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Quasi-static deformation of a layered half-space by a long strike-slip
fault
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Abstract,  Theoretical expressions for the surface displacement and shear stress caused by
a long strike-slip dislocation in an elastic layer overlying an elastic half-space are derived and
the correspondence principle is used to obtain the quasi-static response when the half-space is
Maxwell-viscoelastic. Variation of the surface displacement und shear stress with horizontal
distance is studied for various times and vertical extents of the fault, It is seen that the quasi-
static response differs significantly from the corresponding elastic response.
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1. Introduction

In quasi-static deformation, the inertial terms in the stress equations of equilibrium can
be ignored. The study of quasi-static deformation of a viscoelastic model of the carth
caused by a shear dislocation is important to understand the post-seismic deformation
following large earthquakes. Singh and Rosenman (1974) derived analytical ex-
pressions for the quasi-static surface displacements due to a finite vertical strike-slip
fault in a Voigt or Maxwell viscoelastic half-space by applying the correspondence
principle of linear viscoelasticity. Rosenman and Singh (1973a,b) obtained the
corresponding expressions for the quasi-static surface strains, tilts and stresses. Nur
and Mavko (1974) studied the characteristics of time-dependent deformation following
an earthquake by considering the problem of a fault in an elastic layer overlying a
viscoelastic half-space. Mukhopadhyay and Mukherji (1979) and Mukherji et al (1980)
studied the stress accumulation near an earthquake fault by considering the antiplane
strain problem of a finite displacement dislocation in an elastic layer lying over a
Maxwell viscoelastic half-space, in which the shear stress is maintained far away from
the fault by tectonic forces.

In our previous paper (Singh and Garg 1985, referred to as paper I hereafter), we
discussed the two-dimensional problem of a long displacement dislocation in a
multilayered half-space with the help of the Thomson-Haskell matrix method. Explicit
expressions for the surface displacements due to dip-slip and strike-slip faults were
given,

In the present paper, we first obtain the surface elastostatic field, using the results of
paper I, due to a long vertical strike-slip fault in a homogeneous isotropic elastic Jayer
lying over a homogeneous isotropic elastic half-space. The correspondence principle of
linear viscoelasticity is then used to find the quasi-static response when the half-space is

It
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Maxwell viscoelastic. In this model, the elastic layer represents the lithosphere and the
Maxwell viscoelastic half-space represents the asthenosphere. Curves for surface
displacement and shear stress are obtained. These curves differ significantly from the
corresponding curves for the elastic case when the vertical extent of the fault is large.

2. Theory

We consider a model consisting of a homogeneous isotropic elastic layer of thickness H
lying over a homogeneous isotropic Maxwell viscoelastic half-space. We place the
origin of a cartesian coordinate system (x, y, z) at the free surface and the z-axis is drawn
into the medium. Let a long vertical strike-slip fault, with strike along the x-axis, be
situated on the z-axis at a depth A, 0 < h < H, below the free surface. We first calculate
the surface displacement and shear stress due to a long strike-slip fault situated in the
corresponding elastic model. The correspondence principle of linear viscoelasticity is
then used to obtain the quasi-static response. -

2.1 Elastostatic solution

In equation (5.9) of paper I, we obtained the surface displacement u;(0) due to a long
strike-slip fault situated in a multilayered elastic half-space. In the present paper, we
follow the notation used in paper I. We have

‘ 1 ©(Vi3Ey  —V,,E
u1(0)=vﬂBij‘ ( 124+21 22+11
i1 E,,

) sin ky dk, (1)
0

where the matrices [E] and [ V] are defined in paper L.y is rigidity of the source layer
and B; = Au, dh where Au, is the dislocation and dh the fault width.

