu. However, the
compressibility of the fluid constituents of the
poroelastic medium has a strong influence on
the consolidation process. The initial settlement for
a compressible fluid constituents model is greater

Figure 2. Effect of the compressibility of the solid con-
stituents on the time-settlement for ν = 0.25, νu = 0.27,
γ = 1. For a poroelastic model with incompressible solid
constituents, α = 1. The compressibility of the solid con-
stituents accelerates the consolidation process.

Figure 3. Effect of the compressibility of the fluid con-
stituents on the time-settlement for ν = 0.12, α = 0.65,
γ = 1. For a poroelastic model with incompressible fluid con-
stituents, νu = 0.5. The influence of the compressibility of
the fluid constituents is to increase the initial settlement.
The final settlement is not affected.

than the initial settlement for the corresponding
incompressible fluid constituents model.

Figure 4 shows the effect of the permeability
anisotropy on the diffusion of the pore pressure
with time. The pore pressure vanishes in the
drained state (T → ∞). Moreover, anisotropy has
no effect in the undrained state (T → 0). From
figure 4, we notice that instead of decreasing
monotonically with time, the pore pressure rises
above the initial undrained value before it decays
to zero as T → ∞. This is in accordance with the
Mandal–Cryer effect (Cryer 1963; Detournay and
Cheng 1993).
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Figure 4. Influence of the value of the permeability anisotropy parameter γ = (χr/χz)1/2 on the diffusion of the pore
pressure P with time T for r = 0 and (a) Z = 0.1, (b) Z = 1, (c) Z = 2, (d) Z = 10. The pore pressure rises above the
initial undrained value before it decays to zero as T → ∞ (Mandel–Cryer effect). This effect is more pronounced for smaller
values of γ and at greater depths.

This effect is more pronounced at greater
depths and for smaller values of the permeabi-
lity anisotropy parameter γ = (χr/χz)1/2. Since, in
general, χr > χz, the theoretical prediction of the
Mandel–Cryer effect may get diluted in materi-
als with anisotropic permeability. A similar conclu-
sion was drawn in the two-dimensional plane strain
analysis (Singh et al 2007).

Figure 5 shows the influence of the compressibi-
lity of the solid constituents of the poroelastic
medium on the diffusion of the pore pressure with
time. The dimensionless pore pressure P at the
point r = 0, z = 2a on the central line is com-
puted as a function of the dimensionless time T
for four values of the Biot–Willis coefficient α
for ν = 0.25, νu = 0.27 and γ = 0.1, 1, 10. For a
poroelastic medium with incompressible solid con-
stituents, α = 1. We observe that the compressi-
bility of the solid constituents of the poroelastic

medium has a strong effect in the undrained limit
(T → 0).

The effect of the compressibility of the fluid con-
stituents of the poroelastic medium on the diffu-
sion of the pore pressure with time is displayed
in figure 6. The dimensionless pore pressure P at
the point r = 0, z = 2a on the central line is com-
puted as a function of the dimensionless time T
for four values of the undrained Poisson’s ratio νu

for v = 0.12, α = 0.65 and γ = 0.1, 1, 10. For a
poroelastic medium with incompressible fluid con-
stituents, νu = 0.5. We observe that the compressi-
bility of the fluid constituents has a strong effect
in the undrained state (T → 0). Figures 5 and 6
reveal that, in the short term, while the effect of
the compressibility of the solid constituents is to
increase the pore pressure, the effect of the com-
pressibility of the fluid constituents is to decrease
the pore pressure.
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Figure 5. Effect of the value of the Biot–Willis coefficient
α on the diffusion of the pore pressure P with time T for
Z = 2, ν = 0.25, νu = 0.27 and for (a) γ = 0.1, (b) γ = 1.0,
(c) γ = 10. For a poroelastic model with incompressible
solid constituents, α = 1. The influence of the compressibi-
lity of the solid constituents is to increase the short-term
pore pressure.

Figure 7 displays the depth profile of the pore
pressure for Ruhr sandstone (ν = 0.12, νu = 0.31,
α = 0.65) for three values of the dimensionless time

Figure 6. Effect of the value of the undrained Poisson’s
ratio νu on the diffusion of the pore pressure with time T for
Z = 2, ν = 0.12, α = 0.65 and for (a) γ = 0.1, (b) γ = 1.0,
(c) γ = 10. For a poroelastic model with incompressible fluid
constituents, νu = 0.5. The influence of the compressibility
of the fluid constituents is to decrease the pore pressure.

T for γ = 0.1, 1, 10. Initially, a very large pore
pressure develops near the surface resulting in a
steep gradient of the pore pressure.
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Figure 7. Depth profile of the dimensionless pore pres-
sure P at three time-instants for r = 0 and (a) γ = 0.1,
(b) γ = 1.0, (c) γ = 10.

7. Conclusions

An analytical solution has been obtained of the
governing equations representing the diffusion-
deformation of a poroelastic medium possessing
anisotropic permeability and compressible fluid
and solid constituents. This solution has been used

to study the quasi-static deformation of a half-
space by surface loading. As an example, the prob-
lem of the consolidation of a uniform half-space
caused by normal disc loading has been discussed in
detail. The effect of anisotropy in permeability and
compressibilities of the fluid and solid constituents
have been investigated. The following observations
are made in relation to the consolidation of a
poroelastic half-space by normal loads:

• The anisotropy in permeability may accelerate
the consolidation process. However, it has no
effect on the initial and the final settlements.

• The anisotropy in permeability may lead to
a dilution in the theoretical prediction of the
Mandel–Cryer effect.

• The compressibility of the solid constituents of
the poroelastic medium may accelerate the con-
solidation process. However, it has no influence
on the initial and final settlements.

• In the short term, the compressibility of the solid
constituents increases the pore pressure.

• The compressibility of the fluid constituents
increases the initial settlement. It has no influ-
ence on the final settlement.

• The compressibility of the fluid constituents
decreases the short-term pore pressure.

The theory developed can be used for modelling
the time-settlement of a poroelastic soil medium
possessing anisotropic permeability and compressi-
ble fluid and solid constituents. This relates to an
important class of problems in geotechnical engi-
neering. The theory may also find applications in
studies involving oil/gas reservoirs. Because such
reservoirs are usually sandwiched between imper-
meable formations, the oil or water injected from
the bore well or from the induced fracture flows
mainly in the horizontal direction (Watanabe and
Kurashige 1997). Therefore, the permeability in
the horizontal direction will be much more than
the permeability in the vertical direction.
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