For an elastic layer over an elastic half-space, equations (3.29) and (3.31) of paper I
yield the following elements for the matrix LE]:

E,, =[ch(kH)+ Bsh(kH)]exp(— kH),

E,, =[ch(kH)— fsh(kH)]exp (kH),

Es1 = — w[sh(kH) + fpch(kH)]exp (— kH),

B3z = [Bch(kH) —sh (kH)] exp (kH), (2)
where u, is the rigidity of the layer, u, the rigidity of the half-space and

B= /s (3)
Similarly, the matrix [V] reduces to

V] = { ch(kh) —pu;tsh (kH)}

— iy sh(kh) ch (kh)

Equations (1), (2) and (4) yield

_ B, (| ch(kH —kh) + Bsh(kH — k)T |
Uy = J [ Sh(kH) + f oh (k) }smkydk. (5)

“)
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Expressing the hyperbolic functions in terms of the exponential functions, (5) becomes

B, [* L+rexp{—2k(H-—n}1] .
=1 — ky dk, 6
Uy - L exp( kh){: T rexp (= 2kH) sin ky (6)

where
r=(1—B/1+ B)= (1 — /(1 + ). (7)

Expanding the denominator in (6) in a power series and integrating term by term, we
obtain
B,| S y y
= 22 " - . 8
M [yz + h? + ,,;1] {yz +(2nH — h)? + y? + (2nH + h)? @)

Equation (8) gives the surface displacement parallel to the fault caused by a long
vertical strike-slip fault situated in an elastic layer of thickness H lying over an elastic
half-space.

The displacement due to a finite vertical strike-slip fault with vertical extent
0<h<d< H(figure 1)is obtained from (8) by integrating with respect to h from 0 to d.

We find
Au, d ©
=—=|tan~ 0 "
Uy - |: an <y> + n;l r

X {tan‘l(2nH+d>——tan‘1<2nH~d>}j]. 9
Y y

The corresponding shear stress is given by
—d o0
H1 [yz T+ d2 +nZ41 r

o 2nH —d B 2nH +d (10)
V24+@2nH—d? y*+(2nH +d)>? | | ‘

ouy,  Auy
Pi2= Nl‘é‘)‘; =

T

)

j | |
j_— Elastic layer (py)

] ——»

Maxwell viscoelastic
half-space (P, 5 )

-
-y

Figure 1. Section of the model by the plane x =0.
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2.2 Viscoelastic solution

We write (9) and (10) in the form

_1 -1 3 -1 24y
uy = EI:NO tan (d/y) -+ nzl Nn tan (y2-+ 4n’H? — dz ’ (1 1)

1 —d i
P12=5[N° (m)*z N

N 2nH —d B 2nH +d (12)
V2+(@QnH—d* y+@nH+d*( | &

where

By — U\
No= i N, = . 03
° ' 1(#1+H2)

We now use the correspondence principle (Fung 1965) to obtain the quasi-static
deformation field for a model consisting of an elastic layer lying over a Maxwell
viscoelastic half-space. For the elastic layer '

P12 =2p€y5. (14)
For the Maxwell viscoelastic half-space
€12 =(1/2003)P15 + [(1/mp12]s (15)

where 7 is the viscosity and the dot () signifies time-differentiation. Taking the Laplace
transform of (15), we obtain

$815 = (5/21)P12 + [(1/m)F12], | (16)
where s is the Laplace transform variable. We may write (16) in the form
P12 =2u3e, ,, (17)

where
K3 =sp,/(s + 2174, (18)

is the transform rigidity and © = #/u, is the relaxation time. Time dependence of the
dislocation source is taken to be a step-function, ie. .

Auy(t) = U H(t), (19)

where U, and H(t) are respectively the dislocation and the Heaviside step function.
Then

Auy(f) = Up/s. (20)

In order to obtain the Laplace transformed solution of the viscoelastic problem, it is
only necessary to replace u, and Au, by u¥ and Au 1 Tespectively in the corresponding
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elastic golution. From (11) and (12) we notice that u, and Au, appear only in the
expressions for N, and N,. Therefore, the Laplace transformed. solution of the
viscoelastic problem is obtained from (11) and (12) on replacing N, and N, by N, and
N, respectively, where, from (13), (18) and (20)

NO = (UO/S)’ ﬁu = UOGn(S)a (21)
G,(s) = (Bs + A)"/s(s + A)", (22)
A=2p (s + po)t, B =(uy — pa)/(pg + pia). (23)

In order to find the inverse Laplace transform of G,(s), we use a transform integral
listed in Erdélyi (1954). We find that

FZm( A) tn—m (24)

-1 L
LG 9] = 1+exp(—dp) 3, o2 =™,

where
Fy(s) = (@™~ !/ds™ ) [(Bs + AY'/s]. (25)
Equations (11), (12), (21) and (24) yield (¢t > 0)

u1=%9—|:tan‘1(j>+ Z {l+exp — At) 2 F;;';(.( ?Dlt"“’"}

x tan”? 24y 26
N\ A =) | (26)
y_q & 2 F?.m( A) n—m
P12 =—H l:y D Z {1+exp — At) Z e 7 )1t }
" 2nH —d B 2nH +d 27)
y* +(2nH — d? yY+@H+d)?* | |

Putting i, = i, in (27), we get the solution obtained by Bonafede et al (1984) for the
shear stress p,, as a particular case.

3. Particular case

Let py = g = i (say). (28)
Then A=1"1, B=0, (29)l

and  Fp(—A)=—(mn—1lc"" (30)

Equations (26) and (27) give (t > 0)
n—1

Uy ;‘%ﬂ[tan“l(d/y)—%"i{I—CXP(*I/T) Z 4o }

2dy
X tan (yz A —~d2>} - (31)
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U, —d © Lty
h2=7:“[;a:ﬁ*12;{1—6”” L |
o 2nH —d B 2nH +d (32)
V24 (2nH —d* y2+QnH+d? | |

Equations (31) and (32) give respectively the quasi-static surface displacement parallel
to the fault and the horizontal shear stress caused by a long vertical strike-slip fault
(=0 <x<0,0<z<d< H)inanelastic layer lying over a Maxwell viscoelastic half-

space.
The case ¢ =0 corresponds to the elastic problem. Equations (7), (9), (10) and (28)
then yield
U - U —d
w=—Ctan" (dfy), pr,=—p (m> | (3)

where Au; = U,,
Since we have taken yu; = u, =y, (33) gives the field due to a long vertical strike-slip
fault (— 00 <x < 00,0 < h < d) situated in an elastic half-space.

4, Numerical results

We wish to study the variation of the displacement and the stress fields generated by a
long strike-slip fault in an elastic layer lying over a Maxwell viscoelastic half-space. In
(31) and (32), we have obtained the expressions for the parallel quasi-static displace-
ment and the shear stress. For numerical computation, we define the dimensionless
‘quantities «, T, Y, U; and P, through the relations

d=oH, t=Tt, y=YH, v
uy=(Uo/m)Uy, pyp= (Uoi/mH)P . (34)
Using (34), equations (31) and (32) yield (T >0)

o0 n—lTk
CM%VWM+;P%mFﬂAF]

i 20Y
x tan kb—————»—yz_’_%z_az ) (35)

P — ) { n—1 Tk
125yr + 21[ *?XP(‘T)’;O“H}

o 2n—o _ 2n+o p
LY+ Cn—a)? Y2+ (2n+ap | , (36)

where Uy, P,,, Tand Y are respectively the dimensionless displacement, shear stress,
time and horizontal distance. In the elastic case, (33) gives

Ui=tan™(a/y), Py;;=— a/(Y? +0?). (37)
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Since
n—l]w
|:exp ~T) Z k':l

forallnand T > 0,it is obvious that the infinite series appearing on the right hand side
of (35) converges at least as rapidly as the infinite series 3" (1/n2). Similarly, noting that

2n—o  2n4a 20{4n* — (Y? + a?)}
Y24+@2n—0)? Y2 +Q2n+a)? [Y2+Q@n—a)?][Y2+ (2n+0)?]

the infinite series appearing on the right hand side of (36) also converges at least as
rapidly as the infinite series Y (1/n?). In our numerical computation, we found that the
first 10 terms of the infinite series are adequate.

Figures 2-4 show the variation of the dimensionless surface displacement U,
parallel to the fault with the dimensionless horizontal distance Y from the fault for three
values of the vertical extent of the source namely d = H, H/2 and H/10 and three values
of the dimensionless time T(T = 0, 1 and 10). For all values of d and T, U, = n/2 when
Y =0 (see equations (35) and (37)). The graphs for T = 0 correspond to the elastic case.
From (37), we find that, in the elastic case, the parallel horizontal displacement U; —0
for all values of d as Y — co. We note that the deviation of the viscoelastic solution from
the elastic solution increases as d increases for a given value of Y. Similarly, the
deviation of the viscoelastic solution from the elastic solutlon increases as Yincreases
for a fixed value of d.

Figures 5-7 exhibit the variation of the dimensionless horizontal shear stress P,
with the dimensionless horizontal distance Y from the fault for three values of the
vertical extent of the source, namely, d = H, H/2, H/10 and different values of the
dimensionless time T. The graphs for T =0 correspond to the elastic case for which
P,,=—H/d when Y = 0. Also, P,, —0 as Y approaches infinity [see equation (37)].
For d = H, the graphs for T =1 and T =5 are quite different from the graph for the
elastic case (figure 5). For d = H/2, there is only a slight difference between the graphs

1.57 d/H=1
T=10
1. 20—
Uy
0:80 [~ =
0.40 — 5
o ! | | |
‘ 0.6 1-2 1.8 2.4 30
Y= y/H

F igure 2. Variation of parallel displaccmeht U, with horizontal distance Y when d = H,
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Figure 3. Variation of parallel displacement U, with horizontal distance Y when d = H/2.

Figure 4. Variation of parallel displacement U, with horizontal distance Y when d = H/10.

[ ! | I

0.6 1.2 1-8 24 3-0

Y= y/H

-
oot S e et s e ot T 00t Y i S B et e Tt i M i ]

4 t——— o

[ —

1-8 2-4 3‘0
Y= y/H )

1.6 32
Y= y/H

. Figure 5. Variation of shear stress — P,, with horizontal distance Y when d = H.
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2.0

d/H=0.5

Figure 6. Variation of shear stress — P, with horizontal distance Y when d = H/2.
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Figure 7. Variation of shear stress — P,, with horizontal distance ¥ when d = H/10.

for the viscoelastic case and the elastic case (figure 6). For d = H/10, the graphs for the
viscoelastic case almost coincide with the corresponding graph for the elastic case
(figure 7).

5. Discussion

Equations (9) and (10) give the surface displacement and the surface shear stress
respectively caused by a long vertical strike-slip fault in a homogeneous isotropic layer
of thickness H lying over a homogeneous isotropic elastic half-space. These results are
in complete agreement with the corresponding results of Rybicki (1971) who used the
method of images to obtain these results while we have obtained them directly. The
advantage of our method is that it can also be used when there is more than one layer
lying over the half-space.

We have used the correspondence principle of linear viscoelasticity to obtain the
quasi-static displacement and stress fields for a model consisting of an elasticlayer lying
over a Maxwell viscoelastic half-space. Our results are particularly useful for studying
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the time-dependent post-seismic deformation associated with large earthquakes.
Mukhopadhyay and Mukherji (1979) and Mukherji et al (1980) discussed the problem
of a long strike-slip fault in an elastic layer lying over a viscoelastic half-space without
using the correspondence principle. In addition, these authors included the effect of
initial stress and assumed that the shear stress is maintained far away from the fault by
tectonic forces. The results of Mukhopadhyay and Mukherji (1979) and Mukherji et al
(1980) are useful for studying the stress accumulation near an earthquake fault. The
correspondence principle is normally applicable if the material is stress-free and strain-
free before the fault movement, and we have made this assumption in our model.
Similarly, since our main interest was to determine the displacement and the stress
fields generated by the fault movement, we have not considered the shear stress
maintained far away from the fault by tectonic forces.
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